| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 60gcd7e1 | Structured version Visualization version GIF version | ||
| Description: The gcd of 60 and 7 is 1. (Contributed by metakunt, 25-Apr-2024.) |
| Ref | Expression |
|---|---|
| 60gcd7e1 | ⊢ (;60 gcd 7) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 7nn 12254 | . . 3 ⊢ 7 ∈ ℕ | |
| 2 | 6nn 12251 | . . . 4 ⊢ 6 ∈ ℕ | |
| 3 | 2 | decnncl2 12649 | . . 3 ⊢ ;60 ∈ ℕ |
| 4 | 1, 3 | gcdcomnni 41949 | . 2 ⊢ (7 gcd ;60) = (;60 gcd 7) |
| 5 | 1nn0 12434 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 6 | 1nn 12173 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 7 | 5, 6 | decnncl 12645 | . . . . 5 ⊢ ;11 ∈ ℕ |
| 8 | 1 | nnzi 12533 | . . . . 5 ⊢ 7 ∈ ℤ |
| 9 | 1, 7, 8 | gcdaddmzz2nni 41955 | . . . 4 ⊢ (7 gcd ;11) = (7 gcd (;11 + (7 · 7))) |
| 10 | 7t7e49 12739 | . . . . . . 7 ⊢ (7 · 7) = ;49 | |
| 11 | 10 | oveq2i 7380 | . . . . . 6 ⊢ (;11 + (7 · 7)) = (;11 + ;49) |
| 12 | 4nn0 12437 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
| 13 | 9nn0 12442 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
| 14 | eqid 2729 | . . . . . . 7 ⊢ ;11 = ;11 | |
| 15 | eqid 2729 | . . . . . . 7 ⊢ ;49 = ;49 | |
| 16 | 4cn 12247 | . . . . . . . . . 10 ⊢ 4 ∈ ℂ | |
| 17 | ax-1cn 11102 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
| 18 | 4p1e5 12303 | . . . . . . . . . 10 ⊢ (4 + 1) = 5 | |
| 19 | 16, 17, 18 | addcomli 11342 | . . . . . . . . 9 ⊢ (1 + 4) = 5 |
| 20 | 19 | oveq1i 7379 | . . . . . . . 8 ⊢ ((1 + 4) + 1) = (5 + 1) |
| 21 | 5p1e6 12304 | . . . . . . . 8 ⊢ (5 + 1) = 6 | |
| 22 | 20, 21 | eqtri 2752 | . . . . . . 7 ⊢ ((1 + 4) + 1) = 6 |
| 23 | 9cn 12262 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
| 24 | 9p1e10 12627 | . . . . . . . 8 ⊢ (9 + 1) = ;10 | |
| 25 | 23, 17, 24 | addcomli 11342 | . . . . . . 7 ⊢ (1 + 9) = ;10 |
| 26 | 5, 5, 12, 13, 14, 15, 22, 25 | decaddc2 12681 | . . . . . 6 ⊢ (;11 + ;49) = ;60 |
| 27 | 11, 26 | eqtri 2752 | . . . . 5 ⊢ (;11 + (7 · 7)) = ;60 |
| 28 | 27 | oveq2i 7380 | . . . 4 ⊢ (7 gcd (;11 + (7 · 7))) = (7 gcd ;60) |
| 29 | 9, 28 | eqtri 2752 | . . 3 ⊢ (7 gcd ;11) = (7 gcd ;60) |
| 30 | 7re 12255 | . . . . . 6 ⊢ 7 ∈ ℝ | |
| 31 | 1 | nnnn0i 12426 | . . . . . . . 8 ⊢ 7 ∈ ℕ0 |
| 32 | 31 | dec0h 12647 | . . . . . . 7 ⊢ 7 = ;07 |
| 33 | 0nn0 12433 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
| 34 | 7lt9 12357 | . . . . . . . . 9 ⊢ 7 < 9 | |
| 35 | 9re 12261 | . . . . . . . . . . 11 ⊢ 9 ∈ ℝ | |
| 36 | 30, 35 | pm3.2i 470 | . . . . . . . . . 10 ⊢ (7 ∈ ℝ ∧ 9 ∈ ℝ) |
| 37 | ltle 11238 | . . . . . . . . . 10 ⊢ ((7 ∈ ℝ ∧ 9 ∈ ℝ) → (7 < 9 → 7 ≤ 9)) | |
| 38 | 36, 37 | ax-mp 5 | . . . . . . . . 9 ⊢ (7 < 9 → 7 ≤ 9) |
| 39 | 34, 38 | ax-mp 5 | . . . . . . . 8 ⊢ 7 ≤ 9 |
| 40 | 0lt1 11676 | . . . . . . . 8 ⊢ 0 < 1 | |
| 41 | 33, 5, 31, 5, 39, 40 | declth 12655 | . . . . . . 7 ⊢ ;07 < ;11 |
| 42 | 32, 41 | eqbrtri 5123 | . . . . . 6 ⊢ 7 < ;11 |
| 43 | ltne 11247 | . . . . . 6 ⊢ ((7 ∈ ℝ ∧ 7 < ;11) → ;11 ≠ 7) | |
| 44 | 30, 42, 43 | mp2an 692 | . . . . 5 ⊢ ;11 ≠ 7 |
| 45 | necom 2978 | . . . . 5 ⊢ (7 ≠ ;11 ↔ ;11 ≠ 7) | |
| 46 | 44, 45 | mpbir 231 | . . . 4 ⊢ 7 ≠ ;11 |
| 47 | 7prm 17057 | . . . . 5 ⊢ 7 ∈ ℙ | |
| 48 | 11prm 17061 | . . . . 5 ⊢ ;11 ∈ ℙ | |
| 49 | prmrp 16658 | . . . . 5 ⊢ ((7 ∈ ℙ ∧ ;11 ∈ ℙ) → ((7 gcd ;11) = 1 ↔ 7 ≠ ;11)) | |
| 50 | 47, 48, 49 | mp2an 692 | . . . 4 ⊢ ((7 gcd ;11) = 1 ↔ 7 ≠ ;11) |
| 51 | 46, 50 | mpbir 231 | . . 3 ⊢ (7 gcd ;11) = 1 |
| 52 | 29, 51 | eqtr3i 2754 | . 2 ⊢ (7 gcd ;60) = 1 |
| 53 | 4, 52 | eqtr3i 2754 | 1 ⊢ (;60 gcd 7) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 (class class class)co 7369 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 < clt 11184 ≤ cle 11185 4c4 12219 5c5 12220 6c6 12221 7c7 12222 9c9 12224 ;cdc 12625 gcd cgcd 16440 ℙcprime 16617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-fz 13445 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-gcd 16441 df-prm 16618 |
| This theorem is referenced by: 60lcm7e420 41971 |
| Copyright terms: Public domain | W3C validator |