| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-0lt1 | Structured version Visualization version GIF version | ||
| Description: 0lt1 11707 without ax-mulcom 11139. (Contributed by SN, 13-Feb-2024.) |
| Ref | Expression |
|---|---|
| sn-0lt1 | ⊢ 0 < 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1ne0 11144 | . . 3 ⊢ 1 ≠ 0 | |
| 2 | 1re 11181 | . . . 4 ⊢ 1 ∈ ℝ | |
| 3 | 0re 11183 | . . . 4 ⊢ 0 ∈ ℝ | |
| 4 | 2, 3 | lttri2i 11295 | . . 3 ⊢ (1 ≠ 0 ↔ (1 < 0 ∨ 0 < 1)) |
| 5 | 1, 4 | mpbi 230 | . 2 ⊢ (1 < 0 ∨ 0 < 1) |
| 6 | rernegcl 42366 | . . . . . 6 ⊢ (1 ∈ ℝ → (0 −ℝ 1) ∈ ℝ) | |
| 7 | 2, 6 | mp1i 13 | . . . . 5 ⊢ (1 < 0 → (0 −ℝ 1) ∈ ℝ) |
| 8 | relt0neg1 42451 | . . . . . . 7 ⊢ (1 ∈ ℝ → (1 < 0 ↔ 0 < (0 −ℝ 1))) | |
| 9 | 2, 8 | ax-mp 5 | . . . . . 6 ⊢ (1 < 0 ↔ 0 < (0 −ℝ 1)) |
| 10 | 9 | biimpi 216 | . . . . 5 ⊢ (1 < 0 → 0 < (0 −ℝ 1)) |
| 11 | 7, 7, 10, 10 | mulgt0d 11336 | . . . 4 ⊢ (1 < 0 → 0 < ((0 −ℝ 1) · (0 −ℝ 1))) |
| 12 | 1red 11182 | . . . . . . 7 ⊢ (1 ∈ ℝ → 1 ∈ ℝ) | |
| 13 | 6, 12 | remulneg2d 42410 | . . . . . 6 ⊢ (1 ∈ ℝ → ((0 −ℝ 1) · (0 −ℝ 1)) = (0 −ℝ ((0 −ℝ 1) · 1))) |
| 14 | ax-1rid 11145 | . . . . . . . 8 ⊢ ((0 −ℝ 1) ∈ ℝ → ((0 −ℝ 1) · 1) = (0 −ℝ 1)) | |
| 15 | 6, 14 | syl 17 | . . . . . . 7 ⊢ (1 ∈ ℝ → ((0 −ℝ 1) · 1) = (0 −ℝ 1)) |
| 16 | 15 | oveq2d 7406 | . . . . . 6 ⊢ (1 ∈ ℝ → (0 −ℝ ((0 −ℝ 1) · 1)) = (0 −ℝ (0 −ℝ 1))) |
| 17 | renegneg 42407 | . . . . . 6 ⊢ (1 ∈ ℝ → (0 −ℝ (0 −ℝ 1)) = 1) | |
| 18 | 13, 16, 17 | 3eqtrd 2769 | . . . . 5 ⊢ (1 ∈ ℝ → ((0 −ℝ 1) · (0 −ℝ 1)) = 1) |
| 19 | 2, 18 | ax-mp 5 | . . . 4 ⊢ ((0 −ℝ 1) · (0 −ℝ 1)) = 1 |
| 20 | 11, 19 | breqtrdi 5151 | . . 3 ⊢ (1 < 0 → 0 < 1) |
| 21 | id 22 | . . 3 ⊢ (0 < 1 → 0 < 1) | |
| 22 | 20, 21 | jaoi 857 | . 2 ⊢ ((1 < 0 ∨ 0 < 1) → 0 < 1) |
| 23 | 5, 22 | ax-mp 5 | 1 ⊢ 0 < 1 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 · cmul 11080 < clt 11215 −ℝ cresub 42360 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-2 12256 df-3 12257 df-resub 42361 |
| This theorem is referenced by: sn-ltp1 42471 sn-recgt0d 42472 sn-mulgt1d 42474 reneg1lt0 42475 |
| Copyright terms: Public domain | W3C validator |