Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-0lt1 Structured version   Visualization version   GIF version

Theorem sn-0lt1 42578
Description: 0lt1 11639 without ax-mulcom 11070. (Contributed by SN, 13-Feb-2024.)
Assertion
Ref Expression
sn-0lt1 0 < 1

Proof of Theorem sn-0lt1
StepHypRef Expression
1 ax-1ne0 11075 . . 3 1 ≠ 0
2 1re 11112 . . . 4 1 ∈ ℝ
3 0re 11114 . . . 4 0 ∈ ℝ
42, 3lttri2i 11227 . . 3 (1 ≠ 0 ↔ (1 < 0 ∨ 0 < 1))
51, 4mpbi 230 . 2 (1 < 0 ∨ 0 < 1)
6 rernegcl 42474 . . . . . 6 (1 ∈ ℝ → (0 − 1) ∈ ℝ)
72, 6mp1i 13 . . . . 5 (1 < 0 → (0 − 1) ∈ ℝ)
8 relt0neg1 42559 . . . . . . 7 (1 ∈ ℝ → (1 < 0 ↔ 0 < (0 − 1)))
92, 8ax-mp 5 . . . . . 6 (1 < 0 ↔ 0 < (0 − 1))
109biimpi 216 . . . . 5 (1 < 0 → 0 < (0 − 1))
117, 7, 10, 10mulgt0d 11268 . . . 4 (1 < 0 → 0 < ((0 − 1) · (0 − 1)))
12 1red 11113 . . . . . . 7 (1 ∈ ℝ → 1 ∈ ℝ)
136, 12remulneg2d 42518 . . . . . 6 (1 ∈ ℝ → ((0 − 1) · (0 − 1)) = (0 − ((0 − 1) · 1)))
14 ax-1rid 11076 . . . . . . . 8 ((0 − 1) ∈ ℝ → ((0 − 1) · 1) = (0 − 1))
156, 14syl 17 . . . . . . 7 (1 ∈ ℝ → ((0 − 1) · 1) = (0 − 1))
1615oveq2d 7362 . . . . . 6 (1 ∈ ℝ → (0 − ((0 − 1) · 1)) = (0 − (0 − 1)))
17 renegneg 42515 . . . . . 6 (1 ∈ ℝ → (0 − (0 − 1)) = 1)
1813, 16, 173eqtrd 2770 . . . . 5 (1 ∈ ℝ → ((0 − 1) · (0 − 1)) = 1)
192, 18ax-mp 5 . . . 4 ((0 − 1) · (0 − 1)) = 1
2011, 19breqtrdi 5130 . . 3 (1 < 0 → 0 < 1)
21 id 22 . . 3 (0 < 1 → 0 < 1)
2220, 21jaoi 857 . 2 ((1 < 0 ∨ 0 < 1) → 0 < 1)
235, 22ax-mp 5 1 0 < 1
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   · cmul 11011   < clt 11146   cresub 42468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-ltxr 11151  df-2 12188  df-3 12189  df-resub 42469
This theorem is referenced by:  sn-ltp1  42579  sn-recgt0d  42580  sn-mulgt1d  42582  reneg1lt0  42583
  Copyright terms: Public domain W3C validator