Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-0lt1 Structured version   Visualization version   GIF version

Theorem sn-0lt1 41637
Description: 0lt1 11740 without ax-mulcom 11176. (Contributed by SN, 13-Feb-2024.)
Assertion
Ref Expression
sn-0lt1 0 < 1

Proof of Theorem sn-0lt1
StepHypRef Expression
1 ax-1ne0 11181 . . 3 1 ≠ 0
2 1re 11218 . . . 4 1 ∈ ℝ
3 0re 11220 . . . 4 0 ∈ ℝ
42, 3lttri2i 11332 . . 3 (1 ≠ 0 ↔ (1 < 0 ∨ 0 < 1))
51, 4mpbi 229 . 2 (1 < 0 ∨ 0 < 1)
6 rernegcl 41546 . . . . . 6 (1 ∈ ℝ → (0 − 1) ∈ ℝ)
72, 6mp1i 13 . . . . 5 (1 < 0 → (0 − 1) ∈ ℝ)
8 relt0neg1 41619 . . . . . . 7 (1 ∈ ℝ → (1 < 0 ↔ 0 < (0 − 1)))
92, 8ax-mp 5 . . . . . 6 (1 < 0 ↔ 0 < (0 − 1))
109biimpi 215 . . . . 5 (1 < 0 → 0 < (0 − 1))
117, 7, 10, 10mulgt0d 11373 . . . 4 (1 < 0 → 0 < ((0 − 1) · (0 − 1)))
12 1red 11219 . . . . . . 7 (1 ∈ ℝ → 1 ∈ ℝ)
136, 12remulneg2d 41589 . . . . . 6 (1 ∈ ℝ → ((0 − 1) · (0 − 1)) = (0 − ((0 − 1) · 1)))
14 ax-1rid 11182 . . . . . . . 8 ((0 − 1) ∈ ℝ → ((0 − 1) · 1) = (0 − 1))
156, 14syl 17 . . . . . . 7 (1 ∈ ℝ → ((0 − 1) · 1) = (0 − 1))
1615oveq2d 7427 . . . . . 6 (1 ∈ ℝ → (0 − ((0 − 1) · 1)) = (0 − (0 − 1)))
17 renegneg 41586 . . . . . 6 (1 ∈ ℝ → (0 − (0 − 1)) = 1)
1813, 16, 173eqtrd 2774 . . . . 5 (1 ∈ ℝ → ((0 − 1) · (0 − 1)) = 1)
192, 18ax-mp 5 . . . 4 ((0 − 1) · (0 − 1)) = 1
2011, 19breqtrdi 5188 . . 3 (1 < 0 → 0 < 1)
21 id 22 . . 3 (0 < 1 → 0 < 1)
2220, 21jaoi 853 . 2 ((1 < 0 ∨ 0 < 1) → 0 < 1)
235, 22ax-mp 5 1 0 < 1
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 843   = wceq 1539  wcel 2104  wne 2938   class class class wbr 5147  (class class class)co 7411  cr 11111  0cc0 11112  1c1 11113   · cmul 11117   < clt 11252   cresub 41540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-ltxr 11257  df-2 12279  df-3 12280  df-resub 41541
This theorem is referenced by:  sn-ltp1  41638  reneg1lt0  41639
  Copyright terms: Public domain W3C validator