![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 60gcd7e1 | Structured version Visualization version GIF version |
Description: The gcd of 60 and 7 is 1. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
60gcd7e1 | ⊢ (;60 gcd 7) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 7nn 12385 | . . 3 ⊢ 7 ∈ ℕ | |
2 | 6nn 12382 | . . . 4 ⊢ 6 ∈ ℕ | |
3 | 2 | decnncl2 12782 | . . 3 ⊢ ;60 ∈ ℕ |
4 | 1, 3 | gcdcomnni 41945 | . 2 ⊢ (7 gcd ;60) = (;60 gcd 7) |
5 | 1nn0 12569 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
6 | 1nn 12304 | . . . . . 6 ⊢ 1 ∈ ℕ | |
7 | 5, 6 | decnncl 12778 | . . . . 5 ⊢ ;11 ∈ ℕ |
8 | 1 | nnzi 12667 | . . . . 5 ⊢ 7 ∈ ℤ |
9 | 1, 7, 8 | gcdaddmzz2nni 41951 | . . . 4 ⊢ (7 gcd ;11) = (7 gcd (;11 + (7 · 7))) |
10 | 7t7e49 12872 | . . . . . . 7 ⊢ (7 · 7) = ;49 | |
11 | 10 | oveq2i 7459 | . . . . . 6 ⊢ (;11 + (7 · 7)) = (;11 + ;49) |
12 | 4nn0 12572 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
13 | 9nn0 12577 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
14 | eqid 2740 | . . . . . . 7 ⊢ ;11 = ;11 | |
15 | eqid 2740 | . . . . . . 7 ⊢ ;49 = ;49 | |
16 | 4cn 12378 | . . . . . . . . . 10 ⊢ 4 ∈ ℂ | |
17 | ax-1cn 11242 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
18 | 4p1e5 12439 | . . . . . . . . . 10 ⊢ (4 + 1) = 5 | |
19 | 16, 17, 18 | addcomli 11482 | . . . . . . . . 9 ⊢ (1 + 4) = 5 |
20 | 19 | oveq1i 7458 | . . . . . . . 8 ⊢ ((1 + 4) + 1) = (5 + 1) |
21 | 5p1e6 12440 | . . . . . . . 8 ⊢ (5 + 1) = 6 | |
22 | 20, 21 | eqtri 2768 | . . . . . . 7 ⊢ ((1 + 4) + 1) = 6 |
23 | 9cn 12393 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
24 | 9p1e10 12760 | . . . . . . . 8 ⊢ (9 + 1) = ;10 | |
25 | 23, 17, 24 | addcomli 11482 | . . . . . . 7 ⊢ (1 + 9) = ;10 |
26 | 5, 5, 12, 13, 14, 15, 22, 25 | decaddc2 12814 | . . . . . 6 ⊢ (;11 + ;49) = ;60 |
27 | 11, 26 | eqtri 2768 | . . . . 5 ⊢ (;11 + (7 · 7)) = ;60 |
28 | 27 | oveq2i 7459 | . . . 4 ⊢ (7 gcd (;11 + (7 · 7))) = (7 gcd ;60) |
29 | 9, 28 | eqtri 2768 | . . 3 ⊢ (7 gcd ;11) = (7 gcd ;60) |
30 | 7re 12386 | . . . . . 6 ⊢ 7 ∈ ℝ | |
31 | 1 | nnnn0i 12561 | . . . . . . . 8 ⊢ 7 ∈ ℕ0 |
32 | 31 | dec0h 12780 | . . . . . . 7 ⊢ 7 = ;07 |
33 | 0nn0 12568 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
34 | 7lt9 12493 | . . . . . . . . 9 ⊢ 7 < 9 | |
35 | 9re 12392 | . . . . . . . . . . 11 ⊢ 9 ∈ ℝ | |
36 | 30, 35 | pm3.2i 470 | . . . . . . . . . 10 ⊢ (7 ∈ ℝ ∧ 9 ∈ ℝ) |
37 | ltle 11378 | . . . . . . . . . 10 ⊢ ((7 ∈ ℝ ∧ 9 ∈ ℝ) → (7 < 9 → 7 ≤ 9)) | |
38 | 36, 37 | ax-mp 5 | . . . . . . . . 9 ⊢ (7 < 9 → 7 ≤ 9) |
39 | 34, 38 | ax-mp 5 | . . . . . . . 8 ⊢ 7 ≤ 9 |
40 | 0lt1 11812 | . . . . . . . 8 ⊢ 0 < 1 | |
41 | 33, 5, 31, 5, 39, 40 | declth 12788 | . . . . . . 7 ⊢ ;07 < ;11 |
42 | 32, 41 | eqbrtri 5187 | . . . . . 6 ⊢ 7 < ;11 |
43 | ltne 11387 | . . . . . 6 ⊢ ((7 ∈ ℝ ∧ 7 < ;11) → ;11 ≠ 7) | |
44 | 30, 42, 43 | mp2an 691 | . . . . 5 ⊢ ;11 ≠ 7 |
45 | necom 3000 | . . . . 5 ⊢ (7 ≠ ;11 ↔ ;11 ≠ 7) | |
46 | 44, 45 | mpbir 231 | . . . 4 ⊢ 7 ≠ ;11 |
47 | 7prm 17158 | . . . . 5 ⊢ 7 ∈ ℙ | |
48 | 11prm 17162 | . . . . 5 ⊢ ;11 ∈ ℙ | |
49 | prmrp 16759 | . . . . 5 ⊢ ((7 ∈ ℙ ∧ ;11 ∈ ℙ) → ((7 gcd ;11) = 1 ↔ 7 ≠ ;11)) | |
50 | 47, 48, 49 | mp2an 691 | . . . 4 ⊢ ((7 gcd ;11) = 1 ↔ 7 ≠ ;11) |
51 | 46, 50 | mpbir 231 | . . 3 ⊢ (7 gcd ;11) = 1 |
52 | 29, 51 | eqtr3i 2770 | . 2 ⊢ (7 gcd ;60) = 1 |
53 | 4, 52 | eqtr3i 2770 | 1 ⊢ (;60 gcd 7) = 1 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 < clt 11324 ≤ cle 11325 4c4 12350 5c5 12351 6c6 12352 7c7 12353 9c9 12355 ;cdc 12758 gcd cgcd 16540 ℙcprime 16718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-fz 13568 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 df-gcd 16541 df-prm 16719 |
This theorem is referenced by: 60lcm7e420 41967 |
Copyright terms: Public domain | W3C validator |