![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zrhre | Structured version Visualization version GIF version |
Description: The ℤRHom homomorphism for the real number structure is the identity. (Contributed by Thierry Arnoux, 31-Oct-2017.) |
Ref | Expression |
---|---|
zrhre | ⊢ (ℤRHom‘ℝfld) = ( I ↾ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11244 | . . . . 5 ⊢ 1 ∈ ℝ | |
2 | remulg 21538 | . . . . 5 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℝ) → (𝑛(.g‘ℝfld)1) = (𝑛 · 1)) | |
3 | 1, 2 | mpan2 690 | . . . 4 ⊢ (𝑛 ∈ ℤ → (𝑛(.g‘ℝfld)1) = (𝑛 · 1)) |
4 | zre 12592 | . . . . 5 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℝ) | |
5 | ax-1rid 11208 | . . . . 5 ⊢ (𝑛 ∈ ℝ → (𝑛 · 1) = 𝑛) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑛 ∈ ℤ → (𝑛 · 1) = 𝑛) |
7 | 3, 6 | eqtrd 2768 | . . 3 ⊢ (𝑛 ∈ ℤ → (𝑛(.g‘ℝfld)1) = 𝑛) |
8 | 7 | mpteq2ia 5251 | . 2 ⊢ (𝑛 ∈ ℤ ↦ (𝑛(.g‘ℝfld)1)) = (𝑛 ∈ ℤ ↦ 𝑛) |
9 | resubdrg 21539 | . . . 4 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
10 | 9 | simpri 485 | . . 3 ⊢ ℝfld ∈ DivRing |
11 | drngring 20630 | . . 3 ⊢ (ℝfld ∈ DivRing → ℝfld ∈ Ring) | |
12 | eqid 2728 | . . . 4 ⊢ (ℤRHom‘ℝfld) = (ℤRHom‘ℝfld) | |
13 | eqid 2728 | . . . 4 ⊢ (.g‘ℝfld) = (.g‘ℝfld) | |
14 | re1r 21544 | . . . 4 ⊢ 1 = (1r‘ℝfld) | |
15 | 12, 13, 14 | zrhval2 21433 | . . 3 ⊢ (ℝfld ∈ Ring → (ℤRHom‘ℝfld) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘ℝfld)1))) |
16 | 10, 11, 15 | mp2b 10 | . 2 ⊢ (ℤRHom‘ℝfld) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘ℝfld)1)) |
17 | mptresid 6054 | . 2 ⊢ ( I ↾ ℤ) = (𝑛 ∈ ℤ ↦ 𝑛) | |
18 | 8, 16, 17 | 3eqtr4i 2766 | 1 ⊢ (ℤRHom‘ℝfld) = ( I ↾ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ↦ cmpt 5231 I cid 5575 ↾ cres 5680 ‘cfv 6548 (class class class)co 7420 ℝcr 11137 1c1 11139 · cmul 11143 ℤcz 12588 .gcmg 19022 Ringcrg 20172 SubRingcsubrg 20505 DivRingcdr 20623 ℂfldccnfld 21278 ℤRHomczrh 21424 ℝfldcrefld 21535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-addf 11217 ax-mulf 11218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-tpos 8231 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-map 8846 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-fz 13517 df-seq 13999 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-starv 17247 df-tset 17251 df-ple 17252 df-ds 17254 df-unif 17255 df-0g 17422 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-mhm 18739 df-grp 18892 df-minusg 18893 df-mulg 19023 df-subg 19077 df-ghm 19167 df-cmn 19736 df-abl 19737 df-mgp 20074 df-rng 20092 df-ur 20121 df-ring 20174 df-cring 20175 df-oppr 20272 df-dvdsr 20295 df-unit 20296 df-invr 20326 df-dvr 20339 df-rhm 20410 df-subrng 20482 df-subrg 20507 df-drng 20625 df-cnfld 21279 df-zring 21372 df-zrh 21428 df-refld 21536 |
This theorem is referenced by: qqhre 33621 |
Copyright terms: Public domain | W3C validator |