| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno4prmfac193 | Structured version Visualization version GIF version | ||
| Description: If P was a (prime) factor of the fourth Fermat number, it would be 193. (Contributed by AV, 28-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno4prmfac193 | ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑃 = ;;193) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmtno4prmfac 47573 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → (𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193)) | |
| 2 | 5nn 12272 | . . . . . . . 8 ⊢ 5 ∈ ℕ | |
| 3 | 1nn0 12458 | . . . . . . . . 9 ⊢ 1 ∈ ℕ0 | |
| 4 | 3nn 12265 | . . . . . . . . 9 ⊢ 3 ∈ ℕ | |
| 5 | 3, 4 | decnncl 12669 | . . . . . . . 8 ⊢ ;13 ∈ ℕ |
| 6 | 1lt5 12361 | . . . . . . . 8 ⊢ 1 < 5 | |
| 7 | 1nn 12197 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
| 8 | 3nn0 12460 | . . . . . . . . 9 ⊢ 3 ∈ ℕ0 | |
| 9 | 1lt10 12788 | . . . . . . . . 9 ⊢ 1 < ;10 | |
| 10 | 7, 8, 3, 9 | declti 12687 | . . . . . . . 8 ⊢ 1 < ;13 |
| 11 | eqid 2729 | . . . . . . . 8 ⊢ (5 · ;13) = (5 · ;13) | |
| 12 | 2, 5, 6, 10, 11 | nprmi 16659 | . . . . . . 7 ⊢ ¬ (5 · ;13) ∈ ℙ |
| 13 | id 22 | . . . . . . . . 9 ⊢ (𝑃 = ;65 → 𝑃 = ;65) | |
| 14 | 5nn0 12462 | . . . . . . . . . 10 ⊢ 5 ∈ ℕ0 | |
| 15 | eqid 2729 | . . . . . . . . . 10 ⊢ ;13 = ;13 | |
| 16 | 5cn 12274 | . . . . . . . . . . . . 13 ⊢ 5 ∈ ℂ | |
| 17 | 16 | mulridi 11178 | . . . . . . . . . . . 12 ⊢ (5 · 1) = 5 |
| 18 | 17 | oveq1i 7397 | . . . . . . . . . . 11 ⊢ ((5 · 1) + 1) = (5 + 1) |
| 19 | 5p1e6 12328 | . . . . . . . . . . 11 ⊢ (5 + 1) = 6 | |
| 20 | 18, 19 | eqtri 2752 | . . . . . . . . . 10 ⊢ ((5 · 1) + 1) = 6 |
| 21 | 5t3e15 12750 | . . . . . . . . . 10 ⊢ (5 · 3) = ;15 | |
| 22 | 14, 3, 8, 15, 14, 3, 20, 21 | decmul2c 12715 | . . . . . . . . 9 ⊢ (5 · ;13) = ;65 |
| 23 | 13, 22 | eqtr4di 2782 | . . . . . . . 8 ⊢ (𝑃 = ;65 → 𝑃 = (5 · ;13)) |
| 24 | 23 | eleq1d 2813 | . . . . . . 7 ⊢ (𝑃 = ;65 → (𝑃 ∈ ℙ ↔ (5 · ;13) ∈ ℙ)) |
| 25 | 12, 24 | mtbiri 327 | . . . . . 6 ⊢ (𝑃 = ;65 → ¬ 𝑃 ∈ ℙ) |
| 26 | 25 | pm2.21d 121 | . . . . 5 ⊢ (𝑃 = ;65 → (𝑃 ∈ ℙ → 𝑃 = ;;193)) |
| 27 | 4nn0 12461 | . . . . . . . . 9 ⊢ 4 ∈ ℕ0 | |
| 28 | 27, 4 | decnncl 12669 | . . . . . . . 8 ⊢ ;43 ∈ ℕ |
| 29 | 4nn 12269 | . . . . . . . . 9 ⊢ 4 ∈ ℕ | |
| 30 | 29, 8, 3, 9 | declti 12687 | . . . . . . . 8 ⊢ 1 < ;43 |
| 31 | 1lt3 12354 | . . . . . . . 8 ⊢ 1 < 3 | |
| 32 | eqid 2729 | . . . . . . . 8 ⊢ (;43 · 3) = (;43 · 3) | |
| 33 | 28, 4, 30, 31, 32 | nprmi 16659 | . . . . . . 7 ⊢ ¬ (;43 · 3) ∈ ℙ |
| 34 | id 22 | . . . . . . . . 9 ⊢ (𝑃 = ;;129 → 𝑃 = ;;129) | |
| 35 | eqid 2729 | . . . . . . . . . 10 ⊢ ;43 = ;43 | |
| 36 | 4t3e12 12747 | . . . . . . . . . 10 ⊢ (4 · 3) = ;12 | |
| 37 | 3t3e9 12348 | . . . . . . . . . 10 ⊢ (3 · 3) = 9 | |
| 38 | 8, 27, 8, 35, 36, 37 | decmul1 12713 | . . . . . . . . 9 ⊢ (;43 · 3) = ;;129 |
| 39 | 34, 38 | eqtr4di 2782 | . . . . . . . 8 ⊢ (𝑃 = ;;129 → 𝑃 = (;43 · 3)) |
| 40 | 39 | eleq1d 2813 | . . . . . . 7 ⊢ (𝑃 = ;;129 → (𝑃 ∈ ℙ ↔ (;43 · 3) ∈ ℙ)) |
| 41 | 33, 40 | mtbiri 327 | . . . . . 6 ⊢ (𝑃 = ;;129 → ¬ 𝑃 ∈ ℙ) |
| 42 | 41 | pm2.21d 121 | . . . . 5 ⊢ (𝑃 = ;;129 → (𝑃 ∈ ℙ → 𝑃 = ;;193)) |
| 43 | ax-1 6 | . . . . 5 ⊢ (𝑃 = ;;193 → (𝑃 ∈ ℙ → 𝑃 = ;;193)) | |
| 44 | 26, 42, 43 | 3jaoi 1430 | . . . 4 ⊢ ((𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193) → (𝑃 ∈ ℙ → 𝑃 = ;;193)) |
| 45 | 44 | com12 32 | . . 3 ⊢ (𝑃 ∈ ℙ → ((𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193) → 𝑃 = ;;193)) |
| 46 | 45 | 3ad2ant1 1133 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → ((𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193) → 𝑃 = ;;193)) |
| 47 | 1, 46 | mpd 15 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑃 = ;;193) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 1c1 11069 + caddc 11071 · cmul 11073 ≤ cle 11209 2c2 12241 3c3 12242 4c4 12243 5c5 12244 6c6 12245 9c9 12248 ;cdc 12649 ⌊cfl 13752 √csqrt 15199 ∥ cdvds 16222 ℙcprime 16641 FermatNocfmtno 47528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-xnn0 12516 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-ioo 13310 df-ico 13312 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-fac 14239 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-prod 15870 df-dvds 16223 df-gcd 16465 df-prm 16642 df-odz 16735 df-phi 16736 df-pc 16808 df-lgs 27206 df-fmtno 47529 |
| This theorem is referenced by: fmtno4prm 47576 |
| Copyright terms: Public domain | W3C validator |