| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rei4 | Structured version Visualization version GIF version | ||
| Description: i4 14210 without ax-mulcom 11185. (Contributed by SN, 27-May-2024.) |
| Ref | Expression |
|---|---|
| rei4 | ⊢ ((i · i) · (i · i)) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reixi 42390 | . . 3 ⊢ (i · i) = (0 −ℝ 1) | |
| 2 | 1, 1 | oveq12i 7411 | . 2 ⊢ ((i · i) · (i · i)) = ((0 −ℝ 1) · (0 −ℝ 1)) |
| 3 | 1re 11227 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | rernegcl 42339 | . . . . 5 ⊢ (1 ∈ ℝ → (0 −ℝ 1) ∈ ℝ) | |
| 5 | 1red 11228 | . . . . 5 ⊢ (1 ∈ ℝ → 1 ∈ ℝ) | |
| 6 | 4, 5 | remulneg2d 42382 | . . . 4 ⊢ (1 ∈ ℝ → ((0 −ℝ 1) · (0 −ℝ 1)) = (0 −ℝ ((0 −ℝ 1) · 1))) |
| 7 | ax-1rid 11191 | . . . . . 6 ⊢ ((0 −ℝ 1) ∈ ℝ → ((0 −ℝ 1) · 1) = (0 −ℝ 1)) | |
| 8 | 4, 7 | syl 17 | . . . . 5 ⊢ (1 ∈ ℝ → ((0 −ℝ 1) · 1) = (0 −ℝ 1)) |
| 9 | 8 | oveq2d 7415 | . . . 4 ⊢ (1 ∈ ℝ → (0 −ℝ ((0 −ℝ 1) · 1)) = (0 −ℝ (0 −ℝ 1))) |
| 10 | renegneg 42379 | . . . 4 ⊢ (1 ∈ ℝ → (0 −ℝ (0 −ℝ 1)) = 1) | |
| 11 | 6, 9, 10 | 3eqtrd 2773 | . . 3 ⊢ (1 ∈ ℝ → ((0 −ℝ 1) · (0 −ℝ 1)) = 1) |
| 12 | 3, 11 | ax-mp 5 | . 2 ⊢ ((0 −ℝ 1) · (0 −ℝ 1)) = 1 |
| 13 | 2, 12 | eqtri 2757 | 1 ⊢ ((i · i) · (i · i)) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 (class class class)co 7399 ℝcr 11120 0cc0 11121 1c1 11122 ici 11123 · cmul 11126 −ℝ cresub 42333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-po 5558 df-so 5559 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-ltxr 11266 df-2 12295 df-3 12296 df-resub 42334 |
| This theorem is referenced by: sn-1ticom 42402 sn-0tie0 42407 sn-inelr 42435 |
| Copyright terms: Public domain | W3C validator |