Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aovprc Structured version   Visualization version   GIF version

Theorem aovprc 46568
Description: The value of an operation when the one of the arguments is a proper class, analogous to ovprc 7458. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypothesis
Ref Expression
aovprc.1 Rel dom 𝐹
Assertion
Ref Expression
aovprc (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴𝐹𝐵)) = V)

Proof of Theorem aovprc
StepHypRef Expression
1 df-aov 46501 . 2 ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
2 df-br 5149 . . . 4 (𝐴dom 𝐹 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
3 aovprc.1 . . . . 5 Rel dom 𝐹
43brrelex12i 5733 . . . 4 (𝐴dom 𝐹 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
52, 4sylbir 234 . . 3 (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
6 ndmafv 46520 . . 3 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → (𝐹'''⟨𝐴, 𝐵⟩) = V)
75, 6nsyl5 159 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹'''⟨𝐴, 𝐵⟩) = V)
81, 7eqtrid 2780 1 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴𝐹𝐵)) = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1534  wcel 2099  Vcvv 3471  cop 4635   class class class wbr 5148  dom cdm 5678  Rel wrel 5683  '''cafv 46497   ((caov 46498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-br 5149  df-opab 5211  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-res 5690  df-iota 6500  df-fun 6550  df-fv 6556  df-aiota 46465  df-dfat 46499  df-afv 46500  df-aov 46501
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator