| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fib6 | Structured version Visualization version GIF version | ||
| Description: Value of the Fibonacci sequence at index 6. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
| Ref | Expression |
|---|---|
| fib6 | ⊢ (Fibci‘6) = 8 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5p1e6 12278 | . . 3 ⊢ (5 + 1) = 6 | |
| 2 | 1 | fveq2i 6834 | . 2 ⊢ (Fibci‘(5 + 1)) = (Fibci‘6) |
| 3 | 5nn 12222 | . . . 4 ⊢ 5 ∈ ℕ | |
| 4 | fibp1 34486 | . . . 4 ⊢ (5 ∈ ℕ → (Fibci‘(5 + 1)) = ((Fibci‘(5 − 1)) + (Fibci‘5))) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (Fibci‘(5 + 1)) = ((Fibci‘(5 − 1)) + (Fibci‘5)) |
| 6 | 5cn 12224 | . . . . . . 7 ⊢ 5 ∈ ℂ | |
| 7 | ax-1cn 11075 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 8 | 4cn 12221 | . . . . . . 7 ⊢ 4 ∈ ℂ | |
| 9 | 4p1e5 12277 | . . . . . . . 8 ⊢ (4 + 1) = 5 | |
| 10 | 8, 7, 9 | addcomli 11316 | . . . . . . 7 ⊢ (1 + 4) = 5 |
| 11 | 6, 7, 8, 10 | subaddrii 11461 | . . . . . 6 ⊢ (5 − 1) = 4 |
| 12 | 11 | fveq2i 6834 | . . . . 5 ⊢ (Fibci‘(5 − 1)) = (Fibci‘4) |
| 13 | fib4 34489 | . . . . 5 ⊢ (Fibci‘4) = 3 | |
| 14 | 12, 13 | eqtri 2756 | . . . 4 ⊢ (Fibci‘(5 − 1)) = 3 |
| 15 | fib5 34490 | . . . 4 ⊢ (Fibci‘5) = 5 | |
| 16 | 14, 15 | oveq12i 7367 | . . 3 ⊢ ((Fibci‘(5 − 1)) + (Fibci‘5)) = (3 + 5) |
| 17 | 3cn 12217 | . . . 4 ⊢ 3 ∈ ℂ | |
| 18 | 5p3e8 12288 | . . . 4 ⊢ (5 + 3) = 8 | |
| 19 | 6, 17, 18 | addcomli 11316 | . . 3 ⊢ (3 + 5) = 8 |
| 20 | 5, 16, 19 | 3eqtri 2760 | . 2 ⊢ (Fibci‘(5 + 1)) = 8 |
| 21 | 2, 20 | eqtr3i 2758 | 1 ⊢ (Fibci‘6) = 8 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ‘cfv 6489 (class class class)co 7355 1c1 11018 + caddc 11020 − cmin 11355 ℕcn 12136 3c3 12192 4c4 12193 5c5 12194 6c6 12195 8c8 12197 Fibcicfib 34481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-n0 12393 df-xnn0 12466 df-z 12480 df-uz 12743 df-rp 12897 df-fz 13415 df-fzo 13562 df-seq 13916 df-hash 14245 df-word 14428 df-lsw 14477 df-concat 14485 df-s1 14511 df-substr 14556 df-pfx 14586 df-s2 14762 df-sseq 34469 df-fib 34482 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |