Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  assintopmap Structured version   Visualization version   GIF version

Theorem assintopmap 45288
Description: The associative (closed internal binary) operations for a set, expressed with set exponentiation. (Contributed by AV, 20-Jan-2020.)
Assertion
Ref Expression
assintopmap (𝑀𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ (𝑀m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀})
Distinct variable group:   𝑜,𝑀
Allowed substitution hint:   𝑉(𝑜)

Proof of Theorem assintopmap
StepHypRef Expression
1 assintopval 45287 . 2 (𝑀𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀})
2 clintopval 45286 . . 3 (𝑀𝑉 → ( clIntOp ‘𝑀) = (𝑀m (𝑀 × 𝑀)))
32rabeqdv 3409 . 2 (𝑀𝑉 → {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} = {𝑜 ∈ (𝑀m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀})
41, 3eqtrd 2778 1 (𝑀𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ (𝑀m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {crab 3067   class class class wbr 5070   × cxp 5578  cfv 6418  (class class class)co 7255  m cmap 8573   assLaw casslaw 45266   clIntOp cclintop 45279   assIntOp cassintop 45280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-intop 45281  df-clintop 45282  df-assintop 45283
This theorem is referenced by:  assintop  45291  isassintop  45292
  Copyright terms: Public domain W3C validator