Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno4prmfac193 | Structured version Visualization version GIF version |
Description: If P was a (prime) factor of the fourth Fermat number, it would be 193. (Contributed by AV, 28-Jul-2021.) |
Ref | Expression |
---|---|
fmtno4prmfac193 | ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑃 = ;;193) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmtno4prmfac 45024 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → (𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193)) | |
2 | 5nn 12059 | . . . . . . . 8 ⊢ 5 ∈ ℕ | |
3 | 1nn0 12249 | . . . . . . . . 9 ⊢ 1 ∈ ℕ0 | |
4 | 3nn 12052 | . . . . . . . . 9 ⊢ 3 ∈ ℕ | |
5 | 3, 4 | decnncl 12457 | . . . . . . . 8 ⊢ ;13 ∈ ℕ |
6 | 1lt5 12153 | . . . . . . . 8 ⊢ 1 < 5 | |
7 | 1nn 11984 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
8 | 3nn0 12251 | . . . . . . . . 9 ⊢ 3 ∈ ℕ0 | |
9 | 1lt10 12576 | . . . . . . . . 9 ⊢ 1 < ;10 | |
10 | 7, 8, 3, 9 | declti 12475 | . . . . . . . 8 ⊢ 1 < ;13 |
11 | eqid 2738 | . . . . . . . 8 ⊢ (5 · ;13) = (5 · ;13) | |
12 | 2, 5, 6, 10, 11 | nprmi 16394 | . . . . . . 7 ⊢ ¬ (5 · ;13) ∈ ℙ |
13 | id 22 | . . . . . . . . 9 ⊢ (𝑃 = ;65 → 𝑃 = ;65) | |
14 | 5nn0 12253 | . . . . . . . . . 10 ⊢ 5 ∈ ℕ0 | |
15 | eqid 2738 | . . . . . . . . . 10 ⊢ ;13 = ;13 | |
16 | 5cn 12061 | . . . . . . . . . . . . 13 ⊢ 5 ∈ ℂ | |
17 | 16 | mulid1i 10979 | . . . . . . . . . . . 12 ⊢ (5 · 1) = 5 |
18 | 17 | oveq1i 7285 | . . . . . . . . . . 11 ⊢ ((5 · 1) + 1) = (5 + 1) |
19 | 5p1e6 12120 | . . . . . . . . . . 11 ⊢ (5 + 1) = 6 | |
20 | 18, 19 | eqtri 2766 | . . . . . . . . . 10 ⊢ ((5 · 1) + 1) = 6 |
21 | 5t3e15 12538 | . . . . . . . . . 10 ⊢ (5 · 3) = ;15 | |
22 | 14, 3, 8, 15, 14, 3, 20, 21 | decmul2c 12503 | . . . . . . . . 9 ⊢ (5 · ;13) = ;65 |
23 | 13, 22 | eqtr4di 2796 | . . . . . . . 8 ⊢ (𝑃 = ;65 → 𝑃 = (5 · ;13)) |
24 | 23 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑃 = ;65 → (𝑃 ∈ ℙ ↔ (5 · ;13) ∈ ℙ)) |
25 | 12, 24 | mtbiri 327 | . . . . . 6 ⊢ (𝑃 = ;65 → ¬ 𝑃 ∈ ℙ) |
26 | 25 | pm2.21d 121 | . . . . 5 ⊢ (𝑃 = ;65 → (𝑃 ∈ ℙ → 𝑃 = ;;193)) |
27 | 4nn0 12252 | . . . . . . . . 9 ⊢ 4 ∈ ℕ0 | |
28 | 27, 4 | decnncl 12457 | . . . . . . . 8 ⊢ ;43 ∈ ℕ |
29 | 4nn 12056 | . . . . . . . . 9 ⊢ 4 ∈ ℕ | |
30 | 29, 8, 3, 9 | declti 12475 | . . . . . . . 8 ⊢ 1 < ;43 |
31 | 1lt3 12146 | . . . . . . . 8 ⊢ 1 < 3 | |
32 | eqid 2738 | . . . . . . . 8 ⊢ (;43 · 3) = (;43 · 3) | |
33 | 28, 4, 30, 31, 32 | nprmi 16394 | . . . . . . 7 ⊢ ¬ (;43 · 3) ∈ ℙ |
34 | id 22 | . . . . . . . . 9 ⊢ (𝑃 = ;;129 → 𝑃 = ;;129) | |
35 | eqid 2738 | . . . . . . . . . 10 ⊢ ;43 = ;43 | |
36 | 4t3e12 12535 | . . . . . . . . . 10 ⊢ (4 · 3) = ;12 | |
37 | 3t3e9 12140 | . . . . . . . . . 10 ⊢ (3 · 3) = 9 | |
38 | 8, 27, 8, 35, 36, 37 | decmul1 12501 | . . . . . . . . 9 ⊢ (;43 · 3) = ;;129 |
39 | 34, 38 | eqtr4di 2796 | . . . . . . . 8 ⊢ (𝑃 = ;;129 → 𝑃 = (;43 · 3)) |
40 | 39 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑃 = ;;129 → (𝑃 ∈ ℙ ↔ (;43 · 3) ∈ ℙ)) |
41 | 33, 40 | mtbiri 327 | . . . . . 6 ⊢ (𝑃 = ;;129 → ¬ 𝑃 ∈ ℙ) |
42 | 41 | pm2.21d 121 | . . . . 5 ⊢ (𝑃 = ;;129 → (𝑃 ∈ ℙ → 𝑃 = ;;193)) |
43 | ax-1 6 | . . . . 5 ⊢ (𝑃 = ;;193 → (𝑃 ∈ ℙ → 𝑃 = ;;193)) | |
44 | 26, 42, 43 | 3jaoi 1426 | . . . 4 ⊢ ((𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193) → (𝑃 ∈ ℙ → 𝑃 = ;;193)) |
45 | 44 | com12 32 | . . 3 ⊢ (𝑃 ∈ ℙ → ((𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193) → 𝑃 = ;;193)) |
46 | 45 | 3ad2ant1 1132 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → ((𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193) → 𝑃 = ;;193)) |
47 | 1, 46 | mpd 15 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑃 = ;;193) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 1c1 10872 + caddc 10874 · cmul 10876 ≤ cle 11010 2c2 12028 3c3 12029 4c4 12030 5c5 12031 6c6 12032 9c9 12035 ;cdc 12437 ⌊cfl 13510 √csqrt 14944 ∥ cdvds 15963 ℙcprime 16376 FermatNocfmtno 44979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-xnn0 12306 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-ioo 13083 df-ico 13085 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-fac 13988 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-prod 15616 df-dvds 15964 df-gcd 16202 df-prm 16377 df-odz 16466 df-phi 16467 df-pc 16538 df-lgs 26443 df-fmtno 44980 |
This theorem is referenced by: fmtno4prm 45027 |
Copyright terms: Public domain | W3C validator |