![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 12lcm5e60 | Structured version Visualization version GIF version |
Description: The lcm of 12 and 5 is 60. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
12lcm5e60 | ⊢ (;12 lcm 5) = ;60 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 12540 | . . 3 ⊢ 1 ∈ ℕ0 | |
2 | 2nn 12337 | . . 3 ⊢ 2 ∈ ℕ | |
3 | 1, 2 | decnncl 12749 | . 2 ⊢ ;12 ∈ ℕ |
4 | 5nn 12350 | . 2 ⊢ 5 ∈ ℕ | |
5 | 1nn 12275 | . 2 ⊢ 1 ∈ ℕ | |
6 | 6nn 12353 | . . 3 ⊢ 6 ∈ ℕ | |
7 | 6 | decnncl2 12753 | . 2 ⊢ ;60 ∈ ℕ |
8 | 12gcd5e1 41702 | . 2 ⊢ (;12 gcd 5) = 1 | |
9 | 6nn0 12545 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
10 | 0nn0 12539 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
11 | 9, 10 | deccl 12744 | . . . 4 ⊢ ;60 ∈ ℕ0 |
12 | 11 | nn0cni 12536 | . . 3 ⊢ ;60 ∈ ℂ |
13 | 12 | mullidi 11269 | . 2 ⊢ (1 · ;60) = ;60 |
14 | 5nn0 12544 | . . 3 ⊢ 5 ∈ ℕ0 | |
15 | 2nn0 12541 | . . 3 ⊢ 2 ∈ ℕ0 | |
16 | eqid 2726 | . . 3 ⊢ ;12 = ;12 | |
17 | 5cn 12352 | . . . . . 6 ⊢ 5 ∈ ℂ | |
18 | 17 | mullidi 11269 | . . . . 5 ⊢ (1 · 5) = 5 |
19 | 18 | oveq1i 7434 | . . . 4 ⊢ ((1 · 5) + 1) = (5 + 1) |
20 | 5p1e6 12411 | . . . 4 ⊢ (5 + 1) = 6 | |
21 | 19, 20 | eqtri 2754 | . . 3 ⊢ ((1 · 5) + 1) = 6 |
22 | 2cn 12339 | . . . 4 ⊢ 2 ∈ ℂ | |
23 | 5t2e10 12829 | . . . 4 ⊢ (5 · 2) = ;10 | |
24 | 17, 22, 23 | mulcomli 11273 | . . 3 ⊢ (2 · 5) = ;10 |
25 | 14, 1, 15, 16, 10, 1, 21, 24 | decmul1c 12794 | . 2 ⊢ (;12 · 5) = ;60 |
26 | 3, 4, 5, 7, 8, 13, 25 | lcmeprodgcdi 41706 | 1 ⊢ (;12 lcm 5) = ;60 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 (class class class)co 7424 0cc0 11158 1c1 11159 + caddc 11161 · cmul 11163 2c2 12319 5c5 12322 6c6 12323 ;cdc 12729 lcm clcm 16589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-sup 9485 df-inf 9486 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-rp 13029 df-fz 13539 df-fl 13812 df-mod 13890 df-seq 14022 df-exp 14082 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-dvds 16257 df-gcd 16495 df-lcm 16591 df-prm 16673 |
This theorem is referenced by: lcm5un 41716 |
Copyright terms: Public domain | W3C validator |