Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > assintopcllaw | Structured version Visualization version GIF version |
Description: The closure low holds for an associative (closed internal binary) operation for a set. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.) |
Ref | Expression |
---|---|
assintopcllaw | ⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ⚬ clLaw 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6839 | . 2 ⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → 𝑀 ∈ V) | |
2 | assintopval 45457 | . . . . 5 ⊢ (𝑀 ∈ V → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}) | |
3 | 2 | eleq2d 2822 | . . . 4 ⊢ (𝑀 ∈ V → ( ⚬ ∈ ( assIntOp ‘𝑀) ↔ ⚬ ∈ {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀})) |
4 | breq1 5084 | . . . . 5 ⊢ (𝑜 = ⚬ → (𝑜 assLaw 𝑀 ↔ ⚬ assLaw 𝑀)) | |
5 | 4 | elrab 3629 | . . . 4 ⊢ ( ⚬ ∈ {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} ↔ ( ⚬ ∈ ( clIntOp ‘𝑀) ∧ ⚬ assLaw 𝑀)) |
6 | 3, 5 | bitrdi 287 | . . 3 ⊢ (𝑀 ∈ V → ( ⚬ ∈ ( assIntOp ‘𝑀) ↔ ( ⚬ ∈ ( clIntOp ‘𝑀) ∧ ⚬ assLaw 𝑀))) |
7 | clintopcllaw 45463 | . . . 4 ⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → ⚬ clLaw 𝑀) | |
8 | 7 | adantr 482 | . . 3 ⊢ (( ⚬ ∈ ( clIntOp ‘𝑀) ∧ ⚬ assLaw 𝑀) → ⚬ clLaw 𝑀) |
9 | 6, 8 | syl6bi 253 | . 2 ⊢ (𝑀 ∈ V → ( ⚬ ∈ ( assIntOp ‘𝑀) → ⚬ clLaw 𝑀)) |
10 | 1, 9 | mpcom 38 | 1 ⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ⚬ clLaw 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2104 {crab 3284 Vcvv 3437 class class class wbr 5081 ‘cfv 6458 clLaw ccllaw 45435 assLaw casslaw 45436 clIntOp cclintop 45449 assIntOp cassintop 45450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-map 8648 df-cllaw 45438 df-intop 45451 df-clintop 45452 df-assintop 45453 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |