![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 60gcd7e1 | Structured version Visualization version GIF version |
Description: The gcd of 60 and 7 is 1. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
60gcd7e1 | ⊢ (;60 gcd 7) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 7nn 12303 | . . 3 ⊢ 7 ∈ ℕ | |
2 | 6nn 12300 | . . . 4 ⊢ 6 ∈ ℕ | |
3 | 2 | decnncl2 12700 | . . 3 ⊢ ;60 ∈ ℕ |
4 | 1, 3 | gcdcomnni 40849 | . 2 ⊢ (7 gcd ;60) = (;60 gcd 7) |
5 | 1nn0 12487 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
6 | 1nn 12222 | . . . . . 6 ⊢ 1 ∈ ℕ | |
7 | 5, 6 | decnncl 12696 | . . . . 5 ⊢ ;11 ∈ ℕ |
8 | 1 | nnzi 12585 | . . . . 5 ⊢ 7 ∈ ℤ |
9 | 1, 7, 8 | gcdaddmzz2nni 40855 | . . . 4 ⊢ (7 gcd ;11) = (7 gcd (;11 + (7 · 7))) |
10 | 7t7e49 12790 | . . . . . . 7 ⊢ (7 · 7) = ;49 | |
11 | 10 | oveq2i 7419 | . . . . . 6 ⊢ (;11 + (7 · 7)) = (;11 + ;49) |
12 | 4nn0 12490 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
13 | 9nn0 12495 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
14 | eqid 2732 | . . . . . . 7 ⊢ ;11 = ;11 | |
15 | eqid 2732 | . . . . . . 7 ⊢ ;49 = ;49 | |
16 | 4cn 12296 | . . . . . . . . . 10 ⊢ 4 ∈ ℂ | |
17 | ax-1cn 11167 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
18 | 4p1e5 12357 | . . . . . . . . . 10 ⊢ (4 + 1) = 5 | |
19 | 16, 17, 18 | addcomli 11405 | . . . . . . . . 9 ⊢ (1 + 4) = 5 |
20 | 19 | oveq1i 7418 | . . . . . . . 8 ⊢ ((1 + 4) + 1) = (5 + 1) |
21 | 5p1e6 12358 | . . . . . . . 8 ⊢ (5 + 1) = 6 | |
22 | 20, 21 | eqtri 2760 | . . . . . . 7 ⊢ ((1 + 4) + 1) = 6 |
23 | 9cn 12311 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
24 | 9p1e10 12678 | . . . . . . . 8 ⊢ (9 + 1) = ;10 | |
25 | 23, 17, 24 | addcomli 11405 | . . . . . . 7 ⊢ (1 + 9) = ;10 |
26 | 5, 5, 12, 13, 14, 15, 22, 25 | decaddc2 12732 | . . . . . 6 ⊢ (;11 + ;49) = ;60 |
27 | 11, 26 | eqtri 2760 | . . . . 5 ⊢ (;11 + (7 · 7)) = ;60 |
28 | 27 | oveq2i 7419 | . . . 4 ⊢ (7 gcd (;11 + (7 · 7))) = (7 gcd ;60) |
29 | 9, 28 | eqtri 2760 | . . 3 ⊢ (7 gcd ;11) = (7 gcd ;60) |
30 | 7re 12304 | . . . . . 6 ⊢ 7 ∈ ℝ | |
31 | 1 | nnnn0i 12479 | . . . . . . . 8 ⊢ 7 ∈ ℕ0 |
32 | 31 | dec0h 12698 | . . . . . . 7 ⊢ 7 = ;07 |
33 | 0nn0 12486 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
34 | 7lt9 12411 | . . . . . . . . 9 ⊢ 7 < 9 | |
35 | 9re 12310 | . . . . . . . . . . 11 ⊢ 9 ∈ ℝ | |
36 | 30, 35 | pm3.2i 471 | . . . . . . . . . 10 ⊢ (7 ∈ ℝ ∧ 9 ∈ ℝ) |
37 | ltle 11301 | . . . . . . . . . 10 ⊢ ((7 ∈ ℝ ∧ 9 ∈ ℝ) → (7 < 9 → 7 ≤ 9)) | |
38 | 36, 37 | ax-mp 5 | . . . . . . . . 9 ⊢ (7 < 9 → 7 ≤ 9) |
39 | 34, 38 | ax-mp 5 | . . . . . . . 8 ⊢ 7 ≤ 9 |
40 | 0lt1 11735 | . . . . . . . 8 ⊢ 0 < 1 | |
41 | 33, 5, 31, 5, 39, 40 | declth 12706 | . . . . . . 7 ⊢ ;07 < ;11 |
42 | 32, 41 | eqbrtri 5169 | . . . . . 6 ⊢ 7 < ;11 |
43 | ltne 11310 | . . . . . 6 ⊢ ((7 ∈ ℝ ∧ 7 < ;11) → ;11 ≠ 7) | |
44 | 30, 42, 43 | mp2an 690 | . . . . 5 ⊢ ;11 ≠ 7 |
45 | necom 2994 | . . . . 5 ⊢ (7 ≠ ;11 ↔ ;11 ≠ 7) | |
46 | 44, 45 | mpbir 230 | . . . 4 ⊢ 7 ≠ ;11 |
47 | 7prm 17043 | . . . . 5 ⊢ 7 ∈ ℙ | |
48 | 11prm 17047 | . . . . 5 ⊢ ;11 ∈ ℙ | |
49 | prmrp 16648 | . . . . 5 ⊢ ((7 ∈ ℙ ∧ ;11 ∈ ℙ) → ((7 gcd ;11) = 1 ↔ 7 ≠ ;11)) | |
50 | 47, 48, 49 | mp2an 690 | . . . 4 ⊢ ((7 gcd ;11) = 1 ↔ 7 ≠ ;11) |
51 | 46, 50 | mpbir 230 | . . 3 ⊢ (7 gcd ;11) = 1 |
52 | 29, 51 | eqtr3i 2762 | . 2 ⊢ (7 gcd ;60) = 1 |
53 | 4, 52 | eqtr3i 2762 | 1 ⊢ (;60 gcd 7) = 1 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 class class class wbr 5148 (class class class)co 7408 ℝcr 11108 0cc0 11109 1c1 11110 + caddc 11112 · cmul 11114 < clt 11247 ≤ cle 11248 4c4 12268 5c5 12269 6c6 12270 7c7 12271 9c9 12273 ;cdc 12676 gcd cgcd 16434 ℙcprime 16607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-rp 12974 df-fz 13484 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-dvds 16197 df-gcd 16435 df-prm 16608 |
This theorem is referenced by: 60lcm7e420 40870 |
Copyright terms: Public domain | W3C validator |