Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtno4prmfac193 Structured version   Visualization version   GIF version

Theorem fmtno4prmfac193 47587
Description: If P was a (prime) factor of the fourth Fermat number, it would be 193. (Contributed by AV, 28-Jul-2021.)
Assertion
Ref Expression
fmtno4prmfac193 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑃 = 193)

Proof of Theorem fmtno4prmfac193
StepHypRef Expression
1 fmtno4prmfac 47586 . 2 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))
2 5nn 12326 . . . . . . . 8 5 ∈ ℕ
3 1nn0 12517 . . . . . . . . 9 1 ∈ ℕ0
4 3nn 12319 . . . . . . . . 9 3 ∈ ℕ
53, 4decnncl 12728 . . . . . . . 8 13 ∈ ℕ
6 1lt5 12420 . . . . . . . 8 1 < 5
7 1nn 12251 . . . . . . . . 9 1 ∈ ℕ
8 3nn0 12519 . . . . . . . . 9 3 ∈ ℕ0
9 1lt10 12847 . . . . . . . . 9 1 < 10
107, 8, 3, 9declti 12746 . . . . . . . 8 1 < 13
11 eqid 2735 . . . . . . . 8 (5 · 13) = (5 · 13)
122, 5, 6, 10, 11nprmi 16708 . . . . . . 7 ¬ (5 · 13) ∈ ℙ
13 id 22 . . . . . . . . 9 (𝑃 = 65 → 𝑃 = 65)
14 5nn0 12521 . . . . . . . . . 10 5 ∈ ℕ0
15 eqid 2735 . . . . . . . . . 10 13 = 13
16 5cn 12328 . . . . . . . . . . . . 13 5 ∈ ℂ
1716mulridi 11239 . . . . . . . . . . . 12 (5 · 1) = 5
1817oveq1i 7415 . . . . . . . . . . 11 ((5 · 1) + 1) = (5 + 1)
19 5p1e6 12387 . . . . . . . . . . 11 (5 + 1) = 6
2018, 19eqtri 2758 . . . . . . . . . 10 ((5 · 1) + 1) = 6
21 5t3e15 12809 . . . . . . . . . 10 (5 · 3) = 15
2214, 3, 8, 15, 14, 3, 20, 21decmul2c 12774 . . . . . . . . 9 (5 · 13) = 65
2313, 22eqtr4di 2788 . . . . . . . 8 (𝑃 = 65 → 𝑃 = (5 · 13))
2423eleq1d 2819 . . . . . . 7 (𝑃 = 65 → (𝑃 ∈ ℙ ↔ (5 · 13) ∈ ℙ))
2512, 24mtbiri 327 . . . . . 6 (𝑃 = 65 → ¬ 𝑃 ∈ ℙ)
2625pm2.21d 121 . . . . 5 (𝑃 = 65 → (𝑃 ∈ ℙ → 𝑃 = 193))
27 4nn0 12520 . . . . . . . . 9 4 ∈ ℕ0
2827, 4decnncl 12728 . . . . . . . 8 43 ∈ ℕ
29 4nn 12323 . . . . . . . . 9 4 ∈ ℕ
3029, 8, 3, 9declti 12746 . . . . . . . 8 1 < 43
31 1lt3 12413 . . . . . . . 8 1 < 3
32 eqid 2735 . . . . . . . 8 (43 · 3) = (43 · 3)
3328, 4, 30, 31, 32nprmi 16708 . . . . . . 7 ¬ (43 · 3) ∈ ℙ
34 id 22 . . . . . . . . 9 (𝑃 = 129 → 𝑃 = 129)
35 eqid 2735 . . . . . . . . . 10 43 = 43
36 4t3e12 12806 . . . . . . . . . 10 (4 · 3) = 12
37 3t3e9 12407 . . . . . . . . . 10 (3 · 3) = 9
388, 27, 8, 35, 36, 37decmul1 12772 . . . . . . . . 9 (43 · 3) = 129
3934, 38eqtr4di 2788 . . . . . . . 8 (𝑃 = 129 → 𝑃 = (43 · 3))
4039eleq1d 2819 . . . . . . 7 (𝑃 = 129 → (𝑃 ∈ ℙ ↔ (43 · 3) ∈ ℙ))
4133, 40mtbiri 327 . . . . . 6 (𝑃 = 129 → ¬ 𝑃 ∈ ℙ)
4241pm2.21d 121 . . . . 5 (𝑃 = 129 → (𝑃 ∈ ℙ → 𝑃 = 193))
43 ax-1 6 . . . . 5 (𝑃 = 193 → (𝑃 ∈ ℙ → 𝑃 = 193))
4426, 42, 433jaoi 1430 . . . 4 ((𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193) → (𝑃 ∈ ℙ → 𝑃 = 193))
4544com12 32 . . 3 (𝑃 ∈ ℙ → ((𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193) → 𝑃 = 193))
46453ad2ant1 1133 . 2 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → ((𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193) → 𝑃 = 193))
471, 46mpd 15 1 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑃 = 193)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085  w3a 1086   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  (class class class)co 7405  1c1 11130   + caddc 11132   · cmul 11134  cle 11270  2c2 12295  3c3 12296  4c4 12297  5c5 12298  6c6 12299  9c9 12302  cdc 12708  cfl 13807  csqrt 15252  cdvds 16272  cprime 16690  FermatNocfmtno 47541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-ioo 13366  df-ico 13368  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-prod 15920  df-dvds 16273  df-gcd 16514  df-prm 16691  df-odz 16784  df-phi 16785  df-pc 16857  df-lgs 27258  df-fmtno 47542
This theorem is referenced by:  fmtno4prm  47589
  Copyright terms: Public domain W3C validator