Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rei4 | Structured version Visualization version GIF version |
Description: i4 13902 without ax-mulcom 10919. (Contributed by SN, 27-May-2024.) |
Ref | Expression |
---|---|
rei4 | ⊢ ((i · i) · (i · i)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reixi 40384 | . . 3 ⊢ (i · i) = (0 −ℝ 1) | |
2 | 1, 1 | oveq12i 7280 | . 2 ⊢ ((i · i) · (i · i)) = ((0 −ℝ 1) · (0 −ℝ 1)) |
3 | 1re 10959 | . . . . 5 ⊢ 1 ∈ ℝ | |
4 | rernegcl 40334 | . . . . 5 ⊢ (1 ∈ ℝ → (0 −ℝ 1) ∈ ℝ) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (0 −ℝ 1) ∈ ℝ |
6 | 0re 10961 | . . . 4 ⊢ 0 ∈ ℝ | |
7 | resubdi 40359 | . . . 4 ⊢ (((0 −ℝ 1) ∈ ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ) → ((0 −ℝ 1) · (0 −ℝ 1)) = (((0 −ℝ 1) · 0) −ℝ ((0 −ℝ 1) · 1))) | |
8 | 5, 6, 3, 7 | mp3an 1459 | . . 3 ⊢ ((0 −ℝ 1) · (0 −ℝ 1)) = (((0 −ℝ 1) · 0) −ℝ ((0 −ℝ 1) · 1)) |
9 | remul01 40370 | . . . . 5 ⊢ ((0 −ℝ 1) ∈ ℝ → ((0 −ℝ 1) · 0) = 0) | |
10 | 5, 9 | ax-mp 5 | . . . 4 ⊢ ((0 −ℝ 1) · 0) = 0 |
11 | ax-1rid 10925 | . . . . 5 ⊢ ((0 −ℝ 1) ∈ ℝ → ((0 −ℝ 1) · 1) = (0 −ℝ 1)) | |
12 | 5, 11 | ax-mp 5 | . . . 4 ⊢ ((0 −ℝ 1) · 1) = (0 −ℝ 1) |
13 | 10, 12 | oveq12i 7280 | . . 3 ⊢ (((0 −ℝ 1) · 0) −ℝ ((0 −ℝ 1) · 1)) = (0 −ℝ (0 −ℝ 1)) |
14 | renegneg 40374 | . . . 4 ⊢ (1 ∈ ℝ → (0 −ℝ (0 −ℝ 1)) = 1) | |
15 | 3, 14 | ax-mp 5 | . . 3 ⊢ (0 −ℝ (0 −ℝ 1)) = 1 |
16 | 8, 13, 15 | 3eqtri 2771 | . 2 ⊢ ((0 −ℝ 1) · (0 −ℝ 1)) = 1 |
17 | 2, 16 | eqtri 2767 | 1 ⊢ ((i · i) · (i · i)) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2109 (class class class)co 7268 ℝcr 10854 0cc0 10855 1c1 10856 ici 10857 · cmul 10860 −ℝ cresub 40328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-ltxr 10998 df-2 12019 df-3 12020 df-resub 40329 |
This theorem is referenced by: sn-1ticom 40396 sn-0tie0 40401 sn-inelr 40415 |
Copyright terms: Public domain | W3C validator |