Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  assintopcllaw Structured version   Visualization version   GIF version

Theorem assintopcllaw 48074
Description: The closure low holds for an associative (closed internal binary) operation for a set. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.)
Assertion
Ref Expression
assintopcllaw ( ∈ ( assIntOp ‘𝑀) → clLaw 𝑀)

Proof of Theorem assintopcllaw
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6925 . 2 ( ∈ ( assIntOp ‘𝑀) → 𝑀 ∈ V)
2 assintopval 48067 . . . . 5 (𝑀 ∈ V → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀})
32eleq2d 2819 . . . 4 (𝑀 ∈ V → ( ∈ ( assIntOp ‘𝑀) ↔ ∈ {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}))
4 breq1 5128 . . . . 5 (𝑜 = → (𝑜 assLaw 𝑀 assLaw 𝑀))
54elrab 3676 . . . 4 ( ∈ {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} ↔ ( ∈ ( clIntOp ‘𝑀) ∧ assLaw 𝑀))
63, 5bitrdi 287 . . 3 (𝑀 ∈ V → ( ∈ ( assIntOp ‘𝑀) ↔ ( ∈ ( clIntOp ‘𝑀) ∧ assLaw 𝑀)))
7 clintopcllaw 48073 . . . 4 ( ∈ ( clIntOp ‘𝑀) → clLaw 𝑀)
87adantr 480 . . 3 (( ∈ ( clIntOp ‘𝑀) ∧ assLaw 𝑀) → clLaw 𝑀)
96, 8biimtrdi 253 . 2 (𝑀 ∈ V → ( ∈ ( assIntOp ‘𝑀) → clLaw 𝑀))
101, 9mpcom 38 1 ( ∈ ( assIntOp ‘𝑀) → clLaw 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  {crab 3420  Vcvv 3464   class class class wbr 5125  cfv 6542   clLaw ccllaw 48045   assLaw casslaw 48046   clIntOp cclintop 48059   assIntOp cassintop 48060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-map 8851  df-cllaw 48048  df-intop 48061  df-clintop 48062  df-assintop 48063
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator