| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 60gcd7e1 | Structured version Visualization version GIF version | ||
| Description: The gcd of 60 and 7 is 1. (Contributed by metakunt, 25-Apr-2024.) |
| Ref | Expression |
|---|---|
| 60gcd7e1 | ⊢ (;60 gcd 7) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 7nn 12332 | . . 3 ⊢ 7 ∈ ℕ | |
| 2 | 6nn 12329 | . . . 4 ⊢ 6 ∈ ℕ | |
| 3 | 2 | decnncl2 12732 | . . 3 ⊢ ;60 ∈ ℕ |
| 4 | 1, 3 | gcdcomnni 42001 | . 2 ⊢ (7 gcd ;60) = (;60 gcd 7) |
| 5 | 1nn0 12517 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 6 | 1nn 12251 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 7 | 5, 6 | decnncl 12728 | . . . . 5 ⊢ ;11 ∈ ℕ |
| 8 | 1 | nnzi 12616 | . . . . 5 ⊢ 7 ∈ ℤ |
| 9 | 1, 7, 8 | gcdaddmzz2nni 42007 | . . . 4 ⊢ (7 gcd ;11) = (7 gcd (;11 + (7 · 7))) |
| 10 | 7t7e49 12822 | . . . . . . 7 ⊢ (7 · 7) = ;49 | |
| 11 | 10 | oveq2i 7416 | . . . . . 6 ⊢ (;11 + (7 · 7)) = (;11 + ;49) |
| 12 | 4nn0 12520 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
| 13 | 9nn0 12525 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
| 14 | eqid 2735 | . . . . . . 7 ⊢ ;11 = ;11 | |
| 15 | eqid 2735 | . . . . . . 7 ⊢ ;49 = ;49 | |
| 16 | 4cn 12325 | . . . . . . . . . 10 ⊢ 4 ∈ ℂ | |
| 17 | ax-1cn 11187 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
| 18 | 4p1e5 12386 | . . . . . . . . . 10 ⊢ (4 + 1) = 5 | |
| 19 | 16, 17, 18 | addcomli 11427 | . . . . . . . . 9 ⊢ (1 + 4) = 5 |
| 20 | 19 | oveq1i 7415 | . . . . . . . 8 ⊢ ((1 + 4) + 1) = (5 + 1) |
| 21 | 5p1e6 12387 | . . . . . . . 8 ⊢ (5 + 1) = 6 | |
| 22 | 20, 21 | eqtri 2758 | . . . . . . 7 ⊢ ((1 + 4) + 1) = 6 |
| 23 | 9cn 12340 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
| 24 | 9p1e10 12710 | . . . . . . . 8 ⊢ (9 + 1) = ;10 | |
| 25 | 23, 17, 24 | addcomli 11427 | . . . . . . 7 ⊢ (1 + 9) = ;10 |
| 26 | 5, 5, 12, 13, 14, 15, 22, 25 | decaddc2 12764 | . . . . . 6 ⊢ (;11 + ;49) = ;60 |
| 27 | 11, 26 | eqtri 2758 | . . . . 5 ⊢ (;11 + (7 · 7)) = ;60 |
| 28 | 27 | oveq2i 7416 | . . . 4 ⊢ (7 gcd (;11 + (7 · 7))) = (7 gcd ;60) |
| 29 | 9, 28 | eqtri 2758 | . . 3 ⊢ (7 gcd ;11) = (7 gcd ;60) |
| 30 | 7re 12333 | . . . . . 6 ⊢ 7 ∈ ℝ | |
| 31 | 1 | nnnn0i 12509 | . . . . . . . 8 ⊢ 7 ∈ ℕ0 |
| 32 | 31 | dec0h 12730 | . . . . . . 7 ⊢ 7 = ;07 |
| 33 | 0nn0 12516 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
| 34 | 7lt9 12440 | . . . . . . . . 9 ⊢ 7 < 9 | |
| 35 | 9re 12339 | . . . . . . . . . . 11 ⊢ 9 ∈ ℝ | |
| 36 | 30, 35 | pm3.2i 470 | . . . . . . . . . 10 ⊢ (7 ∈ ℝ ∧ 9 ∈ ℝ) |
| 37 | ltle 11323 | . . . . . . . . . 10 ⊢ ((7 ∈ ℝ ∧ 9 ∈ ℝ) → (7 < 9 → 7 ≤ 9)) | |
| 38 | 36, 37 | ax-mp 5 | . . . . . . . . 9 ⊢ (7 < 9 → 7 ≤ 9) |
| 39 | 34, 38 | ax-mp 5 | . . . . . . . 8 ⊢ 7 ≤ 9 |
| 40 | 0lt1 11759 | . . . . . . . 8 ⊢ 0 < 1 | |
| 41 | 33, 5, 31, 5, 39, 40 | declth 12738 | . . . . . . 7 ⊢ ;07 < ;11 |
| 42 | 32, 41 | eqbrtri 5140 | . . . . . 6 ⊢ 7 < ;11 |
| 43 | ltne 11332 | . . . . . 6 ⊢ ((7 ∈ ℝ ∧ 7 < ;11) → ;11 ≠ 7) | |
| 44 | 30, 42, 43 | mp2an 692 | . . . . 5 ⊢ ;11 ≠ 7 |
| 45 | necom 2985 | . . . . 5 ⊢ (7 ≠ ;11 ↔ ;11 ≠ 7) | |
| 46 | 44, 45 | mpbir 231 | . . . 4 ⊢ 7 ≠ ;11 |
| 47 | 7prm 17130 | . . . . 5 ⊢ 7 ∈ ℙ | |
| 48 | 11prm 17134 | . . . . 5 ⊢ ;11 ∈ ℙ | |
| 49 | prmrp 16731 | . . . . 5 ⊢ ((7 ∈ ℙ ∧ ;11 ∈ ℙ) → ((7 gcd ;11) = 1 ↔ 7 ≠ ;11)) | |
| 50 | 47, 48, 49 | mp2an 692 | . . . 4 ⊢ ((7 gcd ;11) = 1 ↔ 7 ≠ ;11) |
| 51 | 46, 50 | mpbir 231 | . . 3 ⊢ (7 gcd ;11) = 1 |
| 52 | 29, 51 | eqtr3i 2760 | . 2 ⊢ (7 gcd ;60) = 1 |
| 53 | 4, 52 | eqtr3i 2760 | 1 ⊢ (;60 gcd 7) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 (class class class)co 7405 ℝcr 11128 0cc0 11129 1c1 11130 + caddc 11132 · cmul 11134 < clt 11269 ≤ cle 11270 4c4 12297 5c5 12298 6c6 12299 7c7 12300 9c9 12302 ;cdc 12708 gcd cgcd 16513 ℙcprime 16690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-rp 13009 df-fz 13525 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-dvds 16273 df-gcd 16514 df-prm 16691 |
| This theorem is referenced by: 60lcm7e420 42023 |
| Copyright terms: Public domain | W3C validator |