| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xmulrid | Structured version Visualization version GIF version | ||
| Description: Extended real version of mulrid 11119. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmulrid | ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 13019 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
| 2 | 1re 11121 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 3 | rexmul 13174 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 ·e 1) = (𝐴 · 1)) | |
| 4 | 2, 3 | mpan2 691 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 ·e 1) = (𝐴 · 1)) |
| 5 | ax-1rid 11085 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | |
| 6 | 4, 5 | eqtrd 2768 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 ·e 1) = 𝐴) |
| 7 | 1xr 11180 | . . . . 5 ⊢ 1 ∈ ℝ* | |
| 8 | 0lt1 11648 | . . . . 5 ⊢ 0 < 1 | |
| 9 | xmulpnf2 13178 | . . . . 5 ⊢ ((1 ∈ ℝ* ∧ 0 < 1) → (+∞ ·e 1) = +∞) | |
| 10 | 7, 8, 9 | mp2an 692 | . . . 4 ⊢ (+∞ ·e 1) = +∞ |
| 11 | oveq1 7361 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 ·e 1) = (+∞ ·e 1)) | |
| 12 | id 22 | . . . 4 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
| 13 | 10, 11, 12 | 3eqtr4a 2794 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ·e 1) = 𝐴) |
| 14 | xmulmnf2 13180 | . . . . 5 ⊢ ((1 ∈ ℝ* ∧ 0 < 1) → (-∞ ·e 1) = -∞) | |
| 15 | 7, 8, 14 | mp2an 692 | . . . 4 ⊢ (-∞ ·e 1) = -∞ |
| 16 | oveq1 7361 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 ·e 1) = (-∞ ·e 1)) | |
| 17 | id 22 | . . . 4 ⊢ (𝐴 = -∞ → 𝐴 = -∞) | |
| 18 | 15, 16, 17 | 3eqtr4a 2794 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 ·e 1) = 𝐴) |
| 19 | 6, 13, 18 | 3jaoi 1430 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 ·e 1) = 𝐴) |
| 20 | 1, 19 | sylbi 217 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 1) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7354 ℝcr 11014 0cc0 11015 1c1 11016 · cmul 11020 +∞cpnf 11152 -∞cmnf 11153 ℝ*cxr 11154 < clt 11155 ·e cxmu 13014 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-xneg 13015 df-xmul 13017 |
| This theorem is referenced by: xmullid 13183 xlemul1 13193 xrsmcmn 21332 nmoi2 24648 xdivrec 32916 omssubadd 34336 |
| Copyright terms: Public domain | W3C validator |