| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rei4 | Structured version Visualization version GIF version | ||
| Description: i4 14176 without ax-mulcom 11139. (Contributed by SN, 27-May-2024.) |
| Ref | Expression |
|---|---|
| rei4 | ⊢ ((i · i) · (i · i)) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reixi 42418 | . . 3 ⊢ (i · i) = (0 −ℝ 1) | |
| 2 | 1, 1 | oveq12i 7402 | . 2 ⊢ ((i · i) · (i · i)) = ((0 −ℝ 1) · (0 −ℝ 1)) |
| 3 | 1re 11181 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | rernegcl 42366 | . . . . 5 ⊢ (1 ∈ ℝ → (0 −ℝ 1) ∈ ℝ) | |
| 5 | 1red 11182 | . . . . 5 ⊢ (1 ∈ ℝ → 1 ∈ ℝ) | |
| 6 | 4, 5 | remulneg2d 42410 | . . . 4 ⊢ (1 ∈ ℝ → ((0 −ℝ 1) · (0 −ℝ 1)) = (0 −ℝ ((0 −ℝ 1) · 1))) |
| 7 | ax-1rid 11145 | . . . . . 6 ⊢ ((0 −ℝ 1) ∈ ℝ → ((0 −ℝ 1) · 1) = (0 −ℝ 1)) | |
| 8 | 4, 7 | syl 17 | . . . . 5 ⊢ (1 ∈ ℝ → ((0 −ℝ 1) · 1) = (0 −ℝ 1)) |
| 9 | 8 | oveq2d 7406 | . . . 4 ⊢ (1 ∈ ℝ → (0 −ℝ ((0 −ℝ 1) · 1)) = (0 −ℝ (0 −ℝ 1))) |
| 10 | renegneg 42407 | . . . 4 ⊢ (1 ∈ ℝ → (0 −ℝ (0 −ℝ 1)) = 1) | |
| 11 | 6, 9, 10 | 3eqtrd 2769 | . . 3 ⊢ (1 ∈ ℝ → ((0 −ℝ 1) · (0 −ℝ 1)) = 1) |
| 12 | 3, 11 | ax-mp 5 | . 2 ⊢ ((0 −ℝ 1) · (0 −ℝ 1)) = 1 |
| 13 | 2, 12 | eqtri 2753 | 1 ⊢ ((i · i) · (i · i)) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 ici 11077 · cmul 11080 −ℝ cresub 42360 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-2 12256 df-3 12257 df-resub 42361 |
| This theorem is referenced by: sn-1ticom 42430 sn-0tie0 42446 |
| Copyright terms: Public domain | W3C validator |