| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7439 |
. . . . . 6
⊢ (𝑥 = 1 → ((𝐴 + 𝐵) · 𝑥) = ((𝐴 + 𝐵) · 1)) |
| 2 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑥 = 1 → (𝐴 · 𝑥) = (𝐴 · 1)) |
| 3 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑥 = 1 → (𝐵 · 𝑥) = (𝐵 · 1)) |
| 4 | 2, 3 | oveq12d 7449 |
. . . . . 6
⊢ (𝑥 = 1 → ((𝐴 · 𝑥) + (𝐵 · 𝑥)) = ((𝐴 · 1) + (𝐵 · 1))) |
| 5 | 1, 4 | eqeq12d 2753 |
. . . . 5
⊢ (𝑥 = 1 → (((𝐴 + 𝐵) · 𝑥) = ((𝐴 · 𝑥) + (𝐵 · 𝑥)) ↔ ((𝐴 + 𝐵) · 1) = ((𝐴 · 1) + (𝐵 · 1)))) |
| 6 | 5 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 1 → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · 𝑥) = ((𝐴 · 𝑥) + (𝐵 · 𝑥))) ↔ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · 1) = ((𝐴 · 1) + (𝐵 · 1))))) |
| 7 | | oveq2 7439 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝐴 + 𝐵) · 𝑥) = ((𝐴 + 𝐵) · 𝑦)) |
| 8 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦)) |
| 9 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝐵 · 𝑥) = (𝐵 · 𝑦)) |
| 10 | 8, 9 | oveq12d 7449 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝐴 · 𝑥) + (𝐵 · 𝑥)) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) |
| 11 | 7, 10 | eqeq12d 2753 |
. . . . 5
⊢ (𝑥 = 𝑦 → (((𝐴 + 𝐵) · 𝑥) = ((𝐴 · 𝑥) + (𝐵 · 𝑥)) ↔ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦)))) |
| 12 | 11 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝑦 → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · 𝑥) = ((𝐴 · 𝑥) + (𝐵 · 𝑥))) ↔ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))))) |
| 13 | | oveq2 7439 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → ((𝐴 + 𝐵) · 𝑥) = ((𝐴 + 𝐵) · (𝑦 + 1))) |
| 14 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑥 = (𝑦 + 1) → (𝐴 · 𝑥) = (𝐴 · (𝑦 + 1))) |
| 15 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑥 = (𝑦 + 1) → (𝐵 · 𝑥) = (𝐵 · (𝑦 + 1))) |
| 16 | 14, 15 | oveq12d 7449 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → ((𝐴 · 𝑥) + (𝐵 · 𝑥)) = ((𝐴 · (𝑦 + 1)) + (𝐵 · (𝑦 + 1)))) |
| 17 | 13, 16 | eqeq12d 2753 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → (((𝐴 + 𝐵) · 𝑥) = ((𝐴 · 𝑥) + (𝐵 · 𝑥)) ↔ ((𝐴 + 𝐵) · (𝑦 + 1)) = ((𝐴 · (𝑦 + 1)) + (𝐵 · (𝑦 + 1))))) |
| 18 | 17 | imbi2d 340 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · 𝑥) = ((𝐴 · 𝑥) + (𝐵 · 𝑥))) ↔ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · (𝑦 + 1)) = ((𝐴 · (𝑦 + 1)) + (𝐵 · (𝑦 + 1)))))) |
| 19 | | oveq2 7439 |
. . . . . 6
⊢ (𝑥 = 𝐶 → ((𝐴 + 𝐵) · 𝑥) = ((𝐴 + 𝐵) · 𝐶)) |
| 20 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑥 = 𝐶 → (𝐴 · 𝑥) = (𝐴 · 𝐶)) |
| 21 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑥 = 𝐶 → (𝐵 · 𝑥) = (𝐵 · 𝐶)) |
| 22 | 20, 21 | oveq12d 7449 |
. . . . . 6
⊢ (𝑥 = 𝐶 → ((𝐴 · 𝑥) + (𝐵 · 𝑥)) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) |
| 23 | 19, 22 | eqeq12d 2753 |
. . . . 5
⊢ (𝑥 = 𝐶 → (((𝐴 + 𝐵) · 𝑥) = ((𝐴 · 𝑥) + (𝐵 · 𝑥)) ↔ ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))) |
| 24 | 23 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝐶 → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · 𝑥) = ((𝐴 · 𝑥) + (𝐵 · 𝑥))) ↔ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))))) |
| 25 | | nnaddcl 12289 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ) |
| 26 | 25 | nnred 12281 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℝ) |
| 27 | | ax-1rid 11225 |
. . . . . 6
⊢ ((𝐴 + 𝐵) ∈ ℝ → ((𝐴 + 𝐵) · 1) = (𝐴 + 𝐵)) |
| 28 | 26, 27 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · 1) = (𝐴 + 𝐵)) |
| 29 | | nnre 12273 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℝ) |
| 30 | | ax-1rid 11225 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
| 31 | 29, 30 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ ℕ → (𝐴 · 1) = 𝐴) |
| 32 | | nnre 12273 |
. . . . . . 7
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℝ) |
| 33 | | ax-1rid 11225 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ → (𝐵 · 1) = 𝐵) |
| 34 | 32, 33 | syl 17 |
. . . . . 6
⊢ (𝐵 ∈ ℕ → (𝐵 · 1) = 𝐵) |
| 35 | 31, 34 | oveqan12d 7450 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 · 1) + (𝐵 · 1)) = (𝐴 + 𝐵)) |
| 36 | 28, 35 | eqtr4d 2780 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · 1) = ((𝐴 · 1) + (𝐵 · 1))) |
| 37 | | simp2l 1200 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → 𝐴 ∈ ℕ) |
| 38 | | simp2r 1201 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → 𝐵 ∈ ℕ) |
| 39 | 37, 38 | nnaddcld 12318 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (𝐴 + 𝐵) ∈ ℕ) |
| 40 | 39 | nncnd 12282 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (𝐴 + 𝐵) ∈ ℂ) |
| 41 | | simp1 1137 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → 𝑦 ∈ ℕ) |
| 42 | 41 | nncnd 12282 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → 𝑦 ∈ ℂ) |
| 43 | | 1cnd 11256 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → 1 ∈ ℂ) |
| 44 | 40, 42, 43 | adddid 11285 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 + 𝐵) · (𝑦 + 1)) = (((𝐴 + 𝐵) · 𝑦) + ((𝐴 + 𝐵) · 1))) |
| 45 | 37 | nnred 12281 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → 𝐴 ∈ ℝ) |
| 46 | 45, 30 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (𝐴 · 1) = 𝐴) |
| 47 | 46 | oveq2d 7447 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 · 𝑦) + (𝐴 · 1)) = ((𝐴 · 𝑦) + 𝐴)) |
| 48 | 38 | nnred 12281 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → 𝐵 ∈ ℝ) |
| 49 | 48, 33 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (𝐵 · 1) = 𝐵) |
| 50 | 49 | oveq2d 7447 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐵 · 𝑦) + (𝐵 · 1)) = ((𝐵 · 𝑦) + 𝐵)) |
| 51 | 47, 50 | oveq12d 7449 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (((𝐴 · 𝑦) + (𝐴 · 1)) + ((𝐵 · 𝑦) + (𝐵 · 1))) = (((𝐴 · 𝑦) + 𝐴) + ((𝐵 · 𝑦) + 𝐵))) |
| 52 | 37, 41 | nnmulcld 12319 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (𝐴 · 𝑦) ∈ ℕ) |
| 53 | 52 | nncnd 12282 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (𝐴 · 𝑦) ∈ ℂ) |
| 54 | 37 | nncnd 12282 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → 𝐴 ∈ ℂ) |
| 55 | 38, 41 | nnmulcld 12319 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (𝐵 · 𝑦) ∈ ℕ) |
| 56 | 55, 38 | nnaddcld 12318 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐵 · 𝑦) + 𝐵) ∈ ℕ) |
| 57 | 56 | nncnd 12282 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐵 · 𝑦) + 𝐵) ∈ ℂ) |
| 58 | 53, 54, 57 | addassd 11283 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (((𝐴 · 𝑦) + 𝐴) + ((𝐵 · 𝑦) + 𝐵)) = ((𝐴 · 𝑦) + (𝐴 + ((𝐵 · 𝑦) + 𝐵)))) |
| 59 | 55 | nncnd 12282 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (𝐵 · 𝑦) ∈ ℂ) |
| 60 | 38 | nncnd 12282 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → 𝐵 ∈ ℂ) |
| 61 | 54, 59, 60 | addassd 11283 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 + (𝐵 · 𝑦)) + 𝐵) = (𝐴 + ((𝐵 · 𝑦) + 𝐵))) |
| 62 | 61 | oveq2d 7447 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 · 𝑦) + ((𝐴 + (𝐵 · 𝑦)) + 𝐵)) = ((𝐴 · 𝑦) + (𝐴 + ((𝐵 · 𝑦) + 𝐵)))) |
| 63 | 59, 54, 60 | addassd 11283 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (((𝐵 · 𝑦) + 𝐴) + 𝐵) = ((𝐵 · 𝑦) + (𝐴 + 𝐵))) |
| 64 | 63 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 · 𝑦) + (((𝐵 · 𝑦) + 𝐴) + 𝐵)) = ((𝐴 · 𝑦) + ((𝐵 · 𝑦) + (𝐴 + 𝐵)))) |
| 65 | | nnaddcom 42303 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ (𝐵 · 𝑦) ∈ ℕ) → (𝐴 + (𝐵 · 𝑦)) = ((𝐵 · 𝑦) + 𝐴)) |
| 66 | 37, 55, 65 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (𝐴 + (𝐵 · 𝑦)) = ((𝐵 · 𝑦) + 𝐴)) |
| 67 | 66 | oveq1d 7446 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 + (𝐵 · 𝑦)) + 𝐵) = (((𝐵 · 𝑦) + 𝐴) + 𝐵)) |
| 68 | 67 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 · 𝑦) + ((𝐴 + (𝐵 · 𝑦)) + 𝐵)) = ((𝐴 · 𝑦) + (((𝐵 · 𝑦) + 𝐴) + 𝐵))) |
| 69 | 53, 59, 40 | addassd 11283 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (((𝐴 · 𝑦) + (𝐵 · 𝑦)) + (𝐴 + 𝐵)) = ((𝐴 · 𝑦) + ((𝐵 · 𝑦) + (𝐴 + 𝐵)))) |
| 70 | 64, 68, 69 | 3eqtr4d 2787 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 · 𝑦) + ((𝐴 + (𝐵 · 𝑦)) + 𝐵)) = (((𝐴 · 𝑦) + (𝐵 · 𝑦)) + (𝐴 + 𝐵))) |
| 71 | 58, 62, 70 | 3eqtr2d 2783 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (((𝐴 · 𝑦) + 𝐴) + ((𝐵 · 𝑦) + 𝐵)) = (((𝐴 · 𝑦) + (𝐵 · 𝑦)) + (𝐴 + 𝐵))) |
| 72 | 51, 71 | eqtrd 2777 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (((𝐴 · 𝑦) + (𝐴 · 1)) + ((𝐵 · 𝑦) + (𝐵 · 1))) = (((𝐴 · 𝑦) + (𝐵 · 𝑦)) + (𝐴 + 𝐵))) |
| 73 | 54, 42, 43 | adddid 11285 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1))) |
| 74 | 60, 42, 43 | adddid 11285 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (𝐵 · (𝑦 + 1)) = ((𝐵 · 𝑦) + (𝐵 · 1))) |
| 75 | 73, 74 | oveq12d 7449 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 · (𝑦 + 1)) + (𝐵 · (𝑦 + 1))) = (((𝐴 · 𝑦) + (𝐴 · 1)) + ((𝐵 · 𝑦) + (𝐵 · 1)))) |
| 76 | | simp3 1139 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) |
| 77 | 39 | nnred 12281 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (𝐴 + 𝐵) ∈ ℝ) |
| 78 | 77, 27 | syl 17 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 + 𝐵) · 1) = (𝐴 + 𝐵)) |
| 79 | 76, 78 | oveq12d 7449 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (((𝐴 + 𝐵) · 𝑦) + ((𝐴 + 𝐵) · 1)) = (((𝐴 · 𝑦) + (𝐵 · 𝑦)) + (𝐴 + 𝐵))) |
| 80 | 72, 75, 79 | 3eqtr4d 2787 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 · (𝑦 + 1)) + (𝐵 · (𝑦 + 1))) = (((𝐴 + 𝐵) · 𝑦) + ((𝐴 + 𝐵) · 1))) |
| 81 | 44, 80 | eqtr4d 2780 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 + 𝐵) · (𝑦 + 1)) = ((𝐴 · (𝑦 + 1)) + (𝐵 · (𝑦 + 1)))) |
| 82 | 81 | 3exp 1120 |
. . . . 5
⊢ (𝑦 ∈ ℕ → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦)) → ((𝐴 + 𝐵) · (𝑦 + 1)) = ((𝐴 · (𝑦 + 1)) + (𝐵 · (𝑦 + 1)))))) |
| 83 | 82 | a2d 29 |
. . . 4
⊢ (𝑦 ∈ ℕ → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · (𝑦 + 1)) = ((𝐴 · (𝑦 + 1)) + (𝐵 · (𝑦 + 1)))))) |
| 84 | 6, 12, 18, 24, 36, 83 | nnind 12284 |
. . 3
⊢ (𝐶 ∈ ℕ → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))) |
| 85 | 84 | com12 32 |
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐶 ∈ ℕ → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))) |
| 86 | 85 | 3impia 1118 |
1
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) |