| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 60gcd7e1 | Structured version Visualization version GIF version | ||
| Description: The gcd of 60 and 7 is 1. (Contributed by metakunt, 25-Apr-2024.) |
| Ref | Expression |
|---|---|
| 60gcd7e1 | ⊢ (;60 gcd 7) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 7nn 12238 | . . 3 ⊢ 7 ∈ ℕ | |
| 2 | 6nn 12235 | . . . 4 ⊢ 6 ∈ ℕ | |
| 3 | 2 | decnncl2 12633 | . . 3 ⊢ ;60 ∈ ℕ |
| 4 | 1, 3 | gcdcomnni 41964 | . 2 ⊢ (7 gcd ;60) = (;60 gcd 7) |
| 5 | 1nn0 12418 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 6 | 1nn 12157 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 7 | 5, 6 | decnncl 12629 | . . . . 5 ⊢ ;11 ∈ ℕ |
| 8 | 1 | nnzi 12517 | . . . . 5 ⊢ 7 ∈ ℤ |
| 9 | 1, 7, 8 | gcdaddmzz2nni 41970 | . . . 4 ⊢ (7 gcd ;11) = (7 gcd (;11 + (7 · 7))) |
| 10 | 7t7e49 12723 | . . . . . . 7 ⊢ (7 · 7) = ;49 | |
| 11 | 10 | oveq2i 7364 | . . . . . 6 ⊢ (;11 + (7 · 7)) = (;11 + ;49) |
| 12 | 4nn0 12421 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
| 13 | 9nn0 12426 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
| 14 | eqid 2729 | . . . . . . 7 ⊢ ;11 = ;11 | |
| 15 | eqid 2729 | . . . . . . 7 ⊢ ;49 = ;49 | |
| 16 | 4cn 12231 | . . . . . . . . . 10 ⊢ 4 ∈ ℂ | |
| 17 | ax-1cn 11086 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
| 18 | 4p1e5 12287 | . . . . . . . . . 10 ⊢ (4 + 1) = 5 | |
| 19 | 16, 17, 18 | addcomli 11326 | . . . . . . . . 9 ⊢ (1 + 4) = 5 |
| 20 | 19 | oveq1i 7363 | . . . . . . . 8 ⊢ ((1 + 4) + 1) = (5 + 1) |
| 21 | 5p1e6 12288 | . . . . . . . 8 ⊢ (5 + 1) = 6 | |
| 22 | 20, 21 | eqtri 2752 | . . . . . . 7 ⊢ ((1 + 4) + 1) = 6 |
| 23 | 9cn 12246 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
| 24 | 9p1e10 12611 | . . . . . . . 8 ⊢ (9 + 1) = ;10 | |
| 25 | 23, 17, 24 | addcomli 11326 | . . . . . . 7 ⊢ (1 + 9) = ;10 |
| 26 | 5, 5, 12, 13, 14, 15, 22, 25 | decaddc2 12665 | . . . . . 6 ⊢ (;11 + ;49) = ;60 |
| 27 | 11, 26 | eqtri 2752 | . . . . 5 ⊢ (;11 + (7 · 7)) = ;60 |
| 28 | 27 | oveq2i 7364 | . . . 4 ⊢ (7 gcd (;11 + (7 · 7))) = (7 gcd ;60) |
| 29 | 9, 28 | eqtri 2752 | . . 3 ⊢ (7 gcd ;11) = (7 gcd ;60) |
| 30 | 7re 12239 | . . . . . 6 ⊢ 7 ∈ ℝ | |
| 31 | 1 | nnnn0i 12410 | . . . . . . . 8 ⊢ 7 ∈ ℕ0 |
| 32 | 31 | dec0h 12631 | . . . . . . 7 ⊢ 7 = ;07 |
| 33 | 0nn0 12417 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
| 34 | 7lt9 12341 | . . . . . . . . 9 ⊢ 7 < 9 | |
| 35 | 9re 12245 | . . . . . . . . . . 11 ⊢ 9 ∈ ℝ | |
| 36 | 30, 35 | pm3.2i 470 | . . . . . . . . . 10 ⊢ (7 ∈ ℝ ∧ 9 ∈ ℝ) |
| 37 | ltle 11222 | . . . . . . . . . 10 ⊢ ((7 ∈ ℝ ∧ 9 ∈ ℝ) → (7 < 9 → 7 ≤ 9)) | |
| 38 | 36, 37 | ax-mp 5 | . . . . . . . . 9 ⊢ (7 < 9 → 7 ≤ 9) |
| 39 | 34, 38 | ax-mp 5 | . . . . . . . 8 ⊢ 7 ≤ 9 |
| 40 | 0lt1 11660 | . . . . . . . 8 ⊢ 0 < 1 | |
| 41 | 33, 5, 31, 5, 39, 40 | declth 12639 | . . . . . . 7 ⊢ ;07 < ;11 |
| 42 | 32, 41 | eqbrtri 5116 | . . . . . 6 ⊢ 7 < ;11 |
| 43 | ltne 11231 | . . . . . 6 ⊢ ((7 ∈ ℝ ∧ 7 < ;11) → ;11 ≠ 7) | |
| 44 | 30, 42, 43 | mp2an 692 | . . . . 5 ⊢ ;11 ≠ 7 |
| 45 | necom 2978 | . . . . 5 ⊢ (7 ≠ ;11 ↔ ;11 ≠ 7) | |
| 46 | 44, 45 | mpbir 231 | . . . 4 ⊢ 7 ≠ ;11 |
| 47 | 7prm 17040 | . . . . 5 ⊢ 7 ∈ ℙ | |
| 48 | 11prm 17044 | . . . . 5 ⊢ ;11 ∈ ℙ | |
| 49 | prmrp 16641 | . . . . 5 ⊢ ((7 ∈ ℙ ∧ ;11 ∈ ℙ) → ((7 gcd ;11) = 1 ↔ 7 ≠ ;11)) | |
| 50 | 47, 48, 49 | mp2an 692 | . . . 4 ⊢ ((7 gcd ;11) = 1 ↔ 7 ≠ ;11) |
| 51 | 46, 50 | mpbir 231 | . . 3 ⊢ (7 gcd ;11) = 1 |
| 52 | 29, 51 | eqtr3i 2754 | . 2 ⊢ (7 gcd ;60) = 1 |
| 53 | 4, 52 | eqtr3i 2754 | 1 ⊢ (;60 gcd 7) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5095 (class class class)co 7353 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 < clt 11168 ≤ cle 11169 4c4 12203 5c5 12204 6c6 12205 7c7 12206 9c9 12208 ;cdc 12609 gcd cgcd 16423 ℙcprime 16600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-rp 12912 df-fz 13429 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-dvds 16182 df-gcd 16424 df-prm 16601 |
| This theorem is referenced by: 60lcm7e420 41986 |
| Copyright terms: Public domain | W3C validator |