Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-0lt1 Structured version   Visualization version   GIF version

Theorem sn-0lt1 42184
Description: 0lt1 11782 without ax-mulcom 11218. (Contributed by SN, 13-Feb-2024.)
Assertion
Ref Expression
sn-0lt1 0 < 1

Proof of Theorem sn-0lt1
StepHypRef Expression
1 ax-1ne0 11223 . . 3 1 ≠ 0
2 1re 11260 . . . 4 1 ∈ ℝ
3 0re 11262 . . . 4 0 ∈ ℝ
42, 3lttri2i 11374 . . 3 (1 ≠ 0 ↔ (1 < 0 ∨ 0 < 1))
51, 4mpbi 229 . 2 (1 < 0 ∨ 0 < 1)
6 rernegcl 42093 . . . . . 6 (1 ∈ ℝ → (0 − 1) ∈ ℝ)
72, 6mp1i 13 . . . . 5 (1 < 0 → (0 − 1) ∈ ℝ)
8 relt0neg1 42166 . . . . . . 7 (1 ∈ ℝ → (1 < 0 ↔ 0 < (0 − 1)))
92, 8ax-mp 5 . . . . . 6 (1 < 0 ↔ 0 < (0 − 1))
109biimpi 215 . . . . 5 (1 < 0 → 0 < (0 − 1))
117, 7, 10, 10mulgt0d 11415 . . . 4 (1 < 0 → 0 < ((0 − 1) · (0 − 1)))
12 1red 11261 . . . . . . 7 (1 ∈ ℝ → 1 ∈ ℝ)
136, 12remulneg2d 42136 . . . . . 6 (1 ∈ ℝ → ((0 − 1) · (0 − 1)) = (0 − ((0 − 1) · 1)))
14 ax-1rid 11224 . . . . . . . 8 ((0 − 1) ∈ ℝ → ((0 − 1) · 1) = (0 − 1))
156, 14syl 17 . . . . . . 7 (1 ∈ ℝ → ((0 − 1) · 1) = (0 − 1))
1615oveq2d 7439 . . . . . 6 (1 ∈ ℝ → (0 − ((0 − 1) · 1)) = (0 − (0 − 1)))
17 renegneg 42133 . . . . . 6 (1 ∈ ℝ → (0 − (0 − 1)) = 1)
1813, 16, 173eqtrd 2769 . . . . 5 (1 ∈ ℝ → ((0 − 1) · (0 − 1)) = 1)
192, 18ax-mp 5 . . . 4 ((0 − 1) · (0 − 1)) = 1
2011, 19breqtrdi 5193 . . 3 (1 < 0 → 0 < 1)
21 id 22 . . 3 (0 < 1 → 0 < 1)
2220, 21jaoi 855 . 2 ((1 < 0 ∨ 0 < 1) → 0 < 1)
235, 22ax-mp 5 1 0 < 1
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 845   = wceq 1533  wcel 2098  wne 2929   class class class wbr 5152  (class class class)co 7423  cr 11153  0cc0 11154  1c1 11155   · cmul 11159   < clt 11294   cresub 42087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5579  df-po 5593  df-so 5594  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-er 8733  df-en 8974  df-dom 8975  df-sdom 8976  df-pnf 11296  df-mnf 11297  df-ltxr 11299  df-2 12322  df-3 12323  df-resub 42088
This theorem is referenced by:  sn-ltp1  42185  reneg1lt0  42186
  Copyright terms: Public domain W3C validator