![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aovprc | Structured version Visualization version GIF version |
Description: The value of an operation when the one of the arguments is a proper class, analogous to ovprc 7458. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
aovprc.1 | ⊢ Rel dom 𝐹 |
Ref | Expression |
---|---|
aovprc | ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴𝐹𝐵)) = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-aov 46501 | . 2 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩) | |
2 | df-br 5149 | . . . 4 ⊢ (𝐴dom 𝐹 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹) | |
3 | aovprc.1 | . . . . 5 ⊢ Rel dom 𝐹 | |
4 | 3 | brrelex12i 5733 | . . . 4 ⊢ (𝐴dom 𝐹 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
5 | 2, 4 | sylbir 234 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
6 | ndmafv 46520 | . . 3 ⊢ (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → (𝐹'''⟨𝐴, 𝐵⟩) = V) | |
7 | 5, 6 | nsyl5 159 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹'''⟨𝐴, 𝐵⟩) = V) |
8 | 1, 7 | eqtrid 2780 | 1 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴𝐹𝐵)) = V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ⟨cop 4635 class class class wbr 5148 dom cdm 5678 Rel wrel 5683 '''cafv 46497 ((caov 46498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-res 5690 df-iota 6500 df-fun 6550 df-fv 6556 df-aiota 46465 df-dfat 46499 df-afv 46500 df-aov 46501 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |