Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-0lt1 Structured version   Visualization version   GIF version

Theorem sn-0lt1 42493
Description: 0lt1 11785 without ax-mulcom 11219. (Contributed by SN, 13-Feb-2024.)
Assertion
Ref Expression
sn-0lt1 0 < 1

Proof of Theorem sn-0lt1
StepHypRef Expression
1 ax-1ne0 11224 . . 3 1 ≠ 0
2 1re 11261 . . . 4 1 ∈ ℝ
3 0re 11263 . . . 4 0 ∈ ℝ
42, 3lttri2i 11375 . . 3 (1 ≠ 0 ↔ (1 < 0 ∨ 0 < 1))
51, 4mpbi 230 . 2 (1 < 0 ∨ 0 < 1)
6 rernegcl 42401 . . . . . 6 (1 ∈ ℝ → (0 − 1) ∈ ℝ)
72, 6mp1i 13 . . . . 5 (1 < 0 → (0 − 1) ∈ ℝ)
8 relt0neg1 42474 . . . . . . 7 (1 ∈ ℝ → (1 < 0 ↔ 0 < (0 − 1)))
92, 8ax-mp 5 . . . . . 6 (1 < 0 ↔ 0 < (0 − 1))
109biimpi 216 . . . . 5 (1 < 0 → 0 < (0 − 1))
117, 7, 10, 10mulgt0d 11416 . . . 4 (1 < 0 → 0 < ((0 − 1) · (0 − 1)))
12 1red 11262 . . . . . . 7 (1 ∈ ℝ → 1 ∈ ℝ)
136, 12remulneg2d 42444 . . . . . 6 (1 ∈ ℝ → ((0 − 1) · (0 − 1)) = (0 − ((0 − 1) · 1)))
14 ax-1rid 11225 . . . . . . . 8 ((0 − 1) ∈ ℝ → ((0 − 1) · 1) = (0 − 1))
156, 14syl 17 . . . . . . 7 (1 ∈ ℝ → ((0 − 1) · 1) = (0 − 1))
1615oveq2d 7447 . . . . . 6 (1 ∈ ℝ → (0 − ((0 − 1) · 1)) = (0 − (0 − 1)))
17 renegneg 42441 . . . . . 6 (1 ∈ ℝ → (0 − (0 − 1)) = 1)
1813, 16, 173eqtrd 2781 . . . . 5 (1 ∈ ℝ → ((0 − 1) · (0 − 1)) = 1)
192, 18ax-mp 5 . . . 4 ((0 − 1) · (0 − 1)) = 1
2011, 19breqtrdi 5184 . . 3 (1 < 0 → 0 < 1)
21 id 22 . . 3 (0 < 1 → 0 < 1)
2220, 21jaoi 858 . 2 ((1 < 0 ∨ 0 < 1) → 0 < 1)
235, 22ax-mp 5 1 0 < 1
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 848   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   · cmul 11160   < clt 11295   cresub 42395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-2 12329  df-3 12330  df-resub 42396
This theorem is referenced by:  sn-ltp1  42494  sn-mulgt1d  42495  reneg1lt0  42496
  Copyright terms: Public domain W3C validator