Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  assintopcllaw Structured version   Visualization version   GIF version

Theorem assintopcllaw 48129
Description: The closure low holds for an associative (closed internal binary) operation for a set. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.)
Assertion
Ref Expression
assintopcllaw ( ∈ ( assIntOp ‘𝑀) → clLaw 𝑀)

Proof of Theorem assintopcllaw
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6903 . 2 ( ∈ ( assIntOp ‘𝑀) → 𝑀 ∈ V)
2 assintopval 48122 . . . . 5 (𝑀 ∈ V → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀})
32eleq2d 2815 . . . 4 (𝑀 ∈ V → ( ∈ ( assIntOp ‘𝑀) ↔ ∈ {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}))
4 breq1 5118 . . . . 5 (𝑜 = → (𝑜 assLaw 𝑀 assLaw 𝑀))
54elrab 3667 . . . 4 ( ∈ {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} ↔ ( ∈ ( clIntOp ‘𝑀) ∧ assLaw 𝑀))
63, 5bitrdi 287 . . 3 (𝑀 ∈ V → ( ∈ ( assIntOp ‘𝑀) ↔ ( ∈ ( clIntOp ‘𝑀) ∧ assLaw 𝑀)))
7 clintopcllaw 48128 . . . 4 ( ∈ ( clIntOp ‘𝑀) → clLaw 𝑀)
87adantr 480 . . 3 (( ∈ ( clIntOp ‘𝑀) ∧ assLaw 𝑀) → clLaw 𝑀)
96, 8biimtrdi 253 . 2 (𝑀 ∈ V → ( ∈ ( assIntOp ‘𝑀) → clLaw 𝑀))
101, 9mpcom 38 1 ( ∈ ( assIntOp ‘𝑀) → clLaw 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  {crab 3411  Vcvv 3455   class class class wbr 5115  cfv 6519   clLaw ccllaw 48100   assLaw casslaw 48101   clIntOp cclintop 48114   assIntOp cassintop 48115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-map 8805  df-cllaw 48103  df-intop 48116  df-clintop 48117  df-assintop 48118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator