Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitdivcld Structured version   Visualization version   GIF version

Theorem unitdivcld 31753
Description: Necessary conditions for a quotient to be in the closed unit interval. (somewhat too strong, it would be sufficient that A and B are in RR+) (Contributed by Thierry Arnoux, 20-Dec-2016.)
Assertion
Ref Expression
unitdivcld ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴𝐵 ↔ (𝐴 / 𝐵) ∈ (0[,]1)))

Proof of Theorem unitdivcld
StepHypRef Expression
1 elunitrn 13128 . . . . . . . 8 (𝐴 ∈ (0[,]1) → 𝐴 ∈ ℝ)
213ad2ant1 1131 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℝ)
3 elunitrn 13128 . . . . . . . 8 (𝐵 ∈ (0[,]1) → 𝐵 ∈ ℝ)
433ad2ant2 1132 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℝ)
5 simp3 1136 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
62, 4, 5redivcld 11733 . . . . . 6 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ)
76adantr 480 . . . . 5 (((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) ∧ 𝐴𝐵) → (𝐴 / 𝐵) ∈ ℝ)
8 elunitge0 31751 . . . . . . . 8 (𝐴 ∈ (0[,]1) → 0 ≤ 𝐴)
983ad2ant1 1131 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 0 ≤ 𝐴)
10 elunitge0 31751 . . . . . . . . . 10 (𝐵 ∈ (0[,]1) → 0 ≤ 𝐵)
1110adantr 480 . . . . . . . . 9 ((𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 0 ≤ 𝐵)
12 0re 10908 . . . . . . . . . . . . 13 0 ∈ ℝ
13 ltlen 11006 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 ↔ (0 ≤ 𝐵𝐵 ≠ 0)))
1412, 3, 13sylancr 586 . . . . . . . . . . . 12 (𝐵 ∈ (0[,]1) → (0 < 𝐵 ↔ (0 ≤ 𝐵𝐵 ≠ 0)))
1514biimpar 477 . . . . . . . . . . 11 ((𝐵 ∈ (0[,]1) ∧ (0 ≤ 𝐵𝐵 ≠ 0)) → 0 < 𝐵)
16153impb 1113 . . . . . . . . . 10 ((𝐵 ∈ (0[,]1) ∧ 0 ≤ 𝐵𝐵 ≠ 0) → 0 < 𝐵)
17163com23 1124 . . . . . . . . 9 ((𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0 ∧ 0 ≤ 𝐵) → 0 < 𝐵)
1811, 17mpd3an3 1460 . . . . . . . 8 ((𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 0 < 𝐵)
19183adant1 1128 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 0 < 𝐵)
20 divge0 11774 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵))
212, 9, 4, 19, 20syl22anc 835 . . . . . 6 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 0 ≤ (𝐴 / 𝐵))
2221adantr 480 . . . . 5 (((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) ∧ 𝐴𝐵) → 0 ≤ (𝐴 / 𝐵))
23 1red 10907 . . . . . . . 8 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 1 ∈ ℝ)
24 ledivmul 11781 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴 ≤ (𝐵 · 1)))
252, 23, 4, 19, 24syl112anc 1372 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴 ≤ (𝐵 · 1)))
26 ax-1rid 10872 . . . . . . . . 9 (𝐵 ∈ ℝ → (𝐵 · 1) = 𝐵)
2726breq2d 5082 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐴 ≤ (𝐵 · 1) ↔ 𝐴𝐵))
284, 27syl 17 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴 ≤ (𝐵 · 1) ↔ 𝐴𝐵))
2925, 28bitr2d 279 . . . . . 6 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴𝐵 ↔ (𝐴 / 𝐵) ≤ 1))
3029biimpa 476 . . . . 5 (((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) ∧ 𝐴𝐵) → (𝐴 / 𝐵) ≤ 1)
317, 22, 303jca 1126 . . . 4 (((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) ∧ 𝐴𝐵) → ((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1))
3231ex 412 . . 3 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴𝐵 → ((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1)))
33 simp3 1136 . . . 4 (((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1) → (𝐴 / 𝐵) ≤ 1)
3433, 29syl5ibr 245 . . 3 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1) → 𝐴𝐵))
3532, 34impbid 211 . 2 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴𝐵 ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1)))
36 elicc01 13127 . 2 ((𝐴 / 𝐵) ∈ (0[,]1) ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1))
3735, 36bitr4di 288 1 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴𝐵 ↔ (𝐴 / 𝐵) ∈ (0[,]1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wcel 2108  wne 2942   class class class wbr 5070  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   · cmul 10807   < clt 10940  cle 10941   / cdiv 11562  [,]cicc 13011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-icc 13015
This theorem is referenced by:  cndprob01  32302
  Copyright terms: Public domain W3C validator