| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno4prmfac193 | Structured version Visualization version GIF version | ||
| Description: If P was a (prime) factor of the fourth Fermat number, it would be 193. (Contributed by AV, 28-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno4prmfac193 | ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑃 = ;;193) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmtno4prmfac 47557 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → (𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193)) | |
| 2 | 5nn 12232 | . . . . . . . 8 ⊢ 5 ∈ ℕ | |
| 3 | 1nn0 12418 | . . . . . . . . 9 ⊢ 1 ∈ ℕ0 | |
| 4 | 3nn 12225 | . . . . . . . . 9 ⊢ 3 ∈ ℕ | |
| 5 | 3, 4 | decnncl 12629 | . . . . . . . 8 ⊢ ;13 ∈ ℕ |
| 6 | 1lt5 12321 | . . . . . . . 8 ⊢ 1 < 5 | |
| 7 | 1nn 12157 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
| 8 | 3nn0 12420 | . . . . . . . . 9 ⊢ 3 ∈ ℕ0 | |
| 9 | 1lt10 12748 | . . . . . . . . 9 ⊢ 1 < ;10 | |
| 10 | 7, 8, 3, 9 | declti 12647 | . . . . . . . 8 ⊢ 1 < ;13 |
| 11 | eqid 2729 | . . . . . . . 8 ⊢ (5 · ;13) = (5 · ;13) | |
| 12 | 2, 5, 6, 10, 11 | nprmi 16618 | . . . . . . 7 ⊢ ¬ (5 · ;13) ∈ ℙ |
| 13 | id 22 | . . . . . . . . 9 ⊢ (𝑃 = ;65 → 𝑃 = ;65) | |
| 14 | 5nn0 12422 | . . . . . . . . . 10 ⊢ 5 ∈ ℕ0 | |
| 15 | eqid 2729 | . . . . . . . . . 10 ⊢ ;13 = ;13 | |
| 16 | 5cn 12234 | . . . . . . . . . . . . 13 ⊢ 5 ∈ ℂ | |
| 17 | 16 | mulridi 11138 | . . . . . . . . . . . 12 ⊢ (5 · 1) = 5 |
| 18 | 17 | oveq1i 7363 | . . . . . . . . . . 11 ⊢ ((5 · 1) + 1) = (5 + 1) |
| 19 | 5p1e6 12288 | . . . . . . . . . . 11 ⊢ (5 + 1) = 6 | |
| 20 | 18, 19 | eqtri 2752 | . . . . . . . . . 10 ⊢ ((5 · 1) + 1) = 6 |
| 21 | 5t3e15 12710 | . . . . . . . . . 10 ⊢ (5 · 3) = ;15 | |
| 22 | 14, 3, 8, 15, 14, 3, 20, 21 | decmul2c 12675 | . . . . . . . . 9 ⊢ (5 · ;13) = ;65 |
| 23 | 13, 22 | eqtr4di 2782 | . . . . . . . 8 ⊢ (𝑃 = ;65 → 𝑃 = (5 · ;13)) |
| 24 | 23 | eleq1d 2813 | . . . . . . 7 ⊢ (𝑃 = ;65 → (𝑃 ∈ ℙ ↔ (5 · ;13) ∈ ℙ)) |
| 25 | 12, 24 | mtbiri 327 | . . . . . 6 ⊢ (𝑃 = ;65 → ¬ 𝑃 ∈ ℙ) |
| 26 | 25 | pm2.21d 121 | . . . . 5 ⊢ (𝑃 = ;65 → (𝑃 ∈ ℙ → 𝑃 = ;;193)) |
| 27 | 4nn0 12421 | . . . . . . . . 9 ⊢ 4 ∈ ℕ0 | |
| 28 | 27, 4 | decnncl 12629 | . . . . . . . 8 ⊢ ;43 ∈ ℕ |
| 29 | 4nn 12229 | . . . . . . . . 9 ⊢ 4 ∈ ℕ | |
| 30 | 29, 8, 3, 9 | declti 12647 | . . . . . . . 8 ⊢ 1 < ;43 |
| 31 | 1lt3 12314 | . . . . . . . 8 ⊢ 1 < 3 | |
| 32 | eqid 2729 | . . . . . . . 8 ⊢ (;43 · 3) = (;43 · 3) | |
| 33 | 28, 4, 30, 31, 32 | nprmi 16618 | . . . . . . 7 ⊢ ¬ (;43 · 3) ∈ ℙ |
| 34 | id 22 | . . . . . . . . 9 ⊢ (𝑃 = ;;129 → 𝑃 = ;;129) | |
| 35 | eqid 2729 | . . . . . . . . . 10 ⊢ ;43 = ;43 | |
| 36 | 4t3e12 12707 | . . . . . . . . . 10 ⊢ (4 · 3) = ;12 | |
| 37 | 3t3e9 12308 | . . . . . . . . . 10 ⊢ (3 · 3) = 9 | |
| 38 | 8, 27, 8, 35, 36, 37 | decmul1 12673 | . . . . . . . . 9 ⊢ (;43 · 3) = ;;129 |
| 39 | 34, 38 | eqtr4di 2782 | . . . . . . . 8 ⊢ (𝑃 = ;;129 → 𝑃 = (;43 · 3)) |
| 40 | 39 | eleq1d 2813 | . . . . . . 7 ⊢ (𝑃 = ;;129 → (𝑃 ∈ ℙ ↔ (;43 · 3) ∈ ℙ)) |
| 41 | 33, 40 | mtbiri 327 | . . . . . 6 ⊢ (𝑃 = ;;129 → ¬ 𝑃 ∈ ℙ) |
| 42 | 41 | pm2.21d 121 | . . . . 5 ⊢ (𝑃 = ;;129 → (𝑃 ∈ ℙ → 𝑃 = ;;193)) |
| 43 | ax-1 6 | . . . . 5 ⊢ (𝑃 = ;;193 → (𝑃 ∈ ℙ → 𝑃 = ;;193)) | |
| 44 | 26, 42, 43 | 3jaoi 1430 | . . . 4 ⊢ ((𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193) → (𝑃 ∈ ℙ → 𝑃 = ;;193)) |
| 45 | 44 | com12 32 | . . 3 ⊢ (𝑃 ∈ ℙ → ((𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193) → 𝑃 = ;;193)) |
| 46 | 45 | 3ad2ant1 1133 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → ((𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193) → 𝑃 = ;;193)) |
| 47 | 1, 46 | mpd 15 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑃 = ;;193) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 1c1 11029 + caddc 11031 · cmul 11033 ≤ cle 11169 2c2 12201 3c3 12202 4c4 12203 5c5 12204 6c6 12205 9c9 12208 ;cdc 12609 ⌊cfl 13712 √csqrt 15158 ∥ cdvds 16181 ℙcprime 16600 FermatNocfmtno 47512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-oi 9421 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-xnn0 12476 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-ioo 13270 df-ico 13272 df-fz 13429 df-fzo 13576 df-fl 13714 df-mod 13792 df-seq 13927 df-exp 13987 df-fac 14199 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-prod 15829 df-dvds 16182 df-gcd 16424 df-prm 16601 df-odz 16694 df-phi 16695 df-pc 16767 df-lgs 27222 df-fmtno 47513 |
| This theorem is referenced by: fmtno4prm 47560 |
| Copyright terms: Public domain | W3C validator |