| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 60gcd7e1 | Structured version Visualization version GIF version | ||
| Description: The gcd of 60 and 7 is 1. (Contributed by metakunt, 25-Apr-2024.) |
| Ref | Expression |
|---|---|
| 60gcd7e1 | ⊢ (;60 gcd 7) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 7nn 12228 | . . 3 ⊢ 7 ∈ ℕ | |
| 2 | 6nn 12225 | . . . 4 ⊢ 6 ∈ ℕ | |
| 3 | 2 | decnncl2 12622 | . . 3 ⊢ ;60 ∈ ℕ |
| 4 | 1, 3 | gcdcomnni 42154 | . 2 ⊢ (7 gcd ;60) = (;60 gcd 7) |
| 5 | 1nn0 12408 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 6 | 1nn 12147 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 7 | 5, 6 | decnncl 12618 | . . . . 5 ⊢ ;11 ∈ ℕ |
| 8 | 1 | nnzi 12506 | . . . . 5 ⊢ 7 ∈ ℤ |
| 9 | 1, 7, 8 | gcdaddmzz2nni 42160 | . . . 4 ⊢ (7 gcd ;11) = (7 gcd (;11 + (7 · 7))) |
| 10 | 7t7e49 12712 | . . . . . . 7 ⊢ (7 · 7) = ;49 | |
| 11 | 10 | oveq2i 7366 | . . . . . 6 ⊢ (;11 + (7 · 7)) = (;11 + ;49) |
| 12 | 4nn0 12411 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
| 13 | 9nn0 12416 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
| 14 | eqid 2733 | . . . . . . 7 ⊢ ;11 = ;11 | |
| 15 | eqid 2733 | . . . . . . 7 ⊢ ;49 = ;49 | |
| 16 | 4cn 12221 | . . . . . . . . . 10 ⊢ 4 ∈ ℂ | |
| 17 | ax-1cn 11075 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
| 18 | 4p1e5 12277 | . . . . . . . . . 10 ⊢ (4 + 1) = 5 | |
| 19 | 16, 17, 18 | addcomli 11316 | . . . . . . . . 9 ⊢ (1 + 4) = 5 |
| 20 | 19 | oveq1i 7365 | . . . . . . . 8 ⊢ ((1 + 4) + 1) = (5 + 1) |
| 21 | 5p1e6 12278 | . . . . . . . 8 ⊢ (5 + 1) = 6 | |
| 22 | 20, 21 | eqtri 2756 | . . . . . . 7 ⊢ ((1 + 4) + 1) = 6 |
| 23 | 9cn 12236 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
| 24 | 9p1e10 12600 | . . . . . . . 8 ⊢ (9 + 1) = ;10 | |
| 25 | 23, 17, 24 | addcomli 11316 | . . . . . . 7 ⊢ (1 + 9) = ;10 |
| 26 | 5, 5, 12, 13, 14, 15, 22, 25 | decaddc2 12654 | . . . . . 6 ⊢ (;11 + ;49) = ;60 |
| 27 | 11, 26 | eqtri 2756 | . . . . 5 ⊢ (;11 + (7 · 7)) = ;60 |
| 28 | 27 | oveq2i 7366 | . . . 4 ⊢ (7 gcd (;11 + (7 · 7))) = (7 gcd ;60) |
| 29 | 9, 28 | eqtri 2756 | . . 3 ⊢ (7 gcd ;11) = (7 gcd ;60) |
| 30 | 7re 12229 | . . . . . 6 ⊢ 7 ∈ ℝ | |
| 31 | 1 | nnnn0i 12400 | . . . . . . . 8 ⊢ 7 ∈ ℕ0 |
| 32 | 31 | dec0h 12620 | . . . . . . 7 ⊢ 7 = ;07 |
| 33 | 0nn0 12407 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
| 34 | 7lt9 12331 | . . . . . . . . 9 ⊢ 7 < 9 | |
| 35 | 9re 12235 | . . . . . . . . . . 11 ⊢ 9 ∈ ℝ | |
| 36 | 30, 35 | pm3.2i 470 | . . . . . . . . . 10 ⊢ (7 ∈ ℝ ∧ 9 ∈ ℝ) |
| 37 | ltle 11212 | . . . . . . . . . 10 ⊢ ((7 ∈ ℝ ∧ 9 ∈ ℝ) → (7 < 9 → 7 ≤ 9)) | |
| 38 | 36, 37 | ax-mp 5 | . . . . . . . . 9 ⊢ (7 < 9 → 7 ≤ 9) |
| 39 | 34, 38 | ax-mp 5 | . . . . . . . 8 ⊢ 7 ≤ 9 |
| 40 | 0lt1 11650 | . . . . . . . 8 ⊢ 0 < 1 | |
| 41 | 33, 5, 31, 5, 39, 40 | declth 12628 | . . . . . . 7 ⊢ ;07 < ;11 |
| 42 | 32, 41 | eqbrtri 5116 | . . . . . 6 ⊢ 7 < ;11 |
| 43 | ltne 11221 | . . . . . 6 ⊢ ((7 ∈ ℝ ∧ 7 < ;11) → ;11 ≠ 7) | |
| 44 | 30, 42, 43 | mp2an 692 | . . . . 5 ⊢ ;11 ≠ 7 |
| 45 | necom 2982 | . . . . 5 ⊢ (7 ≠ ;11 ↔ ;11 ≠ 7) | |
| 46 | 44, 45 | mpbir 231 | . . . 4 ⊢ 7 ≠ ;11 |
| 47 | 7prm 17029 | . . . . 5 ⊢ 7 ∈ ℙ | |
| 48 | 11prm 17033 | . . . . 5 ⊢ ;11 ∈ ℙ | |
| 49 | prmrp 16630 | . . . . 5 ⊢ ((7 ∈ ℙ ∧ ;11 ∈ ℙ) → ((7 gcd ;11) = 1 ↔ 7 ≠ ;11)) | |
| 50 | 47, 48, 49 | mp2an 692 | . . . 4 ⊢ ((7 gcd ;11) = 1 ↔ 7 ≠ ;11) |
| 51 | 46, 50 | mpbir 231 | . . 3 ⊢ (7 gcd ;11) = 1 |
| 52 | 29, 51 | eqtr3i 2758 | . 2 ⊢ (7 gcd ;60) = 1 |
| 53 | 4, 52 | eqtr3i 2758 | 1 ⊢ (;60 gcd 7) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 class class class wbr 5095 (class class class)co 7355 ℝcr 11016 0cc0 11017 1c1 11018 + caddc 11020 · cmul 11022 < clt 11157 ≤ cle 11158 4c4 12193 5c5 12194 6c6 12195 7c7 12196 9c9 12198 ;cdc 12598 gcd cgcd 16412 ℙcprime 16589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-inf 9338 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-rp 12897 df-fz 13415 df-seq 13916 df-exp 13976 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-dvds 16171 df-gcd 16413 df-prm 16590 |
| This theorem is referenced by: 60lcm7e420 42176 |
| Copyright terms: Public domain | W3C validator |