![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno4prmfac193 | Structured version Visualization version GIF version |
Description: If P was a (prime) factor of the fourth Fermat number, it would be 193. (Contributed by AV, 28-Jul-2021.) |
Ref | Expression |
---|---|
fmtno4prmfac193 | β’ ((π β β β§ π β₯ (FermatNoβ4) β§ π β€ (ββ(ββ(FermatNoβ4)))) β π = ;;193) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmtno4prmfac 46975 | . 2 β’ ((π β β β§ π β₯ (FermatNoβ4) β§ π β€ (ββ(ββ(FermatNoβ4)))) β (π = ;65 β¨ π = ;;129 β¨ π = ;;193)) | |
2 | 5nn 12328 | . . . . . . . 8 β’ 5 β β | |
3 | 1nn0 12518 | . . . . . . . . 9 β’ 1 β β0 | |
4 | 3nn 12321 | . . . . . . . . 9 β’ 3 β β | |
5 | 3, 4 | decnncl 12727 | . . . . . . . 8 β’ ;13 β β |
6 | 1lt5 12422 | . . . . . . . 8 β’ 1 < 5 | |
7 | 1nn 12253 | . . . . . . . . 9 β’ 1 β β | |
8 | 3nn0 12520 | . . . . . . . . 9 β’ 3 β β0 | |
9 | 1lt10 12846 | . . . . . . . . 9 β’ 1 < ;10 | |
10 | 7, 8, 3, 9 | declti 12745 | . . . . . . . 8 β’ 1 < ;13 |
11 | eqid 2725 | . . . . . . . 8 β’ (5 Β· ;13) = (5 Β· ;13) | |
12 | 2, 5, 6, 10, 11 | nprmi 16659 | . . . . . . 7 β’ Β¬ (5 Β· ;13) β β |
13 | id 22 | . . . . . . . . 9 β’ (π = ;65 β π = ;65) | |
14 | 5nn0 12522 | . . . . . . . . . 10 β’ 5 β β0 | |
15 | eqid 2725 | . . . . . . . . . 10 β’ ;13 = ;13 | |
16 | 5cn 12330 | . . . . . . . . . . . . 13 β’ 5 β β | |
17 | 16 | mulridi 11248 | . . . . . . . . . . . 12 β’ (5 Β· 1) = 5 |
18 | 17 | oveq1i 7427 | . . . . . . . . . . 11 β’ ((5 Β· 1) + 1) = (5 + 1) |
19 | 5p1e6 12389 | . . . . . . . . . . 11 β’ (5 + 1) = 6 | |
20 | 18, 19 | eqtri 2753 | . . . . . . . . . 10 β’ ((5 Β· 1) + 1) = 6 |
21 | 5t3e15 12808 | . . . . . . . . . 10 β’ (5 Β· 3) = ;15 | |
22 | 14, 3, 8, 15, 14, 3, 20, 21 | decmul2c 12773 | . . . . . . . . 9 β’ (5 Β· ;13) = ;65 |
23 | 13, 22 | eqtr4di 2783 | . . . . . . . 8 β’ (π = ;65 β π = (5 Β· ;13)) |
24 | 23 | eleq1d 2810 | . . . . . . 7 β’ (π = ;65 β (π β β β (5 Β· ;13) β β)) |
25 | 12, 24 | mtbiri 326 | . . . . . 6 β’ (π = ;65 β Β¬ π β β) |
26 | 25 | pm2.21d 121 | . . . . 5 β’ (π = ;65 β (π β β β π = ;;193)) |
27 | 4nn0 12521 | . . . . . . . . 9 β’ 4 β β0 | |
28 | 27, 4 | decnncl 12727 | . . . . . . . 8 β’ ;43 β β |
29 | 4nn 12325 | . . . . . . . . 9 β’ 4 β β | |
30 | 29, 8, 3, 9 | declti 12745 | . . . . . . . 8 β’ 1 < ;43 |
31 | 1lt3 12415 | . . . . . . . 8 β’ 1 < 3 | |
32 | eqid 2725 | . . . . . . . 8 β’ (;43 Β· 3) = (;43 Β· 3) | |
33 | 28, 4, 30, 31, 32 | nprmi 16659 | . . . . . . 7 β’ Β¬ (;43 Β· 3) β β |
34 | id 22 | . . . . . . . . 9 β’ (π = ;;129 β π = ;;129) | |
35 | eqid 2725 | . . . . . . . . . 10 β’ ;43 = ;43 | |
36 | 4t3e12 12805 | . . . . . . . . . 10 β’ (4 Β· 3) = ;12 | |
37 | 3t3e9 12409 | . . . . . . . . . 10 β’ (3 Β· 3) = 9 | |
38 | 8, 27, 8, 35, 36, 37 | decmul1 12771 | . . . . . . . . 9 β’ (;43 Β· 3) = ;;129 |
39 | 34, 38 | eqtr4di 2783 | . . . . . . . 8 β’ (π = ;;129 β π = (;43 Β· 3)) |
40 | 39 | eleq1d 2810 | . . . . . . 7 β’ (π = ;;129 β (π β β β (;43 Β· 3) β β)) |
41 | 33, 40 | mtbiri 326 | . . . . . 6 β’ (π = ;;129 β Β¬ π β β) |
42 | 41 | pm2.21d 121 | . . . . 5 β’ (π = ;;129 β (π β β β π = ;;193)) |
43 | ax-1 6 | . . . . 5 β’ (π = ;;193 β (π β β β π = ;;193)) | |
44 | 26, 42, 43 | 3jaoi 1424 | . . . 4 β’ ((π = ;65 β¨ π = ;;129 β¨ π = ;;193) β (π β β β π = ;;193)) |
45 | 44 | com12 32 | . . 3 β’ (π β β β ((π = ;65 β¨ π = ;;129 β¨ π = ;;193) β π = ;;193)) |
46 | 45 | 3ad2ant1 1130 | . 2 β’ ((π β β β§ π β₯ (FermatNoβ4) β§ π β€ (ββ(ββ(FermatNoβ4)))) β ((π = ;65 β¨ π = ;;129 β¨ π = ;;193) β π = ;;193)) |
47 | 1, 46 | mpd 15 | 1 β’ ((π β β β§ π β₯ (FermatNoβ4) β§ π β€ (ββ(ββ(FermatNoβ4)))) β π = ;;193) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β¨ w3o 1083 β§ w3a 1084 = wceq 1533 β wcel 2098 class class class wbr 5148 βcfv 6547 (class class class)co 7417 1c1 11139 + caddc 11141 Β· cmul 11143 β€ cle 11279 2c2 12297 3c3 12298 4c4 12299 5c5 12300 6c6 12301 9c9 12304 ;cdc 12707 βcfl 13787 βcsqrt 15212 β₯ cdvds 16230 βcprime 16641 FermatNocfmtno 46930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-isom 6556 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-sup 9465 df-inf 9466 df-oi 9533 df-dju 9924 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-xnn0 12575 df-z 12589 df-dec 12708 df-uz 12853 df-q 12963 df-rp 13007 df-ioo 13360 df-ico 13362 df-fz 13517 df-fzo 13660 df-fl 13789 df-mod 13867 df-seq 13999 df-exp 14059 df-fac 14265 df-hash 14322 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-clim 15464 df-prod 15882 df-dvds 16231 df-gcd 16469 df-prm 16642 df-odz 16733 df-phi 16734 df-pc 16805 df-lgs 27258 df-fmtno 46931 |
This theorem is referenced by: fmtno4prm 46978 |
Copyright terms: Public domain | W3C validator |