![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno4prmfac193 | Structured version Visualization version GIF version |
Description: If P was a (prime) factor of the fourth Fermat number, it would be 193. (Contributed by AV, 28-Jul-2021.) |
Ref | Expression |
---|---|
fmtno4prmfac193 | β’ ((π β β β§ π β₯ (FermatNoβ4) β§ π β€ (ββ(ββ(FermatNoβ4)))) β π = ;;193) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmtno4prmfac 46835 | . 2 β’ ((π β β β§ π β₯ (FermatNoβ4) β§ π β€ (ββ(ββ(FermatNoβ4)))) β (π = ;65 β¨ π = ;;129 β¨ π = ;;193)) | |
2 | 5nn 12320 | . . . . . . . 8 β’ 5 β β | |
3 | 1nn0 12510 | . . . . . . . . 9 β’ 1 β β0 | |
4 | 3nn 12313 | . . . . . . . . 9 β’ 3 β β | |
5 | 3, 4 | decnncl 12719 | . . . . . . . 8 β’ ;13 β β |
6 | 1lt5 12414 | . . . . . . . 8 β’ 1 < 5 | |
7 | 1nn 12245 | . . . . . . . . 9 β’ 1 β β | |
8 | 3nn0 12512 | . . . . . . . . 9 β’ 3 β β0 | |
9 | 1lt10 12838 | . . . . . . . . 9 β’ 1 < ;10 | |
10 | 7, 8, 3, 9 | declti 12737 | . . . . . . . 8 β’ 1 < ;13 |
11 | eqid 2727 | . . . . . . . 8 β’ (5 Β· ;13) = (5 Β· ;13) | |
12 | 2, 5, 6, 10, 11 | nprmi 16651 | . . . . . . 7 β’ Β¬ (5 Β· ;13) β β |
13 | id 22 | . . . . . . . . 9 β’ (π = ;65 β π = ;65) | |
14 | 5nn0 12514 | . . . . . . . . . 10 β’ 5 β β0 | |
15 | eqid 2727 | . . . . . . . . . 10 β’ ;13 = ;13 | |
16 | 5cn 12322 | . . . . . . . . . . . . 13 β’ 5 β β | |
17 | 16 | mulridi 11240 | . . . . . . . . . . . 12 β’ (5 Β· 1) = 5 |
18 | 17 | oveq1i 7424 | . . . . . . . . . . 11 β’ ((5 Β· 1) + 1) = (5 + 1) |
19 | 5p1e6 12381 | . . . . . . . . . . 11 β’ (5 + 1) = 6 | |
20 | 18, 19 | eqtri 2755 | . . . . . . . . . 10 β’ ((5 Β· 1) + 1) = 6 |
21 | 5t3e15 12800 | . . . . . . . . . 10 β’ (5 Β· 3) = ;15 | |
22 | 14, 3, 8, 15, 14, 3, 20, 21 | decmul2c 12765 | . . . . . . . . 9 β’ (5 Β· ;13) = ;65 |
23 | 13, 22 | eqtr4di 2785 | . . . . . . . 8 β’ (π = ;65 β π = (5 Β· ;13)) |
24 | 23 | eleq1d 2813 | . . . . . . 7 β’ (π = ;65 β (π β β β (5 Β· ;13) β β)) |
25 | 12, 24 | mtbiri 327 | . . . . . 6 β’ (π = ;65 β Β¬ π β β) |
26 | 25 | pm2.21d 121 | . . . . 5 β’ (π = ;65 β (π β β β π = ;;193)) |
27 | 4nn0 12513 | . . . . . . . . 9 β’ 4 β β0 | |
28 | 27, 4 | decnncl 12719 | . . . . . . . 8 β’ ;43 β β |
29 | 4nn 12317 | . . . . . . . . 9 β’ 4 β β | |
30 | 29, 8, 3, 9 | declti 12737 | . . . . . . . 8 β’ 1 < ;43 |
31 | 1lt3 12407 | . . . . . . . 8 β’ 1 < 3 | |
32 | eqid 2727 | . . . . . . . 8 β’ (;43 Β· 3) = (;43 Β· 3) | |
33 | 28, 4, 30, 31, 32 | nprmi 16651 | . . . . . . 7 β’ Β¬ (;43 Β· 3) β β |
34 | id 22 | . . . . . . . . 9 β’ (π = ;;129 β π = ;;129) | |
35 | eqid 2727 | . . . . . . . . . 10 β’ ;43 = ;43 | |
36 | 4t3e12 12797 | . . . . . . . . . 10 β’ (4 Β· 3) = ;12 | |
37 | 3t3e9 12401 | . . . . . . . . . 10 β’ (3 Β· 3) = 9 | |
38 | 8, 27, 8, 35, 36, 37 | decmul1 12763 | . . . . . . . . 9 β’ (;43 Β· 3) = ;;129 |
39 | 34, 38 | eqtr4di 2785 | . . . . . . . 8 β’ (π = ;;129 β π = (;43 Β· 3)) |
40 | 39 | eleq1d 2813 | . . . . . . 7 β’ (π = ;;129 β (π β β β (;43 Β· 3) β β)) |
41 | 33, 40 | mtbiri 327 | . . . . . 6 β’ (π = ;;129 β Β¬ π β β) |
42 | 41 | pm2.21d 121 | . . . . 5 β’ (π = ;;129 β (π β β β π = ;;193)) |
43 | ax-1 6 | . . . . 5 β’ (π = ;;193 β (π β β β π = ;;193)) | |
44 | 26, 42, 43 | 3jaoi 1425 | . . . 4 β’ ((π = ;65 β¨ π = ;;129 β¨ π = ;;193) β (π β β β π = ;;193)) |
45 | 44 | com12 32 | . . 3 β’ (π β β β ((π = ;65 β¨ π = ;;129 β¨ π = ;;193) β π = ;;193)) |
46 | 45 | 3ad2ant1 1131 | . 2 β’ ((π β β β§ π β₯ (FermatNoβ4) β§ π β€ (ββ(ββ(FermatNoβ4)))) β ((π = ;65 β¨ π = ;;129 β¨ π = ;;193) β π = ;;193)) |
47 | 1, 46 | mpd 15 | 1 β’ ((π β β β§ π β₯ (FermatNoβ4) β§ π β€ (ββ(ββ(FermatNoβ4)))) β π = ;;193) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β¨ w3o 1084 β§ w3a 1085 = wceq 1534 β wcel 2099 class class class wbr 5142 βcfv 6542 (class class class)co 7414 1c1 11131 + caddc 11133 Β· cmul 11135 β€ cle 11271 2c2 12289 3c3 12290 4c4 12291 5c5 12292 6c6 12293 9c9 12296 ;cdc 12699 βcfl 13779 βcsqrt 15204 β₯ cdvds 16222 βcprime 16633 FermatNocfmtno 46790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9656 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-sup 9457 df-inf 9458 df-oi 9525 df-dju 9916 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-xnn0 12567 df-z 12581 df-dec 12700 df-uz 12845 df-q 12955 df-rp 12999 df-ioo 13352 df-ico 13354 df-fz 13509 df-fzo 13652 df-fl 13781 df-mod 13859 df-seq 13991 df-exp 14051 df-fac 14257 df-hash 14314 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-clim 15456 df-prod 15874 df-dvds 16223 df-gcd 16461 df-prm 16634 df-odz 16725 df-phi 16726 df-pc 16797 df-lgs 27215 df-fmtno 46791 |
This theorem is referenced by: fmtno4prm 46838 |
Copyright terms: Public domain | W3C validator |