Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitdivcld Structured version   Visualization version   GIF version

Theorem unitdivcld 33912
Description: Necessary conditions for a quotient to be in the closed unit interval. (somewhat too strong, it would be sufficient that A and B are in RR+) (Contributed by Thierry Arnoux, 20-Dec-2016.)
Assertion
Ref Expression
unitdivcld ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴𝐵 ↔ (𝐴 / 𝐵) ∈ (0[,]1)))

Proof of Theorem unitdivcld
StepHypRef Expression
1 elunitrn 13367 . . . . . . . 8 (𝐴 ∈ (0[,]1) → 𝐴 ∈ ℝ)
213ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℝ)
3 elunitrn 13367 . . . . . . . 8 (𝐵 ∈ (0[,]1) → 𝐵 ∈ ℝ)
433ad2ant2 1134 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℝ)
5 simp3 1138 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
62, 4, 5redivcld 11949 . . . . . 6 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ)
76adantr 480 . . . . 5 (((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) ∧ 𝐴𝐵) → (𝐴 / 𝐵) ∈ ℝ)
8 elunitge0 33910 . . . . . . . 8 (𝐴 ∈ (0[,]1) → 0 ≤ 𝐴)
983ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 0 ≤ 𝐴)
10 elunitge0 33910 . . . . . . . . . 10 (𝐵 ∈ (0[,]1) → 0 ≤ 𝐵)
1110adantr 480 . . . . . . . . 9 ((𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 0 ≤ 𝐵)
12 0re 11114 . . . . . . . . . . . . 13 0 ∈ ℝ
13 ltlen 11214 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 ↔ (0 ≤ 𝐵𝐵 ≠ 0)))
1412, 3, 13sylancr 587 . . . . . . . . . . . 12 (𝐵 ∈ (0[,]1) → (0 < 𝐵 ↔ (0 ≤ 𝐵𝐵 ≠ 0)))
1514biimpar 477 . . . . . . . . . . 11 ((𝐵 ∈ (0[,]1) ∧ (0 ≤ 𝐵𝐵 ≠ 0)) → 0 < 𝐵)
16153impb 1114 . . . . . . . . . 10 ((𝐵 ∈ (0[,]1) ∧ 0 ≤ 𝐵𝐵 ≠ 0) → 0 < 𝐵)
17163com23 1126 . . . . . . . . 9 ((𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0 ∧ 0 ≤ 𝐵) → 0 < 𝐵)
1811, 17mpd3an3 1464 . . . . . . . 8 ((𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 0 < 𝐵)
19183adant1 1130 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 0 < 𝐵)
20 divge0 11991 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵))
212, 9, 4, 19, 20syl22anc 838 . . . . . 6 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 0 ≤ (𝐴 / 𝐵))
2221adantr 480 . . . . 5 (((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) ∧ 𝐴𝐵) → 0 ≤ (𝐴 / 𝐵))
23 1red 11113 . . . . . . . 8 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 1 ∈ ℝ)
24 ledivmul 11998 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴 ≤ (𝐵 · 1)))
252, 23, 4, 19, 24syl112anc 1376 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴 ≤ (𝐵 · 1)))
26 ax-1rid 11076 . . . . . . . . 9 (𝐵 ∈ ℝ → (𝐵 · 1) = 𝐵)
2726breq2d 5103 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐴 ≤ (𝐵 · 1) ↔ 𝐴𝐵))
284, 27syl 17 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴 ≤ (𝐵 · 1) ↔ 𝐴𝐵))
2925, 28bitr2d 280 . . . . . 6 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴𝐵 ↔ (𝐴 / 𝐵) ≤ 1))
3029biimpa 476 . . . . 5 (((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) ∧ 𝐴𝐵) → (𝐴 / 𝐵) ≤ 1)
317, 22, 303jca 1128 . . . 4 (((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) ∧ 𝐴𝐵) → ((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1))
3231ex 412 . . 3 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴𝐵 → ((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1)))
33 simp3 1138 . . . 4 (((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1) → (𝐴 / 𝐵) ≤ 1)
3433, 29imbitrrid 246 . . 3 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1) → 𝐴𝐵))
3532, 34impbid 212 . 2 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴𝐵 ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1)))
36 elicc01 13366 . 2 ((𝐴 / 𝐵) ∈ (0[,]1) ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1))
3735, 36bitr4di 289 1 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴𝐵 ↔ (𝐴 / 𝐵) ∈ (0[,]1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2111  wne 2928   class class class wbr 5091  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   · cmul 11011   < clt 11146  cle 11147   / cdiv 11774  [,]cicc 13248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-icc 13252
This theorem is referenced by:  cndprob01  34446
  Copyright terms: Public domain W3C validator