| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rei4 | Structured version Visualization version GIF version | ||
| Description: i4 14111 without ax-mulcom 11070. (Contributed by SN, 27-May-2024.) |
| Ref | Expression |
|---|---|
| rei4 | ⊢ ((i · i) · (i · i)) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reixi 42526 | . . 3 ⊢ (i · i) = (0 −ℝ 1) | |
| 2 | 1, 1 | oveq12i 7358 | . 2 ⊢ ((i · i) · (i · i)) = ((0 −ℝ 1) · (0 −ℝ 1)) |
| 3 | 1re 11112 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | rernegcl 42474 | . . . . 5 ⊢ (1 ∈ ℝ → (0 −ℝ 1) ∈ ℝ) | |
| 5 | 1red 11113 | . . . . 5 ⊢ (1 ∈ ℝ → 1 ∈ ℝ) | |
| 6 | 4, 5 | remulneg2d 42518 | . . . 4 ⊢ (1 ∈ ℝ → ((0 −ℝ 1) · (0 −ℝ 1)) = (0 −ℝ ((0 −ℝ 1) · 1))) |
| 7 | ax-1rid 11076 | . . . . . 6 ⊢ ((0 −ℝ 1) ∈ ℝ → ((0 −ℝ 1) · 1) = (0 −ℝ 1)) | |
| 8 | 4, 7 | syl 17 | . . . . 5 ⊢ (1 ∈ ℝ → ((0 −ℝ 1) · 1) = (0 −ℝ 1)) |
| 9 | 8 | oveq2d 7362 | . . . 4 ⊢ (1 ∈ ℝ → (0 −ℝ ((0 −ℝ 1) · 1)) = (0 −ℝ (0 −ℝ 1))) |
| 10 | renegneg 42515 | . . . 4 ⊢ (1 ∈ ℝ → (0 −ℝ (0 −ℝ 1)) = 1) | |
| 11 | 6, 9, 10 | 3eqtrd 2770 | . . 3 ⊢ (1 ∈ ℝ → ((0 −ℝ 1) · (0 −ℝ 1)) = 1) |
| 12 | 3, 11 | ax-mp 5 | . 2 ⊢ ((0 −ℝ 1) · (0 −ℝ 1)) = 1 |
| 13 | 2, 12 | eqtri 2754 | 1 ⊢ ((i · i) · (i · i)) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 ici 11008 · cmul 11011 −ℝ cresub 42468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-2 12188 df-3 12189 df-resub 42469 |
| This theorem is referenced by: sn-1ticom 42538 sn-0tie0 42554 |
| Copyright terms: Public domain | W3C validator |