Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitdivcld Structured version   Visualization version   GIF version

Theorem unitdivcld 33932
Description: Necessary conditions for a quotient to be in the closed unit interval. (somewhat too strong, it would be sufficient that A and B are in RR+) (Contributed by Thierry Arnoux, 20-Dec-2016.)
Assertion
Ref Expression
unitdivcld ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴𝐵 ↔ (𝐴 / 𝐵) ∈ (0[,]1)))

Proof of Theorem unitdivcld
StepHypRef Expression
1 elunitrn 13484 . . . . . . . 8 (𝐴 ∈ (0[,]1) → 𝐴 ∈ ℝ)
213ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℝ)
3 elunitrn 13484 . . . . . . . 8 (𝐵 ∈ (0[,]1) → 𝐵 ∈ ℝ)
433ad2ant2 1134 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℝ)
5 simp3 1138 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
62, 4, 5redivcld 12069 . . . . . 6 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ)
76adantr 480 . . . . 5 (((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) ∧ 𝐴𝐵) → (𝐴 / 𝐵) ∈ ℝ)
8 elunitge0 33930 . . . . . . . 8 (𝐴 ∈ (0[,]1) → 0 ≤ 𝐴)
983ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 0 ≤ 𝐴)
10 elunitge0 33930 . . . . . . . . . 10 (𝐵 ∈ (0[,]1) → 0 ≤ 𝐵)
1110adantr 480 . . . . . . . . 9 ((𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 0 ≤ 𝐵)
12 0re 11237 . . . . . . . . . . . . 13 0 ∈ ℝ
13 ltlen 11336 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 ↔ (0 ≤ 𝐵𝐵 ≠ 0)))
1412, 3, 13sylancr 587 . . . . . . . . . . . 12 (𝐵 ∈ (0[,]1) → (0 < 𝐵 ↔ (0 ≤ 𝐵𝐵 ≠ 0)))
1514biimpar 477 . . . . . . . . . . 11 ((𝐵 ∈ (0[,]1) ∧ (0 ≤ 𝐵𝐵 ≠ 0)) → 0 < 𝐵)
16153impb 1114 . . . . . . . . . 10 ((𝐵 ∈ (0[,]1) ∧ 0 ≤ 𝐵𝐵 ≠ 0) → 0 < 𝐵)
17163com23 1126 . . . . . . . . 9 ((𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0 ∧ 0 ≤ 𝐵) → 0 < 𝐵)
1811, 17mpd3an3 1464 . . . . . . . 8 ((𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 0 < 𝐵)
19183adant1 1130 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 0 < 𝐵)
20 divge0 12111 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵))
212, 9, 4, 19, 20syl22anc 838 . . . . . 6 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 0 ≤ (𝐴 / 𝐵))
2221adantr 480 . . . . 5 (((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) ∧ 𝐴𝐵) → 0 ≤ (𝐴 / 𝐵))
23 1red 11236 . . . . . . . 8 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 1 ∈ ℝ)
24 ledivmul 12118 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴 ≤ (𝐵 · 1)))
252, 23, 4, 19, 24syl112anc 1376 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴 ≤ (𝐵 · 1)))
26 ax-1rid 11199 . . . . . . . . 9 (𝐵 ∈ ℝ → (𝐵 · 1) = 𝐵)
2726breq2d 5131 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐴 ≤ (𝐵 · 1) ↔ 𝐴𝐵))
284, 27syl 17 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴 ≤ (𝐵 · 1) ↔ 𝐴𝐵))
2925, 28bitr2d 280 . . . . . 6 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴𝐵 ↔ (𝐴 / 𝐵) ≤ 1))
3029biimpa 476 . . . . 5 (((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) ∧ 𝐴𝐵) → (𝐴 / 𝐵) ≤ 1)
317, 22, 303jca 1128 . . . 4 (((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) ∧ 𝐴𝐵) → ((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1))
3231ex 412 . . 3 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴𝐵 → ((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1)))
33 simp3 1138 . . . 4 (((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1) → (𝐴 / 𝐵) ≤ 1)
3433, 29imbitrrid 246 . . 3 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1) → 𝐴𝐵))
3532, 34impbid 212 . 2 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴𝐵 ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1)))
36 elicc01 13483 . 2 ((𝐴 / 𝐵) ∈ (0[,]1) ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1))
3735, 36bitr4di 289 1 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴𝐵 ↔ (𝐴 / 𝐵) ∈ (0[,]1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2108  wne 2932   class class class wbr 5119  (class class class)co 7405  cr 11128  0cc0 11129  1c1 11130   · cmul 11134   < clt 11269  cle 11270   / cdiv 11894  [,]cicc 13365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-icc 13369
This theorem is referenced by:  cndprob01  34467
  Copyright terms: Public domain W3C validator