| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno4prmfac193 | Structured version Visualization version GIF version | ||
| Description: If P was a (prime) factor of the fourth Fermat number, it would be 193. (Contributed by AV, 28-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno4prmfac193 | ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑃 = ;;193) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmtno4prmfac 47696 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → (𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193)) | |
| 2 | 5nn 12218 | . . . . . . . 8 ⊢ 5 ∈ ℕ | |
| 3 | 1nn0 12404 | . . . . . . . . 9 ⊢ 1 ∈ ℕ0 | |
| 4 | 3nn 12211 | . . . . . . . . 9 ⊢ 3 ∈ ℕ | |
| 5 | 3, 4 | decnncl 12614 | . . . . . . . 8 ⊢ ;13 ∈ ℕ |
| 6 | 1lt5 12307 | . . . . . . . 8 ⊢ 1 < 5 | |
| 7 | 1nn 12143 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
| 8 | 3nn0 12406 | . . . . . . . . 9 ⊢ 3 ∈ ℕ0 | |
| 9 | 1lt10 12733 | . . . . . . . . 9 ⊢ 1 < ;10 | |
| 10 | 7, 8, 3, 9 | declti 12632 | . . . . . . . 8 ⊢ 1 < ;13 |
| 11 | eqid 2733 | . . . . . . . 8 ⊢ (5 · ;13) = (5 · ;13) | |
| 12 | 2, 5, 6, 10, 11 | nprmi 16602 | . . . . . . 7 ⊢ ¬ (5 · ;13) ∈ ℙ |
| 13 | id 22 | . . . . . . . . 9 ⊢ (𝑃 = ;65 → 𝑃 = ;65) | |
| 14 | 5nn0 12408 | . . . . . . . . . 10 ⊢ 5 ∈ ℕ0 | |
| 15 | eqid 2733 | . . . . . . . . . 10 ⊢ ;13 = ;13 | |
| 16 | 5cn 12220 | . . . . . . . . . . . . 13 ⊢ 5 ∈ ℂ | |
| 17 | 16 | mulridi 11123 | . . . . . . . . . . . 12 ⊢ (5 · 1) = 5 |
| 18 | 17 | oveq1i 7362 | . . . . . . . . . . 11 ⊢ ((5 · 1) + 1) = (5 + 1) |
| 19 | 5p1e6 12274 | . . . . . . . . . . 11 ⊢ (5 + 1) = 6 | |
| 20 | 18, 19 | eqtri 2756 | . . . . . . . . . 10 ⊢ ((5 · 1) + 1) = 6 |
| 21 | 5t3e15 12695 | . . . . . . . . . 10 ⊢ (5 · 3) = ;15 | |
| 22 | 14, 3, 8, 15, 14, 3, 20, 21 | decmul2c 12660 | . . . . . . . . 9 ⊢ (5 · ;13) = ;65 |
| 23 | 13, 22 | eqtr4di 2786 | . . . . . . . 8 ⊢ (𝑃 = ;65 → 𝑃 = (5 · ;13)) |
| 24 | 23 | eleq1d 2818 | . . . . . . 7 ⊢ (𝑃 = ;65 → (𝑃 ∈ ℙ ↔ (5 · ;13) ∈ ℙ)) |
| 25 | 12, 24 | mtbiri 327 | . . . . . 6 ⊢ (𝑃 = ;65 → ¬ 𝑃 ∈ ℙ) |
| 26 | 25 | pm2.21d 121 | . . . . 5 ⊢ (𝑃 = ;65 → (𝑃 ∈ ℙ → 𝑃 = ;;193)) |
| 27 | 4nn0 12407 | . . . . . . . . 9 ⊢ 4 ∈ ℕ0 | |
| 28 | 27, 4 | decnncl 12614 | . . . . . . . 8 ⊢ ;43 ∈ ℕ |
| 29 | 4nn 12215 | . . . . . . . . 9 ⊢ 4 ∈ ℕ | |
| 30 | 29, 8, 3, 9 | declti 12632 | . . . . . . . 8 ⊢ 1 < ;43 |
| 31 | 1lt3 12300 | . . . . . . . 8 ⊢ 1 < 3 | |
| 32 | eqid 2733 | . . . . . . . 8 ⊢ (;43 · 3) = (;43 · 3) | |
| 33 | 28, 4, 30, 31, 32 | nprmi 16602 | . . . . . . 7 ⊢ ¬ (;43 · 3) ∈ ℙ |
| 34 | id 22 | . . . . . . . . 9 ⊢ (𝑃 = ;;129 → 𝑃 = ;;129) | |
| 35 | eqid 2733 | . . . . . . . . . 10 ⊢ ;43 = ;43 | |
| 36 | 4t3e12 12692 | . . . . . . . . . 10 ⊢ (4 · 3) = ;12 | |
| 37 | 3t3e9 12294 | . . . . . . . . . 10 ⊢ (3 · 3) = 9 | |
| 38 | 8, 27, 8, 35, 36, 37 | decmul1 12658 | . . . . . . . . 9 ⊢ (;43 · 3) = ;;129 |
| 39 | 34, 38 | eqtr4di 2786 | . . . . . . . 8 ⊢ (𝑃 = ;;129 → 𝑃 = (;43 · 3)) |
| 40 | 39 | eleq1d 2818 | . . . . . . 7 ⊢ (𝑃 = ;;129 → (𝑃 ∈ ℙ ↔ (;43 · 3) ∈ ℙ)) |
| 41 | 33, 40 | mtbiri 327 | . . . . . 6 ⊢ (𝑃 = ;;129 → ¬ 𝑃 ∈ ℙ) |
| 42 | 41 | pm2.21d 121 | . . . . 5 ⊢ (𝑃 = ;;129 → (𝑃 ∈ ℙ → 𝑃 = ;;193)) |
| 43 | ax-1 6 | . . . . 5 ⊢ (𝑃 = ;;193 → (𝑃 ∈ ℙ → 𝑃 = ;;193)) | |
| 44 | 26, 42, 43 | 3jaoi 1430 | . . . 4 ⊢ ((𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193) → (𝑃 ∈ ℙ → 𝑃 = ;;193)) |
| 45 | 44 | com12 32 | . . 3 ⊢ (𝑃 ∈ ℙ → ((𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193) → 𝑃 = ;;193)) |
| 46 | 45 | 3ad2ant1 1133 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → ((𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193) → 𝑃 = ;;193)) |
| 47 | 1, 46 | mpd 15 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑃 = ;;193) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 1c1 11014 + caddc 11016 · cmul 11018 ≤ cle 11154 2c2 12187 3c3 12188 4c4 12189 5c5 12190 6c6 12191 9c9 12194 ;cdc 12594 ⌊cfl 13696 √csqrt 15142 ∥ cdvds 16165 ℙcprime 16584 FermatNocfmtno 47651 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-oi 9403 df-dju 9801 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-xnn0 12462 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-ioo 13251 df-ico 13253 df-fz 13410 df-fzo 13557 df-fl 13698 df-mod 13776 df-seq 13911 df-exp 13971 df-fac 14183 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-prod 15813 df-dvds 16166 df-gcd 16408 df-prm 16585 df-odz 16678 df-phi 16679 df-pc 16751 df-lgs 27234 df-fmtno 47652 |
| This theorem is referenced by: fmtno4prm 47699 |
| Copyright terms: Public domain | W3C validator |