Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  assintopcllaw Structured version   Visualization version   GIF version

Theorem assintopcllaw 46622
Description: The closure low holds for an associative (closed internal binary) operation for a set. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.)
Assertion
Ref Expression
assintopcllaw ( ∈ ( assIntOp ‘𝑀) → clLaw 𝑀)

Proof of Theorem assintopcllaw
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6930 . 2 ( ∈ ( assIntOp ‘𝑀) → 𝑀 ∈ V)
2 assintopval 46615 . . . . 5 (𝑀 ∈ V → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀})
32eleq2d 2820 . . . 4 (𝑀 ∈ V → ( ∈ ( assIntOp ‘𝑀) ↔ ∈ {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}))
4 breq1 5152 . . . . 5 (𝑜 = → (𝑜 assLaw 𝑀 assLaw 𝑀))
54elrab 3684 . . . 4 ( ∈ {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} ↔ ( ∈ ( clIntOp ‘𝑀) ∧ assLaw 𝑀))
63, 5bitrdi 287 . . 3 (𝑀 ∈ V → ( ∈ ( assIntOp ‘𝑀) ↔ ( ∈ ( clIntOp ‘𝑀) ∧ assLaw 𝑀)))
7 clintopcllaw 46621 . . . 4 ( ∈ ( clIntOp ‘𝑀) → clLaw 𝑀)
87adantr 482 . . 3 (( ∈ ( clIntOp ‘𝑀) ∧ assLaw 𝑀) → clLaw 𝑀)
96, 8syl6bi 253 . 2 (𝑀 ∈ V → ( ∈ ( assIntOp ‘𝑀) → clLaw 𝑀))
101, 9mpcom 38 1 ( ∈ ( assIntOp ‘𝑀) → clLaw 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107  {crab 3433  Vcvv 3475   class class class wbr 5149  cfv 6544   clLaw ccllaw 46593   assLaw casslaw 46594   clIntOp cclintop 46607   assIntOp cassintop 46608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-map 8822  df-cllaw 46596  df-intop 46609  df-clintop 46610  df-assintop 46611
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator