![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 60gcd7e1 | Structured version Visualization version GIF version |
Description: The gcd of 60 and 7 is 1. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
60gcd7e1 | ⊢ (;60 gcd 7) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 7nn 12356 | . . 3 ⊢ 7 ∈ ℕ | |
2 | 6nn 12353 | . . . 4 ⊢ 6 ∈ ℕ | |
3 | 2 | decnncl2 12755 | . . 3 ⊢ ;60 ∈ ℕ |
4 | 1, 3 | gcdcomnni 41970 | . 2 ⊢ (7 gcd ;60) = (;60 gcd 7) |
5 | 1nn0 12540 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
6 | 1nn 12275 | . . . . . 6 ⊢ 1 ∈ ℕ | |
7 | 5, 6 | decnncl 12751 | . . . . 5 ⊢ ;11 ∈ ℕ |
8 | 1 | nnzi 12639 | . . . . 5 ⊢ 7 ∈ ℤ |
9 | 1, 7, 8 | gcdaddmzz2nni 41976 | . . . 4 ⊢ (7 gcd ;11) = (7 gcd (;11 + (7 · 7))) |
10 | 7t7e49 12845 | . . . . . . 7 ⊢ (7 · 7) = ;49 | |
11 | 10 | oveq2i 7442 | . . . . . 6 ⊢ (;11 + (7 · 7)) = (;11 + ;49) |
12 | 4nn0 12543 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
13 | 9nn0 12548 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
14 | eqid 2735 | . . . . . . 7 ⊢ ;11 = ;11 | |
15 | eqid 2735 | . . . . . . 7 ⊢ ;49 = ;49 | |
16 | 4cn 12349 | . . . . . . . . . 10 ⊢ 4 ∈ ℂ | |
17 | ax-1cn 11211 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
18 | 4p1e5 12410 | . . . . . . . . . 10 ⊢ (4 + 1) = 5 | |
19 | 16, 17, 18 | addcomli 11451 | . . . . . . . . 9 ⊢ (1 + 4) = 5 |
20 | 19 | oveq1i 7441 | . . . . . . . 8 ⊢ ((1 + 4) + 1) = (5 + 1) |
21 | 5p1e6 12411 | . . . . . . . 8 ⊢ (5 + 1) = 6 | |
22 | 20, 21 | eqtri 2763 | . . . . . . 7 ⊢ ((1 + 4) + 1) = 6 |
23 | 9cn 12364 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
24 | 9p1e10 12733 | . . . . . . . 8 ⊢ (9 + 1) = ;10 | |
25 | 23, 17, 24 | addcomli 11451 | . . . . . . 7 ⊢ (1 + 9) = ;10 |
26 | 5, 5, 12, 13, 14, 15, 22, 25 | decaddc2 12787 | . . . . . 6 ⊢ (;11 + ;49) = ;60 |
27 | 11, 26 | eqtri 2763 | . . . . 5 ⊢ (;11 + (7 · 7)) = ;60 |
28 | 27 | oveq2i 7442 | . . . 4 ⊢ (7 gcd (;11 + (7 · 7))) = (7 gcd ;60) |
29 | 9, 28 | eqtri 2763 | . . 3 ⊢ (7 gcd ;11) = (7 gcd ;60) |
30 | 7re 12357 | . . . . . 6 ⊢ 7 ∈ ℝ | |
31 | 1 | nnnn0i 12532 | . . . . . . . 8 ⊢ 7 ∈ ℕ0 |
32 | 31 | dec0h 12753 | . . . . . . 7 ⊢ 7 = ;07 |
33 | 0nn0 12539 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
34 | 7lt9 12464 | . . . . . . . . 9 ⊢ 7 < 9 | |
35 | 9re 12363 | . . . . . . . . . . 11 ⊢ 9 ∈ ℝ | |
36 | 30, 35 | pm3.2i 470 | . . . . . . . . . 10 ⊢ (7 ∈ ℝ ∧ 9 ∈ ℝ) |
37 | ltle 11347 | . . . . . . . . . 10 ⊢ ((7 ∈ ℝ ∧ 9 ∈ ℝ) → (7 < 9 → 7 ≤ 9)) | |
38 | 36, 37 | ax-mp 5 | . . . . . . . . 9 ⊢ (7 < 9 → 7 ≤ 9) |
39 | 34, 38 | ax-mp 5 | . . . . . . . 8 ⊢ 7 ≤ 9 |
40 | 0lt1 11783 | . . . . . . . 8 ⊢ 0 < 1 | |
41 | 33, 5, 31, 5, 39, 40 | declth 12761 | . . . . . . 7 ⊢ ;07 < ;11 |
42 | 32, 41 | eqbrtri 5169 | . . . . . 6 ⊢ 7 < ;11 |
43 | ltne 11356 | . . . . . 6 ⊢ ((7 ∈ ℝ ∧ 7 < ;11) → ;11 ≠ 7) | |
44 | 30, 42, 43 | mp2an 692 | . . . . 5 ⊢ ;11 ≠ 7 |
45 | necom 2992 | . . . . 5 ⊢ (7 ≠ ;11 ↔ ;11 ≠ 7) | |
46 | 44, 45 | mpbir 231 | . . . 4 ⊢ 7 ≠ ;11 |
47 | 7prm 17145 | . . . . 5 ⊢ 7 ∈ ℙ | |
48 | 11prm 17149 | . . . . 5 ⊢ ;11 ∈ ℙ | |
49 | prmrp 16746 | . . . . 5 ⊢ ((7 ∈ ℙ ∧ ;11 ∈ ℙ) → ((7 gcd ;11) = 1 ↔ 7 ≠ ;11)) | |
50 | 47, 48, 49 | mp2an 692 | . . . 4 ⊢ ((7 gcd ;11) = 1 ↔ 7 ≠ ;11) |
51 | 46, 50 | mpbir 231 | . . 3 ⊢ (7 gcd ;11) = 1 |
52 | 29, 51 | eqtr3i 2765 | . 2 ⊢ (7 gcd ;60) = 1 |
53 | 4, 52 | eqtr3i 2765 | 1 ⊢ (;60 gcd 7) = 1 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 class class class wbr 5148 (class class class)co 7431 ℝcr 11152 0cc0 11153 1c1 11154 + caddc 11156 · cmul 11158 < clt 11293 ≤ cle 11294 4c4 12321 5c5 12322 6c6 12323 7c7 12324 9c9 12326 ;cdc 12731 gcd cgcd 16528 ℙcprime 16705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-rp 13033 df-fz 13545 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-dvds 16288 df-gcd 16529 df-prm 16706 |
This theorem is referenced by: 60lcm7e420 41992 |
Copyright terms: Public domain | W3C validator |