![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno4prmfac193 | Structured version Visualization version GIF version |
Description: If P was a (prime) factor of the fourth Fermat number, it would be 193. (Contributed by AV, 28-Jul-2021.) |
Ref | Expression |
---|---|
fmtno4prmfac193 | ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑃 = ;;193) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmtno4prmfac 47446 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → (𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193)) | |
2 | 5nn 12379 | . . . . . . . 8 ⊢ 5 ∈ ℕ | |
3 | 1nn0 12569 | . . . . . . . . 9 ⊢ 1 ∈ ℕ0 | |
4 | 3nn 12372 | . . . . . . . . 9 ⊢ 3 ∈ ℕ | |
5 | 3, 4 | decnncl 12778 | . . . . . . . 8 ⊢ ;13 ∈ ℕ |
6 | 1lt5 12473 | . . . . . . . 8 ⊢ 1 < 5 | |
7 | 1nn 12304 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
8 | 3nn0 12571 | . . . . . . . . 9 ⊢ 3 ∈ ℕ0 | |
9 | 1lt10 12897 | . . . . . . . . 9 ⊢ 1 < ;10 | |
10 | 7, 8, 3, 9 | declti 12796 | . . . . . . . 8 ⊢ 1 < ;13 |
11 | eqid 2740 | . . . . . . . 8 ⊢ (5 · ;13) = (5 · ;13) | |
12 | 2, 5, 6, 10, 11 | nprmi 16736 | . . . . . . 7 ⊢ ¬ (5 · ;13) ∈ ℙ |
13 | id 22 | . . . . . . . . 9 ⊢ (𝑃 = ;65 → 𝑃 = ;65) | |
14 | 5nn0 12573 | . . . . . . . . . 10 ⊢ 5 ∈ ℕ0 | |
15 | eqid 2740 | . . . . . . . . . 10 ⊢ ;13 = ;13 | |
16 | 5cn 12381 | . . . . . . . . . . . . 13 ⊢ 5 ∈ ℂ | |
17 | 16 | mulridi 11294 | . . . . . . . . . . . 12 ⊢ (5 · 1) = 5 |
18 | 17 | oveq1i 7458 | . . . . . . . . . . 11 ⊢ ((5 · 1) + 1) = (5 + 1) |
19 | 5p1e6 12440 | . . . . . . . . . . 11 ⊢ (5 + 1) = 6 | |
20 | 18, 19 | eqtri 2768 | . . . . . . . . . 10 ⊢ ((5 · 1) + 1) = 6 |
21 | 5t3e15 12859 | . . . . . . . . . 10 ⊢ (5 · 3) = ;15 | |
22 | 14, 3, 8, 15, 14, 3, 20, 21 | decmul2c 12824 | . . . . . . . . 9 ⊢ (5 · ;13) = ;65 |
23 | 13, 22 | eqtr4di 2798 | . . . . . . . 8 ⊢ (𝑃 = ;65 → 𝑃 = (5 · ;13)) |
24 | 23 | eleq1d 2829 | . . . . . . 7 ⊢ (𝑃 = ;65 → (𝑃 ∈ ℙ ↔ (5 · ;13) ∈ ℙ)) |
25 | 12, 24 | mtbiri 327 | . . . . . 6 ⊢ (𝑃 = ;65 → ¬ 𝑃 ∈ ℙ) |
26 | 25 | pm2.21d 121 | . . . . 5 ⊢ (𝑃 = ;65 → (𝑃 ∈ ℙ → 𝑃 = ;;193)) |
27 | 4nn0 12572 | . . . . . . . . 9 ⊢ 4 ∈ ℕ0 | |
28 | 27, 4 | decnncl 12778 | . . . . . . . 8 ⊢ ;43 ∈ ℕ |
29 | 4nn 12376 | . . . . . . . . 9 ⊢ 4 ∈ ℕ | |
30 | 29, 8, 3, 9 | declti 12796 | . . . . . . . 8 ⊢ 1 < ;43 |
31 | 1lt3 12466 | . . . . . . . 8 ⊢ 1 < 3 | |
32 | eqid 2740 | . . . . . . . 8 ⊢ (;43 · 3) = (;43 · 3) | |
33 | 28, 4, 30, 31, 32 | nprmi 16736 | . . . . . . 7 ⊢ ¬ (;43 · 3) ∈ ℙ |
34 | id 22 | . . . . . . . . 9 ⊢ (𝑃 = ;;129 → 𝑃 = ;;129) | |
35 | eqid 2740 | . . . . . . . . . 10 ⊢ ;43 = ;43 | |
36 | 4t3e12 12856 | . . . . . . . . . 10 ⊢ (4 · 3) = ;12 | |
37 | 3t3e9 12460 | . . . . . . . . . 10 ⊢ (3 · 3) = 9 | |
38 | 8, 27, 8, 35, 36, 37 | decmul1 12822 | . . . . . . . . 9 ⊢ (;43 · 3) = ;;129 |
39 | 34, 38 | eqtr4di 2798 | . . . . . . . 8 ⊢ (𝑃 = ;;129 → 𝑃 = (;43 · 3)) |
40 | 39 | eleq1d 2829 | . . . . . . 7 ⊢ (𝑃 = ;;129 → (𝑃 ∈ ℙ ↔ (;43 · 3) ∈ ℙ)) |
41 | 33, 40 | mtbiri 327 | . . . . . 6 ⊢ (𝑃 = ;;129 → ¬ 𝑃 ∈ ℙ) |
42 | 41 | pm2.21d 121 | . . . . 5 ⊢ (𝑃 = ;;129 → (𝑃 ∈ ℙ → 𝑃 = ;;193)) |
43 | ax-1 6 | . . . . 5 ⊢ (𝑃 = ;;193 → (𝑃 ∈ ℙ → 𝑃 = ;;193)) | |
44 | 26, 42, 43 | 3jaoi 1428 | . . . 4 ⊢ ((𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193) → (𝑃 ∈ ℙ → 𝑃 = ;;193)) |
45 | 44 | com12 32 | . . 3 ⊢ (𝑃 ∈ ℙ → ((𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193) → 𝑃 = ;;193)) |
46 | 45 | 3ad2ant1 1133 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → ((𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193) → 𝑃 = ;;193)) |
47 | 1, 46 | mpd 15 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑃 = ;;193) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1086 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 1c1 11185 + caddc 11187 · cmul 11189 ≤ cle 11325 2c2 12348 3c3 12349 4c4 12350 5c5 12351 6c6 12352 9c9 12355 ;cdc 12758 ⌊cfl 13841 √csqrt 15282 ∥ cdvds 16302 ℙcprime 16718 FermatNocfmtno 47401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-ioo 13411 df-ico 13413 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-fac 14323 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-prod 15952 df-dvds 16303 df-gcd 16541 df-prm 16719 df-odz 16812 df-phi 16813 df-pc 16884 df-lgs 27357 df-fmtno 47402 |
This theorem is referenced by: fmtno4prm 47449 |
Copyright terms: Public domain | W3C validator |