Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 12lcm5e60 | Structured version Visualization version GIF version |
Description: The lcm of 12 and 5 is 60. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
12lcm5e60 | ⊢ (;12 lcm 5) = ;60 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 12354 | . . 3 ⊢ 1 ∈ ℕ0 | |
2 | 2nn 12151 | . . 3 ⊢ 2 ∈ ℕ | |
3 | 1, 2 | decnncl 12562 | . 2 ⊢ ;12 ∈ ℕ |
4 | 5nn 12164 | . 2 ⊢ 5 ∈ ℕ | |
5 | 1nn 12089 | . 2 ⊢ 1 ∈ ℕ | |
6 | 6nn 12167 | . . 3 ⊢ 6 ∈ ℕ | |
7 | 6 | decnncl2 12566 | . 2 ⊢ ;60 ∈ ℕ |
8 | 12gcd5e1 40316 | . 2 ⊢ (;12 gcd 5) = 1 | |
9 | 6nn0 12359 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
10 | 0nn0 12353 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
11 | 9, 10 | deccl 12557 | . . . 4 ⊢ ;60 ∈ ℕ0 |
12 | 11 | nn0cni 12350 | . . 3 ⊢ ;60 ∈ ℂ |
13 | 12 | mulid2i 11085 | . 2 ⊢ (1 · ;60) = ;60 |
14 | 5nn0 12358 | . . 3 ⊢ 5 ∈ ℕ0 | |
15 | 2nn0 12355 | . . 3 ⊢ 2 ∈ ℕ0 | |
16 | eqid 2737 | . . 3 ⊢ ;12 = ;12 | |
17 | 5cn 12166 | . . . . . 6 ⊢ 5 ∈ ℂ | |
18 | 17 | mulid2i 11085 | . . . . 5 ⊢ (1 · 5) = 5 |
19 | 18 | oveq1i 7351 | . . . 4 ⊢ ((1 · 5) + 1) = (5 + 1) |
20 | 5p1e6 12225 | . . . 4 ⊢ (5 + 1) = 6 | |
21 | 19, 20 | eqtri 2765 | . . 3 ⊢ ((1 · 5) + 1) = 6 |
22 | 2cn 12153 | . . . 4 ⊢ 2 ∈ ℂ | |
23 | 5t2e10 12642 | . . . 4 ⊢ (5 · 2) = ;10 | |
24 | 17, 22, 23 | mulcomli 11089 | . . 3 ⊢ (2 · 5) = ;10 |
25 | 14, 1, 15, 16, 10, 1, 21, 24 | decmul1c 12607 | . 2 ⊢ (;12 · 5) = ;60 |
26 | 3, 4, 5, 7, 8, 13, 25 | lcmeprodgcdi 40320 | 1 ⊢ (;12 lcm 5) = ;60 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 (class class class)co 7341 0cc0 10976 1c1 10977 + caddc 10979 · cmul 10981 2c2 12133 5c5 12136 6c6 12137 ;cdc 12542 lcm clcm 16390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-pre-sup 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-2o 8372 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-sup 9303 df-inf 9304 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-7 12146 df-8 12147 df-9 12148 df-n0 12339 df-z 12425 df-dec 12543 df-uz 12688 df-rp 12836 df-fz 13345 df-fl 13617 df-mod 13695 df-seq 13827 df-exp 13888 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-dvds 16063 df-gcd 16301 df-lcm 16392 df-prm 16474 |
This theorem is referenced by: lcm5un 40330 |
Copyright terms: Public domain | W3C validator |