| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno4prmfac193 | Structured version Visualization version GIF version | ||
| Description: If P was a (prime) factor of the fourth Fermat number, it would be 193. (Contributed by AV, 28-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno4prmfac193 | ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑃 = ;;193) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmtno4prmfac 47602 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → (𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193)) | |
| 2 | 5nn 12208 | . . . . . . . 8 ⊢ 5 ∈ ℕ | |
| 3 | 1nn0 12394 | . . . . . . . . 9 ⊢ 1 ∈ ℕ0 | |
| 4 | 3nn 12201 | . . . . . . . . 9 ⊢ 3 ∈ ℕ | |
| 5 | 3, 4 | decnncl 12605 | . . . . . . . 8 ⊢ ;13 ∈ ℕ |
| 6 | 1lt5 12297 | . . . . . . . 8 ⊢ 1 < 5 | |
| 7 | 1nn 12133 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
| 8 | 3nn0 12396 | . . . . . . . . 9 ⊢ 3 ∈ ℕ0 | |
| 9 | 1lt10 12724 | . . . . . . . . 9 ⊢ 1 < ;10 | |
| 10 | 7, 8, 3, 9 | declti 12623 | . . . . . . . 8 ⊢ 1 < ;13 |
| 11 | eqid 2731 | . . . . . . . 8 ⊢ (5 · ;13) = (5 · ;13) | |
| 12 | 2, 5, 6, 10, 11 | nprmi 16597 | . . . . . . 7 ⊢ ¬ (5 · ;13) ∈ ℙ |
| 13 | id 22 | . . . . . . . . 9 ⊢ (𝑃 = ;65 → 𝑃 = ;65) | |
| 14 | 5nn0 12398 | . . . . . . . . . 10 ⊢ 5 ∈ ℕ0 | |
| 15 | eqid 2731 | . . . . . . . . . 10 ⊢ ;13 = ;13 | |
| 16 | 5cn 12210 | . . . . . . . . . . . . 13 ⊢ 5 ∈ ℂ | |
| 17 | 16 | mulridi 11113 | . . . . . . . . . . . 12 ⊢ (5 · 1) = 5 |
| 18 | 17 | oveq1i 7356 | . . . . . . . . . . 11 ⊢ ((5 · 1) + 1) = (5 + 1) |
| 19 | 5p1e6 12264 | . . . . . . . . . . 11 ⊢ (5 + 1) = 6 | |
| 20 | 18, 19 | eqtri 2754 | . . . . . . . . . 10 ⊢ ((5 · 1) + 1) = 6 |
| 21 | 5t3e15 12686 | . . . . . . . . . 10 ⊢ (5 · 3) = ;15 | |
| 22 | 14, 3, 8, 15, 14, 3, 20, 21 | decmul2c 12651 | . . . . . . . . 9 ⊢ (5 · ;13) = ;65 |
| 23 | 13, 22 | eqtr4di 2784 | . . . . . . . 8 ⊢ (𝑃 = ;65 → 𝑃 = (5 · ;13)) |
| 24 | 23 | eleq1d 2816 | . . . . . . 7 ⊢ (𝑃 = ;65 → (𝑃 ∈ ℙ ↔ (5 · ;13) ∈ ℙ)) |
| 25 | 12, 24 | mtbiri 327 | . . . . . 6 ⊢ (𝑃 = ;65 → ¬ 𝑃 ∈ ℙ) |
| 26 | 25 | pm2.21d 121 | . . . . 5 ⊢ (𝑃 = ;65 → (𝑃 ∈ ℙ → 𝑃 = ;;193)) |
| 27 | 4nn0 12397 | . . . . . . . . 9 ⊢ 4 ∈ ℕ0 | |
| 28 | 27, 4 | decnncl 12605 | . . . . . . . 8 ⊢ ;43 ∈ ℕ |
| 29 | 4nn 12205 | . . . . . . . . 9 ⊢ 4 ∈ ℕ | |
| 30 | 29, 8, 3, 9 | declti 12623 | . . . . . . . 8 ⊢ 1 < ;43 |
| 31 | 1lt3 12290 | . . . . . . . 8 ⊢ 1 < 3 | |
| 32 | eqid 2731 | . . . . . . . 8 ⊢ (;43 · 3) = (;43 · 3) | |
| 33 | 28, 4, 30, 31, 32 | nprmi 16597 | . . . . . . 7 ⊢ ¬ (;43 · 3) ∈ ℙ |
| 34 | id 22 | . . . . . . . . 9 ⊢ (𝑃 = ;;129 → 𝑃 = ;;129) | |
| 35 | eqid 2731 | . . . . . . . . . 10 ⊢ ;43 = ;43 | |
| 36 | 4t3e12 12683 | . . . . . . . . . 10 ⊢ (4 · 3) = ;12 | |
| 37 | 3t3e9 12284 | . . . . . . . . . 10 ⊢ (3 · 3) = 9 | |
| 38 | 8, 27, 8, 35, 36, 37 | decmul1 12649 | . . . . . . . . 9 ⊢ (;43 · 3) = ;;129 |
| 39 | 34, 38 | eqtr4di 2784 | . . . . . . . 8 ⊢ (𝑃 = ;;129 → 𝑃 = (;43 · 3)) |
| 40 | 39 | eleq1d 2816 | . . . . . . 7 ⊢ (𝑃 = ;;129 → (𝑃 ∈ ℙ ↔ (;43 · 3) ∈ ℙ)) |
| 41 | 33, 40 | mtbiri 327 | . . . . . 6 ⊢ (𝑃 = ;;129 → ¬ 𝑃 ∈ ℙ) |
| 42 | 41 | pm2.21d 121 | . . . . 5 ⊢ (𝑃 = ;;129 → (𝑃 ∈ ℙ → 𝑃 = ;;193)) |
| 43 | ax-1 6 | . . . . 5 ⊢ (𝑃 = ;;193 → (𝑃 ∈ ℙ → 𝑃 = ;;193)) | |
| 44 | 26, 42, 43 | 3jaoi 1430 | . . . 4 ⊢ ((𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193) → (𝑃 ∈ ℙ → 𝑃 = ;;193)) |
| 45 | 44 | com12 32 | . . 3 ⊢ (𝑃 ∈ ℙ → ((𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193) → 𝑃 = ;;193)) |
| 46 | 45 | 3ad2ant1 1133 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → ((𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193) → 𝑃 = ;;193)) |
| 47 | 1, 46 | mpd 15 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑃 = ;;193) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 1c1 11004 + caddc 11006 · cmul 11008 ≤ cle 11144 2c2 12177 3c3 12178 4c4 12179 5c5 12180 6c6 12181 9c9 12184 ;cdc 12585 ⌊cfl 13691 √csqrt 15137 ∥ cdvds 16160 ℙcprime 16579 FermatNocfmtno 47557 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9791 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-xnn0 12452 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-ioo 13246 df-ico 13248 df-fz 13405 df-fzo 13552 df-fl 13693 df-mod 13771 df-seq 13906 df-exp 13966 df-fac 14178 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-prod 15808 df-dvds 16161 df-gcd 16403 df-prm 16580 df-odz 16673 df-phi 16674 df-pc 16746 df-lgs 27231 df-fmtno 47558 |
| This theorem is referenced by: fmtno4prm 47605 |
| Copyright terms: Public domain | W3C validator |