Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-0lt1 | Structured version Visualization version GIF version |
Description: 0lt1 11489 without ax-mulcom 10928. (Contributed by SN, 13-Feb-2024.) |
Ref | Expression |
---|---|
sn-0lt1 | ⊢ 0 < 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1ne0 10933 | . . 3 ⊢ 1 ≠ 0 | |
2 | 1re 10968 | . . . 4 ⊢ 1 ∈ ℝ | |
3 | 0re 10970 | . . . 4 ⊢ 0 ∈ ℝ | |
4 | 2, 3 | lttri2i 11081 | . . 3 ⊢ (1 ≠ 0 ↔ (1 < 0 ∨ 0 < 1)) |
5 | 1, 4 | mpbi 229 | . 2 ⊢ (1 < 0 ∨ 0 < 1) |
6 | rernegcl 40343 | . . . . . . 7 ⊢ (1 ∈ ℝ → (0 −ℝ 1) ∈ ℝ) | |
7 | 2, 6 | ax-mp 5 | . . . . . 6 ⊢ (0 −ℝ 1) ∈ ℝ |
8 | 7 | a1i 11 | . . . . 5 ⊢ (1 < 0 → (0 −ℝ 1) ∈ ℝ) |
9 | relt0neg1 40414 | . . . . . . 7 ⊢ (1 ∈ ℝ → (1 < 0 ↔ 0 < (0 −ℝ 1))) | |
10 | 2, 9 | ax-mp 5 | . . . . . 6 ⊢ (1 < 0 ↔ 0 < (0 −ℝ 1)) |
11 | 10 | biimpi 215 | . . . . 5 ⊢ (1 < 0 → 0 < (0 −ℝ 1)) |
12 | 8, 8, 11, 11 | mulgt0d 11122 | . . . 4 ⊢ (1 < 0 → 0 < ((0 −ℝ 1) · (0 −ℝ 1))) |
13 | resubdi 40368 | . . . . . 6 ⊢ (((0 −ℝ 1) ∈ ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ) → ((0 −ℝ 1) · (0 −ℝ 1)) = (((0 −ℝ 1) · 0) −ℝ ((0 −ℝ 1) · 1))) | |
14 | 7, 3, 2, 13 | mp3an 1460 | . . . . 5 ⊢ ((0 −ℝ 1) · (0 −ℝ 1)) = (((0 −ℝ 1) · 0) −ℝ ((0 −ℝ 1) · 1)) |
15 | remul01 40379 | . . . . . . 7 ⊢ ((0 −ℝ 1) ∈ ℝ → ((0 −ℝ 1) · 0) = 0) | |
16 | 7, 15 | ax-mp 5 | . . . . . 6 ⊢ ((0 −ℝ 1) · 0) = 0 |
17 | ax-1rid 10934 | . . . . . . 7 ⊢ ((0 −ℝ 1) ∈ ℝ → ((0 −ℝ 1) · 1) = (0 −ℝ 1)) | |
18 | 7, 17 | ax-mp 5 | . . . . . 6 ⊢ ((0 −ℝ 1) · 1) = (0 −ℝ 1) |
19 | 16, 18 | oveq12i 7281 | . . . . 5 ⊢ (((0 −ℝ 1) · 0) −ℝ ((0 −ℝ 1) · 1)) = (0 −ℝ (0 −ℝ 1)) |
20 | renegneg 40383 | . . . . . 6 ⊢ (1 ∈ ℝ → (0 −ℝ (0 −ℝ 1)) = 1) | |
21 | 2, 20 | ax-mp 5 | . . . . 5 ⊢ (0 −ℝ (0 −ℝ 1)) = 1 |
22 | 14, 19, 21 | 3eqtri 2772 | . . . 4 ⊢ ((0 −ℝ 1) · (0 −ℝ 1)) = 1 |
23 | 12, 22 | breqtrdi 5120 | . . 3 ⊢ (1 < 0 → 0 < 1) |
24 | id 22 | . . 3 ⊢ (0 < 1 → 0 < 1) | |
25 | 23, 24 | jaoi 854 | . 2 ⊢ ((1 < 0 ∨ 0 < 1) → 0 < 1) |
26 | 5, 25 | ax-mp 5 | 1 ⊢ 0 < 1 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 class class class wbr 5079 (class class class)co 7269 ℝcr 10863 0cc0 10864 1c1 10865 · cmul 10869 < clt 11002 −ℝ cresub 40337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-er 8473 df-en 8709 df-dom 8710 df-sdom 8711 df-pnf 11004 df-mnf 11005 df-ltxr 11007 df-2 12028 df-3 12029 df-resub 40338 |
This theorem is referenced by: sn-ltp1 40422 reneg1lt0 40423 |
Copyright terms: Public domain | W3C validator |