| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xmulrid | Structured version Visualization version GIF version | ||
| Description: Extended real version of mulrid 11110. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmulrid | ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 13015 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
| 2 | 1re 11112 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 3 | rexmul 13170 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 ·e 1) = (𝐴 · 1)) | |
| 4 | 2, 3 | mpan2 691 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 ·e 1) = (𝐴 · 1)) |
| 5 | ax-1rid 11076 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | |
| 6 | 4, 5 | eqtrd 2766 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 ·e 1) = 𝐴) |
| 7 | 1xr 11171 | . . . . 5 ⊢ 1 ∈ ℝ* | |
| 8 | 0lt1 11639 | . . . . 5 ⊢ 0 < 1 | |
| 9 | xmulpnf2 13174 | . . . . 5 ⊢ ((1 ∈ ℝ* ∧ 0 < 1) → (+∞ ·e 1) = +∞) | |
| 10 | 7, 8, 9 | mp2an 692 | . . . 4 ⊢ (+∞ ·e 1) = +∞ |
| 11 | oveq1 7353 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 ·e 1) = (+∞ ·e 1)) | |
| 12 | id 22 | . . . 4 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
| 13 | 10, 11, 12 | 3eqtr4a 2792 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ·e 1) = 𝐴) |
| 14 | xmulmnf2 13176 | . . . . 5 ⊢ ((1 ∈ ℝ* ∧ 0 < 1) → (-∞ ·e 1) = -∞) | |
| 15 | 7, 8, 14 | mp2an 692 | . . . 4 ⊢ (-∞ ·e 1) = -∞ |
| 16 | oveq1 7353 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 ·e 1) = (-∞ ·e 1)) | |
| 17 | id 22 | . . . 4 ⊢ (𝐴 = -∞ → 𝐴 = -∞) | |
| 18 | 15, 16, 17 | 3eqtr4a 2792 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 ·e 1) = 𝐴) |
| 19 | 6, 13, 18 | 3jaoi 1430 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 ·e 1) = 𝐴) |
| 20 | 1, 19 | sylbi 217 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 1) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 · cmul 11011 +∞cpnf 11143 -∞cmnf 11144 ℝ*cxr 11145 < clt 11146 ·e cxmu 13010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-xneg 13011 df-xmul 13013 |
| This theorem is referenced by: xmullid 13179 xlemul1 13189 xrsmcmn 21329 nmoi2 24646 xdivrec 32905 omssubadd 34311 |
| Copyright terms: Public domain | W3C validator |