| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 60gcd7e1 | Structured version Visualization version GIF version | ||
| Description: The gcd of 60 and 7 is 1. (Contributed by metakunt, 25-Apr-2024.) |
| Ref | Expression |
|---|---|
| 60gcd7e1 | ⊢ (;60 gcd 7) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 7nn 12285 | . . 3 ⊢ 7 ∈ ℕ | |
| 2 | 6nn 12282 | . . . 4 ⊢ 6 ∈ ℕ | |
| 3 | 2 | decnncl2 12680 | . . 3 ⊢ ;60 ∈ ℕ |
| 4 | 1, 3 | gcdcomnni 41983 | . 2 ⊢ (7 gcd ;60) = (;60 gcd 7) |
| 5 | 1nn0 12465 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 6 | 1nn 12204 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 7 | 5, 6 | decnncl 12676 | . . . . 5 ⊢ ;11 ∈ ℕ |
| 8 | 1 | nnzi 12564 | . . . . 5 ⊢ 7 ∈ ℤ |
| 9 | 1, 7, 8 | gcdaddmzz2nni 41989 | . . . 4 ⊢ (7 gcd ;11) = (7 gcd (;11 + (7 · 7))) |
| 10 | 7t7e49 12770 | . . . . . . 7 ⊢ (7 · 7) = ;49 | |
| 11 | 10 | oveq2i 7401 | . . . . . 6 ⊢ (;11 + (7 · 7)) = (;11 + ;49) |
| 12 | 4nn0 12468 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
| 13 | 9nn0 12473 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
| 14 | eqid 2730 | . . . . . . 7 ⊢ ;11 = ;11 | |
| 15 | eqid 2730 | . . . . . . 7 ⊢ ;49 = ;49 | |
| 16 | 4cn 12278 | . . . . . . . . . 10 ⊢ 4 ∈ ℂ | |
| 17 | ax-1cn 11133 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
| 18 | 4p1e5 12334 | . . . . . . . . . 10 ⊢ (4 + 1) = 5 | |
| 19 | 16, 17, 18 | addcomli 11373 | . . . . . . . . 9 ⊢ (1 + 4) = 5 |
| 20 | 19 | oveq1i 7400 | . . . . . . . 8 ⊢ ((1 + 4) + 1) = (5 + 1) |
| 21 | 5p1e6 12335 | . . . . . . . 8 ⊢ (5 + 1) = 6 | |
| 22 | 20, 21 | eqtri 2753 | . . . . . . 7 ⊢ ((1 + 4) + 1) = 6 |
| 23 | 9cn 12293 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
| 24 | 9p1e10 12658 | . . . . . . . 8 ⊢ (9 + 1) = ;10 | |
| 25 | 23, 17, 24 | addcomli 11373 | . . . . . . 7 ⊢ (1 + 9) = ;10 |
| 26 | 5, 5, 12, 13, 14, 15, 22, 25 | decaddc2 12712 | . . . . . 6 ⊢ (;11 + ;49) = ;60 |
| 27 | 11, 26 | eqtri 2753 | . . . . 5 ⊢ (;11 + (7 · 7)) = ;60 |
| 28 | 27 | oveq2i 7401 | . . . 4 ⊢ (7 gcd (;11 + (7 · 7))) = (7 gcd ;60) |
| 29 | 9, 28 | eqtri 2753 | . . 3 ⊢ (7 gcd ;11) = (7 gcd ;60) |
| 30 | 7re 12286 | . . . . . 6 ⊢ 7 ∈ ℝ | |
| 31 | 1 | nnnn0i 12457 | . . . . . . . 8 ⊢ 7 ∈ ℕ0 |
| 32 | 31 | dec0h 12678 | . . . . . . 7 ⊢ 7 = ;07 |
| 33 | 0nn0 12464 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
| 34 | 7lt9 12388 | . . . . . . . . 9 ⊢ 7 < 9 | |
| 35 | 9re 12292 | . . . . . . . . . . 11 ⊢ 9 ∈ ℝ | |
| 36 | 30, 35 | pm3.2i 470 | . . . . . . . . . 10 ⊢ (7 ∈ ℝ ∧ 9 ∈ ℝ) |
| 37 | ltle 11269 | . . . . . . . . . 10 ⊢ ((7 ∈ ℝ ∧ 9 ∈ ℝ) → (7 < 9 → 7 ≤ 9)) | |
| 38 | 36, 37 | ax-mp 5 | . . . . . . . . 9 ⊢ (7 < 9 → 7 ≤ 9) |
| 39 | 34, 38 | ax-mp 5 | . . . . . . . 8 ⊢ 7 ≤ 9 |
| 40 | 0lt1 11707 | . . . . . . . 8 ⊢ 0 < 1 | |
| 41 | 33, 5, 31, 5, 39, 40 | declth 12686 | . . . . . . 7 ⊢ ;07 < ;11 |
| 42 | 32, 41 | eqbrtri 5131 | . . . . . 6 ⊢ 7 < ;11 |
| 43 | ltne 11278 | . . . . . 6 ⊢ ((7 ∈ ℝ ∧ 7 < ;11) → ;11 ≠ 7) | |
| 44 | 30, 42, 43 | mp2an 692 | . . . . 5 ⊢ ;11 ≠ 7 |
| 45 | necom 2979 | . . . . 5 ⊢ (7 ≠ ;11 ↔ ;11 ≠ 7) | |
| 46 | 44, 45 | mpbir 231 | . . . 4 ⊢ 7 ≠ ;11 |
| 47 | 7prm 17088 | . . . . 5 ⊢ 7 ∈ ℙ | |
| 48 | 11prm 17092 | . . . . 5 ⊢ ;11 ∈ ℙ | |
| 49 | prmrp 16689 | . . . . 5 ⊢ ((7 ∈ ℙ ∧ ;11 ∈ ℙ) → ((7 gcd ;11) = 1 ↔ 7 ≠ ;11)) | |
| 50 | 47, 48, 49 | mp2an 692 | . . . 4 ⊢ ((7 gcd ;11) = 1 ↔ 7 ≠ ;11) |
| 51 | 46, 50 | mpbir 231 | . . 3 ⊢ (7 gcd ;11) = 1 |
| 52 | 29, 51 | eqtr3i 2755 | . 2 ⊢ (7 gcd ;60) = 1 |
| 53 | 4, 52 | eqtr3i 2755 | 1 ⊢ (;60 gcd 7) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 < clt 11215 ≤ cle 11216 4c4 12250 5c5 12251 6c6 12252 7c7 12253 9c9 12255 ;cdc 12656 gcd cgcd 16471 ℙcprime 16648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-fz 13476 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-gcd 16472 df-prm 16649 |
| This theorem is referenced by: 60lcm7e420 42005 |
| Copyright terms: Public domain | W3C validator |