![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 12lcm5e60 | Structured version Visualization version GIF version |
Description: The lcm of 12 and 5 is 60. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
12lcm5e60 | ⊢ (;12 lcm 5) = ;60 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 12516 | . . 3 ⊢ 1 ∈ ℕ0 | |
2 | 2nn 12313 | . . 3 ⊢ 2 ∈ ℕ | |
3 | 1, 2 | decnncl 12725 | . 2 ⊢ ;12 ∈ ℕ |
4 | 5nn 12326 | . 2 ⊢ 5 ∈ ℕ | |
5 | 1nn 12251 | . 2 ⊢ 1 ∈ ℕ | |
6 | 6nn 12329 | . . 3 ⊢ 6 ∈ ℕ | |
7 | 6 | decnncl2 12729 | . 2 ⊢ ;60 ∈ ℕ |
8 | 12gcd5e1 41502 | . 2 ⊢ (;12 gcd 5) = 1 | |
9 | 6nn0 12521 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
10 | 0nn0 12515 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
11 | 9, 10 | deccl 12720 | . . . 4 ⊢ ;60 ∈ ℕ0 |
12 | 11 | nn0cni 12512 | . . 3 ⊢ ;60 ∈ ℂ |
13 | 12 | mullidi 11247 | . 2 ⊢ (1 · ;60) = ;60 |
14 | 5nn0 12520 | . . 3 ⊢ 5 ∈ ℕ0 | |
15 | 2nn0 12517 | . . 3 ⊢ 2 ∈ ℕ0 | |
16 | eqid 2725 | . . 3 ⊢ ;12 = ;12 | |
17 | 5cn 12328 | . . . . . 6 ⊢ 5 ∈ ℂ | |
18 | 17 | mullidi 11247 | . . . . 5 ⊢ (1 · 5) = 5 |
19 | 18 | oveq1i 7424 | . . . 4 ⊢ ((1 · 5) + 1) = (5 + 1) |
20 | 5p1e6 12387 | . . . 4 ⊢ (5 + 1) = 6 | |
21 | 19, 20 | eqtri 2753 | . . 3 ⊢ ((1 · 5) + 1) = 6 |
22 | 2cn 12315 | . . . 4 ⊢ 2 ∈ ℂ | |
23 | 5t2e10 12805 | . . . 4 ⊢ (5 · 2) = ;10 | |
24 | 17, 22, 23 | mulcomli 11251 | . . 3 ⊢ (2 · 5) = ;10 |
25 | 14, 1, 15, 16, 10, 1, 21, 24 | decmul1c 12770 | . 2 ⊢ (;12 · 5) = ;60 |
26 | 3, 4, 5, 7, 8, 13, 25 | lcmeprodgcdi 41506 | 1 ⊢ (;12 lcm 5) = ;60 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 (class class class)co 7414 0cc0 11136 1c1 11137 + caddc 11139 · cmul 11141 2c2 12295 5c5 12298 6c6 12299 ;cdc 12705 lcm clcm 16556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-2o 8484 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-sup 9463 df-inf 9464 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-uz 12851 df-rp 13005 df-fz 13515 df-fl 13787 df-mod 13865 df-seq 13997 df-exp 14057 df-cj 15076 df-re 15077 df-im 15078 df-sqrt 15212 df-abs 15213 df-dvds 16229 df-gcd 16467 df-lcm 16558 df-prm 16640 |
This theorem is referenced by: lcm5un 41516 |
Copyright terms: Public domain | W3C validator |