Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rei4 | Structured version Visualization version GIF version |
Description: i4 13773 without ax-mulcom 10793. (Contributed by SN, 27-May-2024.) |
Ref | Expression |
---|---|
rei4 | ⊢ ((i · i) · (i · i)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reixi 40112 | . . 3 ⊢ (i · i) = (0 −ℝ 1) | |
2 | 1, 1 | oveq12i 7225 | . 2 ⊢ ((i · i) · (i · i)) = ((0 −ℝ 1) · (0 −ℝ 1)) |
3 | 1re 10833 | . . . . 5 ⊢ 1 ∈ ℝ | |
4 | rernegcl 40062 | . . . . 5 ⊢ (1 ∈ ℝ → (0 −ℝ 1) ∈ ℝ) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (0 −ℝ 1) ∈ ℝ |
6 | 0re 10835 | . . . 4 ⊢ 0 ∈ ℝ | |
7 | resubdi 40087 | . . . 4 ⊢ (((0 −ℝ 1) ∈ ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ) → ((0 −ℝ 1) · (0 −ℝ 1)) = (((0 −ℝ 1) · 0) −ℝ ((0 −ℝ 1) · 1))) | |
8 | 5, 6, 3, 7 | mp3an 1463 | . . 3 ⊢ ((0 −ℝ 1) · (0 −ℝ 1)) = (((0 −ℝ 1) · 0) −ℝ ((0 −ℝ 1) · 1)) |
9 | remul01 40098 | . . . . 5 ⊢ ((0 −ℝ 1) ∈ ℝ → ((0 −ℝ 1) · 0) = 0) | |
10 | 5, 9 | ax-mp 5 | . . . 4 ⊢ ((0 −ℝ 1) · 0) = 0 |
11 | ax-1rid 10799 | . . . . 5 ⊢ ((0 −ℝ 1) ∈ ℝ → ((0 −ℝ 1) · 1) = (0 −ℝ 1)) | |
12 | 5, 11 | ax-mp 5 | . . . 4 ⊢ ((0 −ℝ 1) · 1) = (0 −ℝ 1) |
13 | 10, 12 | oveq12i 7225 | . . 3 ⊢ (((0 −ℝ 1) · 0) −ℝ ((0 −ℝ 1) · 1)) = (0 −ℝ (0 −ℝ 1)) |
14 | renegneg 40102 | . . . 4 ⊢ (1 ∈ ℝ → (0 −ℝ (0 −ℝ 1)) = 1) | |
15 | 3, 14 | ax-mp 5 | . . 3 ⊢ (0 −ℝ (0 −ℝ 1)) = 1 |
16 | 8, 13, 15 | 3eqtri 2769 | . 2 ⊢ ((0 −ℝ 1) · (0 −ℝ 1)) = 1 |
17 | 2, 16 | eqtri 2765 | 1 ⊢ ((i · i) · (i · i)) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2110 (class class class)co 7213 ℝcr 10728 0cc0 10729 1c1 10730 ici 10731 · cmul 10734 −ℝ cresub 40056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-ltxr 10872 df-2 11893 df-3 11894 df-resub 40057 |
This theorem is referenced by: sn-1ticom 40124 sn-0tie0 40129 sn-inelr 40143 |
Copyright terms: Public domain | W3C validator |