![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aovprc | Structured version Visualization version GIF version |
Description: The value of an operation when the one of the arguments is a proper class, analogous to ovprc 7442. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
aovprc.1 | ⊢ Rel dom 𝐹 |
Ref | Expression |
---|---|
aovprc | ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴𝐹𝐵)) = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-aov 46383 | . 2 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩) | |
2 | df-br 5142 | . . . 4 ⊢ (𝐴dom 𝐹 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹) | |
3 | aovprc.1 | . . . . 5 ⊢ Rel dom 𝐹 | |
4 | 3 | brrelex12i 5724 | . . . 4 ⊢ (𝐴dom 𝐹 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
5 | 2, 4 | sylbir 234 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
6 | ndmafv 46402 | . . 3 ⊢ (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → (𝐹'''⟨𝐴, 𝐵⟩) = V) | |
7 | 5, 6 | nsyl5 159 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹'''⟨𝐴, 𝐵⟩) = V) |
8 | 1, 7 | eqtrid 2778 | 1 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴𝐹𝐵)) = V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ⟨cop 4629 class class class wbr 5141 dom cdm 5669 Rel wrel 5674 '''cafv 46379 ((caov 46380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-res 5681 df-iota 6488 df-fun 6538 df-fv 6544 df-aiota 46347 df-dfat 46381 df-afv 46382 df-aov 46383 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |