Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 60gcd7e1 | Structured version Visualization version GIF version |
Description: The gcd of 60 and 7 is 1. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
60gcd7e1 | ⊢ (;60 gcd 7) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 7nn 12074 | . . 3 ⊢ 7 ∈ ℕ | |
2 | 6nn 12071 | . . . 4 ⊢ 6 ∈ ℕ | |
3 | 2 | decnncl2 12470 | . . 3 ⊢ ;60 ∈ ℕ |
4 | 1, 3 | gcdcomnni 40004 | . 2 ⊢ (7 gcd ;60) = (;60 gcd 7) |
5 | 1nn0 12258 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
6 | 1nn 11993 | . . . . . 6 ⊢ 1 ∈ ℕ | |
7 | 5, 6 | decnncl 12466 | . . . . 5 ⊢ ;11 ∈ ℕ |
8 | 1 | nnzi 12353 | . . . . 5 ⊢ 7 ∈ ℤ |
9 | 1, 7, 8 | gcdaddmzz2nni 40010 | . . . 4 ⊢ (7 gcd ;11) = (7 gcd (;11 + (7 · 7))) |
10 | 7t7e49 12560 | . . . . . . 7 ⊢ (7 · 7) = ;49 | |
11 | 10 | oveq2i 7295 | . . . . . 6 ⊢ (;11 + (7 · 7)) = (;11 + ;49) |
12 | 4nn0 12261 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
13 | 9nn0 12266 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
14 | eqid 2739 | . . . . . . 7 ⊢ ;11 = ;11 | |
15 | eqid 2739 | . . . . . . 7 ⊢ ;49 = ;49 | |
16 | 4cn 12067 | . . . . . . . . . 10 ⊢ 4 ∈ ℂ | |
17 | ax-1cn 10938 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
18 | 4p1e5 12128 | . . . . . . . . . 10 ⊢ (4 + 1) = 5 | |
19 | 16, 17, 18 | addcomli 11176 | . . . . . . . . 9 ⊢ (1 + 4) = 5 |
20 | 19 | oveq1i 7294 | . . . . . . . 8 ⊢ ((1 + 4) + 1) = (5 + 1) |
21 | 5p1e6 12129 | . . . . . . . 8 ⊢ (5 + 1) = 6 | |
22 | 20, 21 | eqtri 2767 | . . . . . . 7 ⊢ ((1 + 4) + 1) = 6 |
23 | 9cn 12082 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
24 | 9p1e10 12448 | . . . . . . . 8 ⊢ (9 + 1) = ;10 | |
25 | 23, 17, 24 | addcomli 11176 | . . . . . . 7 ⊢ (1 + 9) = ;10 |
26 | 5, 5, 12, 13, 14, 15, 22, 25 | decaddc2 12502 | . . . . . 6 ⊢ (;11 + ;49) = ;60 |
27 | 11, 26 | eqtri 2767 | . . . . 5 ⊢ (;11 + (7 · 7)) = ;60 |
28 | 27 | oveq2i 7295 | . . . 4 ⊢ (7 gcd (;11 + (7 · 7))) = (7 gcd ;60) |
29 | 9, 28 | eqtri 2767 | . . 3 ⊢ (7 gcd ;11) = (7 gcd ;60) |
30 | 7re 12075 | . . . . . 6 ⊢ 7 ∈ ℝ | |
31 | 1 | nnnn0i 12250 | . . . . . . . 8 ⊢ 7 ∈ ℕ0 |
32 | 31 | dec0h 12468 | . . . . . . 7 ⊢ 7 = ;07 |
33 | 0nn0 12257 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
34 | 7lt9 12182 | . . . . . . . . 9 ⊢ 7 < 9 | |
35 | 9re 12081 | . . . . . . . . . . 11 ⊢ 9 ∈ ℝ | |
36 | 30, 35 | pm3.2i 471 | . . . . . . . . . 10 ⊢ (7 ∈ ℝ ∧ 9 ∈ ℝ) |
37 | ltle 11072 | . . . . . . . . . 10 ⊢ ((7 ∈ ℝ ∧ 9 ∈ ℝ) → (7 < 9 → 7 ≤ 9)) | |
38 | 36, 37 | ax-mp 5 | . . . . . . . . 9 ⊢ (7 < 9 → 7 ≤ 9) |
39 | 34, 38 | ax-mp 5 | . . . . . . . 8 ⊢ 7 ≤ 9 |
40 | 0lt1 11506 | . . . . . . . 8 ⊢ 0 < 1 | |
41 | 33, 5, 31, 5, 39, 40 | declth 12476 | . . . . . . 7 ⊢ ;07 < ;11 |
42 | 32, 41 | eqbrtri 5096 | . . . . . 6 ⊢ 7 < ;11 |
43 | ltne 11081 | . . . . . 6 ⊢ ((7 ∈ ℝ ∧ 7 < ;11) → ;11 ≠ 7) | |
44 | 30, 42, 43 | mp2an 689 | . . . . 5 ⊢ ;11 ≠ 7 |
45 | necom 2998 | . . . . 5 ⊢ (7 ≠ ;11 ↔ ;11 ≠ 7) | |
46 | 44, 45 | mpbir 230 | . . . 4 ⊢ 7 ≠ ;11 |
47 | 7prm 16821 | . . . . 5 ⊢ 7 ∈ ℙ | |
48 | 11prm 16825 | . . . . 5 ⊢ ;11 ∈ ℙ | |
49 | prmrp 16426 | . . . . 5 ⊢ ((7 ∈ ℙ ∧ ;11 ∈ ℙ) → ((7 gcd ;11) = 1 ↔ 7 ≠ ;11)) | |
50 | 47, 48, 49 | mp2an 689 | . . . 4 ⊢ ((7 gcd ;11) = 1 ↔ 7 ≠ ;11) |
51 | 46, 50 | mpbir 230 | . . 3 ⊢ (7 gcd ;11) = 1 |
52 | 29, 51 | eqtr3i 2769 | . 2 ⊢ (7 gcd ;60) = 1 |
53 | 4, 52 | eqtr3i 2769 | 1 ⊢ (;60 gcd 7) = 1 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ≠ wne 2944 class class class wbr 5075 (class class class)co 7284 ℝcr 10879 0cc0 10880 1c1 10881 + caddc 10883 · cmul 10885 < clt 11018 ≤ cle 11019 4c4 12039 5c5 12040 6c6 12041 7c7 12042 9c9 12044 ;cdc 12446 gcd cgcd 16210 ℙcprime 16385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 ax-pre-sup 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-1st 7840 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-2o 8307 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-sup 9210 df-inf 9211 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-div 11642 df-nn 11983 df-2 12045 df-3 12046 df-4 12047 df-5 12048 df-6 12049 df-7 12050 df-8 12051 df-9 12052 df-n0 12243 df-z 12329 df-dec 12447 df-uz 12592 df-rp 12740 df-fz 13249 df-seq 13731 df-exp 13792 df-cj 14819 df-re 14820 df-im 14821 df-sqrt 14955 df-abs 14956 df-dvds 15973 df-gcd 16211 df-prm 16386 |
This theorem is referenced by: 60lcm7e420 40025 |
Copyright terms: Public domain | W3C validator |