Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnadddir Structured version   Visualization version   GIF version

Theorem nnadddir 42305
Description: Right-distributivity for natural numbers without ax-mulcom 11219. (Contributed by SN, 5-Feb-2024.)
Assertion
Ref Expression
nnadddir ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))

Proof of Theorem nnadddir
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . . . 6 (𝑥 = 1 → ((𝐴 + 𝐵) · 𝑥) = ((𝐴 + 𝐵) · 1))
2 oveq2 7439 . . . . . . 7 (𝑥 = 1 → (𝐴 · 𝑥) = (𝐴 · 1))
3 oveq2 7439 . . . . . . 7 (𝑥 = 1 → (𝐵 · 𝑥) = (𝐵 · 1))
42, 3oveq12d 7449 . . . . . 6 (𝑥 = 1 → ((𝐴 · 𝑥) + (𝐵 · 𝑥)) = ((𝐴 · 1) + (𝐵 · 1)))
51, 4eqeq12d 2753 . . . . 5 (𝑥 = 1 → (((𝐴 + 𝐵) · 𝑥) = ((𝐴 · 𝑥) + (𝐵 · 𝑥)) ↔ ((𝐴 + 𝐵) · 1) = ((𝐴 · 1) + (𝐵 · 1))))
65imbi2d 340 . . . 4 (𝑥 = 1 → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · 𝑥) = ((𝐴 · 𝑥) + (𝐵 · 𝑥))) ↔ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · 1) = ((𝐴 · 1) + (𝐵 · 1)))))
7 oveq2 7439 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 + 𝐵) · 𝑥) = ((𝐴 + 𝐵) · 𝑦))
8 oveq2 7439 . . . . . . 7 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
9 oveq2 7439 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 · 𝑥) = (𝐵 · 𝑦))
108, 9oveq12d 7449 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 · 𝑥) + (𝐵 · 𝑥)) = ((𝐴 · 𝑦) + (𝐵 · 𝑦)))
117, 10eqeq12d 2753 . . . . 5 (𝑥 = 𝑦 → (((𝐴 + 𝐵) · 𝑥) = ((𝐴 · 𝑥) + (𝐵 · 𝑥)) ↔ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))))
1211imbi2d 340 . . . 4 (𝑥 = 𝑦 → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · 𝑥) = ((𝐴 · 𝑥) + (𝐵 · 𝑥))) ↔ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦)))))
13 oveq2 7439 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝐴 + 𝐵) · 𝑥) = ((𝐴 + 𝐵) · (𝑦 + 1)))
14 oveq2 7439 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝐴 · 𝑥) = (𝐴 · (𝑦 + 1)))
15 oveq2 7439 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝐵 · 𝑥) = (𝐵 · (𝑦 + 1)))
1614, 15oveq12d 7449 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝐴 · 𝑥) + (𝐵 · 𝑥)) = ((𝐴 · (𝑦 + 1)) + (𝐵 · (𝑦 + 1))))
1713, 16eqeq12d 2753 . . . . 5 (𝑥 = (𝑦 + 1) → (((𝐴 + 𝐵) · 𝑥) = ((𝐴 · 𝑥) + (𝐵 · 𝑥)) ↔ ((𝐴 + 𝐵) · (𝑦 + 1)) = ((𝐴 · (𝑦 + 1)) + (𝐵 · (𝑦 + 1)))))
1817imbi2d 340 . . . 4 (𝑥 = (𝑦 + 1) → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · 𝑥) = ((𝐴 · 𝑥) + (𝐵 · 𝑥))) ↔ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · (𝑦 + 1)) = ((𝐴 · (𝑦 + 1)) + (𝐵 · (𝑦 + 1))))))
19 oveq2 7439 . . . . . 6 (𝑥 = 𝐶 → ((𝐴 + 𝐵) · 𝑥) = ((𝐴 + 𝐵) · 𝐶))
20 oveq2 7439 . . . . . . 7 (𝑥 = 𝐶 → (𝐴 · 𝑥) = (𝐴 · 𝐶))
21 oveq2 7439 . . . . . . 7 (𝑥 = 𝐶 → (𝐵 · 𝑥) = (𝐵 · 𝐶))
2220, 21oveq12d 7449 . . . . . 6 (𝑥 = 𝐶 → ((𝐴 · 𝑥) + (𝐵 · 𝑥)) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
2319, 22eqeq12d 2753 . . . . 5 (𝑥 = 𝐶 → (((𝐴 + 𝐵) · 𝑥) = ((𝐴 · 𝑥) + (𝐵 · 𝑥)) ↔ ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))))
2423imbi2d 340 . . . 4 (𝑥 = 𝐶 → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · 𝑥) = ((𝐴 · 𝑥) + (𝐵 · 𝑥))) ↔ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))))
25 nnaddcl 12289 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ)
2625nnred 12281 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℝ)
27 ax-1rid 11225 . . . . . 6 ((𝐴 + 𝐵) ∈ ℝ → ((𝐴 + 𝐵) · 1) = (𝐴 + 𝐵))
2826, 27syl 17 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · 1) = (𝐴 + 𝐵))
29 nnre 12273 . . . . . . 7 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
30 ax-1rid 11225 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
3129, 30syl 17 . . . . . 6 (𝐴 ∈ ℕ → (𝐴 · 1) = 𝐴)
32 nnre 12273 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
33 ax-1rid 11225 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 · 1) = 𝐵)
3432, 33syl 17 . . . . . 6 (𝐵 ∈ ℕ → (𝐵 · 1) = 𝐵)
3531, 34oveqan12d 7450 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 · 1) + (𝐵 · 1)) = (𝐴 + 𝐵))
3628, 35eqtr4d 2780 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · 1) = ((𝐴 · 1) + (𝐵 · 1)))
37 simp2l 1200 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → 𝐴 ∈ ℕ)
38 simp2r 1201 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → 𝐵 ∈ ℕ)
3937, 38nnaddcld 12318 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (𝐴 + 𝐵) ∈ ℕ)
4039nncnd 12282 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (𝐴 + 𝐵) ∈ ℂ)
41 simp1 1137 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → 𝑦 ∈ ℕ)
4241nncnd 12282 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → 𝑦 ∈ ℂ)
43 1cnd 11256 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → 1 ∈ ℂ)
4440, 42, 43adddid 11285 . . . . . . 7 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 + 𝐵) · (𝑦 + 1)) = (((𝐴 + 𝐵) · 𝑦) + ((𝐴 + 𝐵) · 1)))
4537nnred 12281 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → 𝐴 ∈ ℝ)
4645, 30syl 17 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (𝐴 · 1) = 𝐴)
4746oveq2d 7447 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 · 𝑦) + (𝐴 · 1)) = ((𝐴 · 𝑦) + 𝐴))
4838nnred 12281 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → 𝐵 ∈ ℝ)
4948, 33syl 17 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (𝐵 · 1) = 𝐵)
5049oveq2d 7447 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐵 · 𝑦) + (𝐵 · 1)) = ((𝐵 · 𝑦) + 𝐵))
5147, 50oveq12d 7449 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (((𝐴 · 𝑦) + (𝐴 · 1)) + ((𝐵 · 𝑦) + (𝐵 · 1))) = (((𝐴 · 𝑦) + 𝐴) + ((𝐵 · 𝑦) + 𝐵)))
5237, 41nnmulcld 12319 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (𝐴 · 𝑦) ∈ ℕ)
5352nncnd 12282 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (𝐴 · 𝑦) ∈ ℂ)
5437nncnd 12282 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → 𝐴 ∈ ℂ)
5538, 41nnmulcld 12319 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (𝐵 · 𝑦) ∈ ℕ)
5655, 38nnaddcld 12318 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐵 · 𝑦) + 𝐵) ∈ ℕ)
5756nncnd 12282 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐵 · 𝑦) + 𝐵) ∈ ℂ)
5853, 54, 57addassd 11283 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (((𝐴 · 𝑦) + 𝐴) + ((𝐵 · 𝑦) + 𝐵)) = ((𝐴 · 𝑦) + (𝐴 + ((𝐵 · 𝑦) + 𝐵))))
5955nncnd 12282 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (𝐵 · 𝑦) ∈ ℂ)
6038nncnd 12282 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → 𝐵 ∈ ℂ)
6154, 59, 60addassd 11283 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 + (𝐵 · 𝑦)) + 𝐵) = (𝐴 + ((𝐵 · 𝑦) + 𝐵)))
6261oveq2d 7447 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 · 𝑦) + ((𝐴 + (𝐵 · 𝑦)) + 𝐵)) = ((𝐴 · 𝑦) + (𝐴 + ((𝐵 · 𝑦) + 𝐵))))
6359, 54, 60addassd 11283 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (((𝐵 · 𝑦) + 𝐴) + 𝐵) = ((𝐵 · 𝑦) + (𝐴 + 𝐵)))
6463oveq2d 7447 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 · 𝑦) + (((𝐵 · 𝑦) + 𝐴) + 𝐵)) = ((𝐴 · 𝑦) + ((𝐵 · 𝑦) + (𝐴 + 𝐵))))
65 nnaddcom 42303 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ (𝐵 · 𝑦) ∈ ℕ) → (𝐴 + (𝐵 · 𝑦)) = ((𝐵 · 𝑦) + 𝐴))
6637, 55, 65syl2anc 584 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (𝐴 + (𝐵 · 𝑦)) = ((𝐵 · 𝑦) + 𝐴))
6766oveq1d 7446 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 + (𝐵 · 𝑦)) + 𝐵) = (((𝐵 · 𝑦) + 𝐴) + 𝐵))
6867oveq2d 7447 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 · 𝑦) + ((𝐴 + (𝐵 · 𝑦)) + 𝐵)) = ((𝐴 · 𝑦) + (((𝐵 · 𝑦) + 𝐴) + 𝐵)))
6953, 59, 40addassd 11283 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (((𝐴 · 𝑦) + (𝐵 · 𝑦)) + (𝐴 + 𝐵)) = ((𝐴 · 𝑦) + ((𝐵 · 𝑦) + (𝐴 + 𝐵))))
7064, 68, 693eqtr4d 2787 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 · 𝑦) + ((𝐴 + (𝐵 · 𝑦)) + 𝐵)) = (((𝐴 · 𝑦) + (𝐵 · 𝑦)) + (𝐴 + 𝐵)))
7158, 62, 703eqtr2d 2783 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (((𝐴 · 𝑦) + 𝐴) + ((𝐵 · 𝑦) + 𝐵)) = (((𝐴 · 𝑦) + (𝐵 · 𝑦)) + (𝐴 + 𝐵)))
7251, 71eqtrd 2777 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (((𝐴 · 𝑦) + (𝐴 · 1)) + ((𝐵 · 𝑦) + (𝐵 · 1))) = (((𝐴 · 𝑦) + (𝐵 · 𝑦)) + (𝐴 + 𝐵)))
7354, 42, 43adddid 11285 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1)))
7460, 42, 43adddid 11285 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (𝐵 · (𝑦 + 1)) = ((𝐵 · 𝑦) + (𝐵 · 1)))
7573, 74oveq12d 7449 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 · (𝑦 + 1)) + (𝐵 · (𝑦 + 1))) = (((𝐴 · 𝑦) + (𝐴 · 1)) + ((𝐵 · 𝑦) + (𝐵 · 1))))
76 simp3 1139 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦)))
7739nnred 12281 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (𝐴 + 𝐵) ∈ ℝ)
7877, 27syl 17 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 + 𝐵) · 1) = (𝐴 + 𝐵))
7976, 78oveq12d 7449 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → (((𝐴 + 𝐵) · 𝑦) + ((𝐴 + 𝐵) · 1)) = (((𝐴 · 𝑦) + (𝐵 · 𝑦)) + (𝐴 + 𝐵)))
8072, 75, 793eqtr4d 2787 . . . . . . 7 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 · (𝑦 + 1)) + (𝐵 · (𝑦 + 1))) = (((𝐴 + 𝐵) · 𝑦) + ((𝐴 + 𝐵) · 1)))
8144, 80eqtr4d 2780 . . . . . 6 ((𝑦 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 + 𝐵) · (𝑦 + 1)) = ((𝐴 · (𝑦 + 1)) + (𝐵 · (𝑦 + 1))))
82813exp 1120 . . . . 5 (𝑦 ∈ ℕ → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦)) → ((𝐴 + 𝐵) · (𝑦 + 1)) = ((𝐴 · (𝑦 + 1)) + (𝐵 · (𝑦 + 1))))))
8382a2d 29 . . . 4 (𝑦 ∈ ℕ → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · 𝑦) = ((𝐴 · 𝑦) + (𝐵 · 𝑦))) → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · (𝑦 + 1)) = ((𝐴 · (𝑦 + 1)) + (𝐵 · (𝑦 + 1))))))
846, 12, 18, 24, 36, 83nnind 12284 . . 3 (𝐶 ∈ ℕ → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))))
8584com12 32 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐶 ∈ ℕ → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))))
86853impia 1118 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  (class class class)co 7431  cr 11154  1c1 11156   + caddc 11158   · cmul 11160  cn 12266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-addass 11220  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rrecex 11227  ax-cnre 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-nn 12267
This theorem is referenced by:  nnmulcom  42307
  Copyright terms: Public domain W3C validator