Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > assintopmap | Structured version Visualization version GIF version |
Description: The associative (closed internal binary) operations for a set, expressed with set exponentiation. (Contributed by AV, 20-Jan-2020.) |
Ref | Expression |
---|---|
assintopmap | ⊢ (𝑀 ∈ 𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | assintopval 45739 | . 2 ⊢ (𝑀 ∈ 𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}) | |
2 | clintopval 45738 | . . 3 ⊢ (𝑀 ∈ 𝑉 → ( clIntOp ‘𝑀) = (𝑀 ↑m (𝑀 × 𝑀))) | |
3 | 2 | rabeqdv 3418 | . 2 ⊢ (𝑀 ∈ 𝑉 → {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} = {𝑜 ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀}) |
4 | 1, 3 | eqtrd 2776 | 1 ⊢ (𝑀 ∈ 𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {crab 3403 class class class wbr 5089 × cxp 5612 ‘cfv 6473 (class class class)co 7329 ↑m cmap 8678 assLaw casslaw 45718 clIntOp cclintop 45731 assIntOp cassintop 45732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6425 df-fun 6475 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 df-intop 45733 df-clintop 45734 df-assintop 45735 |
This theorem is referenced by: assintop 45743 isassintop 45744 |
Copyright terms: Public domain | W3C validator |