![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-0lt1 | Structured version Visualization version GIF version |
Description: 0lt1 11783 without ax-mulcom 11217. (Contributed by SN, 13-Feb-2024.) |
Ref | Expression |
---|---|
sn-0lt1 | ⊢ 0 < 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1ne0 11222 | . . 3 ⊢ 1 ≠ 0 | |
2 | 1re 11259 | . . . 4 ⊢ 1 ∈ ℝ | |
3 | 0re 11261 | . . . 4 ⊢ 0 ∈ ℝ | |
4 | 2, 3 | lttri2i 11373 | . . 3 ⊢ (1 ≠ 0 ↔ (1 < 0 ∨ 0 < 1)) |
5 | 1, 4 | mpbi 230 | . 2 ⊢ (1 < 0 ∨ 0 < 1) |
6 | rernegcl 42378 | . . . . . 6 ⊢ (1 ∈ ℝ → (0 −ℝ 1) ∈ ℝ) | |
7 | 2, 6 | mp1i 13 | . . . . 5 ⊢ (1 < 0 → (0 −ℝ 1) ∈ ℝ) |
8 | relt0neg1 42451 | . . . . . . 7 ⊢ (1 ∈ ℝ → (1 < 0 ↔ 0 < (0 −ℝ 1))) | |
9 | 2, 8 | ax-mp 5 | . . . . . 6 ⊢ (1 < 0 ↔ 0 < (0 −ℝ 1)) |
10 | 9 | biimpi 216 | . . . . 5 ⊢ (1 < 0 → 0 < (0 −ℝ 1)) |
11 | 7, 7, 10, 10 | mulgt0d 11414 | . . . 4 ⊢ (1 < 0 → 0 < ((0 −ℝ 1) · (0 −ℝ 1))) |
12 | 1red 11260 | . . . . . . 7 ⊢ (1 ∈ ℝ → 1 ∈ ℝ) | |
13 | 6, 12 | remulneg2d 42421 | . . . . . 6 ⊢ (1 ∈ ℝ → ((0 −ℝ 1) · (0 −ℝ 1)) = (0 −ℝ ((0 −ℝ 1) · 1))) |
14 | ax-1rid 11223 | . . . . . . . 8 ⊢ ((0 −ℝ 1) ∈ ℝ → ((0 −ℝ 1) · 1) = (0 −ℝ 1)) | |
15 | 6, 14 | syl 17 | . . . . . . 7 ⊢ (1 ∈ ℝ → ((0 −ℝ 1) · 1) = (0 −ℝ 1)) |
16 | 15 | oveq2d 7447 | . . . . . 6 ⊢ (1 ∈ ℝ → (0 −ℝ ((0 −ℝ 1) · 1)) = (0 −ℝ (0 −ℝ 1))) |
17 | renegneg 42418 | . . . . . 6 ⊢ (1 ∈ ℝ → (0 −ℝ (0 −ℝ 1)) = 1) | |
18 | 13, 16, 17 | 3eqtrd 2779 | . . . . 5 ⊢ (1 ∈ ℝ → ((0 −ℝ 1) · (0 −ℝ 1)) = 1) |
19 | 2, 18 | ax-mp 5 | . . . 4 ⊢ ((0 −ℝ 1) · (0 −ℝ 1)) = 1 |
20 | 11, 19 | breqtrdi 5189 | . . 3 ⊢ (1 < 0 → 0 < 1) |
21 | id 22 | . . 3 ⊢ (0 < 1 → 0 < 1) | |
22 | 20, 21 | jaoi 857 | . 2 ⊢ ((1 < 0 ∨ 0 < 1) → 0 < 1) |
23 | 5, 22 | ax-mp 5 | 1 ⊢ 0 < 1 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 class class class wbr 5148 (class class class)co 7431 ℝcr 11152 0cc0 11153 1c1 11154 · cmul 11158 < clt 11293 −ℝ cresub 42372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-2 12327 df-3 12328 df-resub 42373 |
This theorem is referenced by: sn-ltp1 42471 sn-mulgt1d 42472 reneg1lt0 42473 |
Copyright terms: Public domain | W3C validator |