Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitdivcld Structured version   Visualization version   GIF version

Theorem unitdivcld 32482
Description: Necessary conditions for a quotient to be in the closed unit interval. (somewhat too strong, it would be sufficient that A and B are in RR+) (Contributed by Thierry Arnoux, 20-Dec-2016.)
Assertion
Ref Expression
unitdivcld ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴𝐵 ↔ (𝐴 / 𝐵) ∈ (0[,]1)))

Proof of Theorem unitdivcld
StepHypRef Expression
1 elunitrn 13384 . . . . . . . 8 (𝐴 ∈ (0[,]1) → 𝐴 ∈ ℝ)
213ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℝ)
3 elunitrn 13384 . . . . . . . 8 (𝐵 ∈ (0[,]1) → 𝐵 ∈ ℝ)
433ad2ant2 1134 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℝ)
5 simp3 1138 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
62, 4, 5redivcld 11983 . . . . . 6 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ)
76adantr 481 . . . . 5 (((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) ∧ 𝐴𝐵) → (𝐴 / 𝐵) ∈ ℝ)
8 elunitge0 32480 . . . . . . . 8 (𝐴 ∈ (0[,]1) → 0 ≤ 𝐴)
983ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 0 ≤ 𝐴)
10 elunitge0 32480 . . . . . . . . . 10 (𝐵 ∈ (0[,]1) → 0 ≤ 𝐵)
1110adantr 481 . . . . . . . . 9 ((𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 0 ≤ 𝐵)
12 0re 11157 . . . . . . . . . . . . 13 0 ∈ ℝ
13 ltlen 11256 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 ↔ (0 ≤ 𝐵𝐵 ≠ 0)))
1412, 3, 13sylancr 587 . . . . . . . . . . . 12 (𝐵 ∈ (0[,]1) → (0 < 𝐵 ↔ (0 ≤ 𝐵𝐵 ≠ 0)))
1514biimpar 478 . . . . . . . . . . 11 ((𝐵 ∈ (0[,]1) ∧ (0 ≤ 𝐵𝐵 ≠ 0)) → 0 < 𝐵)
16153impb 1115 . . . . . . . . . 10 ((𝐵 ∈ (0[,]1) ∧ 0 ≤ 𝐵𝐵 ≠ 0) → 0 < 𝐵)
17163com23 1126 . . . . . . . . 9 ((𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0 ∧ 0 ≤ 𝐵) → 0 < 𝐵)
1811, 17mpd3an3 1462 . . . . . . . 8 ((𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 0 < 𝐵)
19183adant1 1130 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 0 < 𝐵)
20 divge0 12024 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵))
212, 9, 4, 19, 20syl22anc 837 . . . . . 6 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 0 ≤ (𝐴 / 𝐵))
2221adantr 481 . . . . 5 (((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) ∧ 𝐴𝐵) → 0 ≤ (𝐴 / 𝐵))
23 1red 11156 . . . . . . . 8 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 1 ∈ ℝ)
24 ledivmul 12031 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴 ≤ (𝐵 · 1)))
252, 23, 4, 19, 24syl112anc 1374 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴 ≤ (𝐵 · 1)))
26 ax-1rid 11121 . . . . . . . . 9 (𝐵 ∈ ℝ → (𝐵 · 1) = 𝐵)
2726breq2d 5117 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐴 ≤ (𝐵 · 1) ↔ 𝐴𝐵))
284, 27syl 17 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴 ≤ (𝐵 · 1) ↔ 𝐴𝐵))
2925, 28bitr2d 279 . . . . . 6 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴𝐵 ↔ (𝐴 / 𝐵) ≤ 1))
3029biimpa 477 . . . . 5 (((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) ∧ 𝐴𝐵) → (𝐴 / 𝐵) ≤ 1)
317, 22, 303jca 1128 . . . 4 (((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) ∧ 𝐴𝐵) → ((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1))
3231ex 413 . . 3 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴𝐵 → ((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1)))
33 simp3 1138 . . . 4 (((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1) → (𝐴 / 𝐵) ≤ 1)
3433, 29syl5ibr 245 . . 3 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1) → 𝐴𝐵))
3532, 34impbid 211 . 2 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴𝐵 ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1)))
36 elicc01 13383 . 2 ((𝐴 / 𝐵) ∈ (0[,]1) ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1))
3735, 36bitr4di 288 1 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴𝐵 ↔ (𝐴 / 𝐵) ∈ (0[,]1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wcel 2106  wne 2943   class class class wbr 5105  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052   · cmul 11056   < clt 11189  cle 11190   / cdiv 11812  [,]cicc 13267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-icc 13271
This theorem is referenced by:  cndprob01  33035
  Copyright terms: Public domain W3C validator