Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > assintopcllaw | Structured version Visualization version GIF version |
Description: The closure low holds for an associative (closed internal binary) operation for a set. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.) |
Ref | Expression |
---|---|
assintopcllaw | ⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ⚬ clLaw 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6801 | . 2 ⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → 𝑀 ∈ V) | |
2 | assintopval 45351 | . . . . 5 ⊢ (𝑀 ∈ V → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}) | |
3 | 2 | eleq2d 2825 | . . . 4 ⊢ (𝑀 ∈ V → ( ⚬ ∈ ( assIntOp ‘𝑀) ↔ ⚬ ∈ {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀})) |
4 | breq1 5081 | . . . . 5 ⊢ (𝑜 = ⚬ → (𝑜 assLaw 𝑀 ↔ ⚬ assLaw 𝑀)) | |
5 | 4 | elrab 3625 | . . . 4 ⊢ ( ⚬ ∈ {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} ↔ ( ⚬ ∈ ( clIntOp ‘𝑀) ∧ ⚬ assLaw 𝑀)) |
6 | 3, 5 | bitrdi 286 | . . 3 ⊢ (𝑀 ∈ V → ( ⚬ ∈ ( assIntOp ‘𝑀) ↔ ( ⚬ ∈ ( clIntOp ‘𝑀) ∧ ⚬ assLaw 𝑀))) |
7 | clintopcllaw 45357 | . . . 4 ⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → ⚬ clLaw 𝑀) | |
8 | 7 | adantr 480 | . . 3 ⊢ (( ⚬ ∈ ( clIntOp ‘𝑀) ∧ ⚬ assLaw 𝑀) → ⚬ clLaw 𝑀) |
9 | 6, 8 | syl6bi 252 | . 2 ⊢ (𝑀 ∈ V → ( ⚬ ∈ ( assIntOp ‘𝑀) → ⚬ clLaw 𝑀)) |
10 | 1, 9 | mpcom 38 | 1 ⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ⚬ clLaw 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {crab 3069 Vcvv 3430 class class class wbr 5078 ‘cfv 6430 clLaw ccllaw 45329 assLaw casslaw 45330 clIntOp cclintop 45343 assIntOp cassintop 45344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-map 8591 df-cllaw 45332 df-intop 45345 df-clintop 45346 df-assintop 45347 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |