MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemulge11 Structured version   Visualization version   GIF version

Theorem lemulge11 12021
Description: Multiplication by a number greater than or equal to 1. (Contributed by NM, 17-Dec-2005.)
Assertion
Ref Expression
lemulge11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → 𝐴 ≤ (𝐴 · 𝐵))

Proof of Theorem lemulge11
StepHypRef Expression
1 ax-1rid 11114 . . 3 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
21ad2antrr 726 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → (𝐴 · 1) = 𝐴)
3 simpll 766 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → 𝐴 ∈ ℝ)
4 simprl 770 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → 0 ≤ 𝐴)
53, 4jca 511 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
6 simplr 768 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → 𝐵 ∈ ℝ)
7 1re 11150 . . . . . 6 1 ∈ ℝ
8 0le1 11677 . . . . . 6 0 ≤ 1
97, 8pm3.2i 470 . . . . 5 (1 ∈ ℝ ∧ 0 ≤ 1)
106, 9jctil 519 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝐵 ∈ ℝ))
115, 3, 10jca31 514 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐴 ∈ ℝ) ∧ ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝐵 ∈ ℝ)))
12 leid 11246 . . . . 5 (𝐴 ∈ ℝ → 𝐴𝐴)
1312ad2antrr 726 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → 𝐴𝐴)
14 simprr 772 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → 1 ≤ 𝐵)
1513, 14jca 511 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → (𝐴𝐴 ∧ 1 ≤ 𝐵))
16 lemul12a 12016 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐴 ∈ ℝ) ∧ ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝐵 ∈ ℝ)) → ((𝐴𝐴 ∧ 1 ≤ 𝐵) → (𝐴 · 1) ≤ (𝐴 · 𝐵)))
1711, 15, 16sylc 65 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → (𝐴 · 1) ≤ (𝐴 · 𝐵))
182, 17eqbrtrrd 5126 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → 𝐴 ≤ (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5102  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045   · cmul 11049  cle 11185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384
This theorem is referenced by:  lemulge12  12022  lemulge11d  12096  faclbnd  14231  divalglem1  16340
  Copyright terms: Public domain W3C validator