![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-0lt1 | Structured version Visualization version GIF version |
Description: 0lt1 11782 without ax-mulcom 11218. (Contributed by SN, 13-Feb-2024.) |
Ref | Expression |
---|---|
sn-0lt1 | ⊢ 0 < 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1ne0 11223 | . . 3 ⊢ 1 ≠ 0 | |
2 | 1re 11260 | . . . 4 ⊢ 1 ∈ ℝ | |
3 | 0re 11262 | . . . 4 ⊢ 0 ∈ ℝ | |
4 | 2, 3 | lttri2i 11374 | . . 3 ⊢ (1 ≠ 0 ↔ (1 < 0 ∨ 0 < 1)) |
5 | 1, 4 | mpbi 229 | . 2 ⊢ (1 < 0 ∨ 0 < 1) |
6 | rernegcl 42093 | . . . . . 6 ⊢ (1 ∈ ℝ → (0 −ℝ 1) ∈ ℝ) | |
7 | 2, 6 | mp1i 13 | . . . . 5 ⊢ (1 < 0 → (0 −ℝ 1) ∈ ℝ) |
8 | relt0neg1 42166 | . . . . . . 7 ⊢ (1 ∈ ℝ → (1 < 0 ↔ 0 < (0 −ℝ 1))) | |
9 | 2, 8 | ax-mp 5 | . . . . . 6 ⊢ (1 < 0 ↔ 0 < (0 −ℝ 1)) |
10 | 9 | biimpi 215 | . . . . 5 ⊢ (1 < 0 → 0 < (0 −ℝ 1)) |
11 | 7, 7, 10, 10 | mulgt0d 11415 | . . . 4 ⊢ (1 < 0 → 0 < ((0 −ℝ 1) · (0 −ℝ 1))) |
12 | 1red 11261 | . . . . . . 7 ⊢ (1 ∈ ℝ → 1 ∈ ℝ) | |
13 | 6, 12 | remulneg2d 42136 | . . . . . 6 ⊢ (1 ∈ ℝ → ((0 −ℝ 1) · (0 −ℝ 1)) = (0 −ℝ ((0 −ℝ 1) · 1))) |
14 | ax-1rid 11224 | . . . . . . . 8 ⊢ ((0 −ℝ 1) ∈ ℝ → ((0 −ℝ 1) · 1) = (0 −ℝ 1)) | |
15 | 6, 14 | syl 17 | . . . . . . 7 ⊢ (1 ∈ ℝ → ((0 −ℝ 1) · 1) = (0 −ℝ 1)) |
16 | 15 | oveq2d 7439 | . . . . . 6 ⊢ (1 ∈ ℝ → (0 −ℝ ((0 −ℝ 1) · 1)) = (0 −ℝ (0 −ℝ 1))) |
17 | renegneg 42133 | . . . . . 6 ⊢ (1 ∈ ℝ → (0 −ℝ (0 −ℝ 1)) = 1) | |
18 | 13, 16, 17 | 3eqtrd 2769 | . . . . 5 ⊢ (1 ∈ ℝ → ((0 −ℝ 1) · (0 −ℝ 1)) = 1) |
19 | 2, 18 | ax-mp 5 | . . . 4 ⊢ ((0 −ℝ 1) · (0 −ℝ 1)) = 1 |
20 | 11, 19 | breqtrdi 5193 | . . 3 ⊢ (1 < 0 → 0 < 1) |
21 | id 22 | . . 3 ⊢ (0 < 1 → 0 < 1) | |
22 | 20, 21 | jaoi 855 | . 2 ⊢ ((1 < 0 ∨ 0 < 1) → 0 < 1) |
23 | 5, 22 | ax-mp 5 | 1 ⊢ 0 < 1 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 class class class wbr 5152 (class class class)co 7423 ℝcr 11153 0cc0 11154 1c1 11155 · cmul 11159 < clt 11294 −ℝ cresub 42087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-resscn 11211 ax-1cn 11212 ax-icn 11213 ax-addcl 11214 ax-addrcl 11215 ax-mulcl 11216 ax-mulrcl 11217 ax-addass 11219 ax-mulass 11220 ax-distr 11221 ax-i2m1 11222 ax-1ne0 11223 ax-1rid 11224 ax-rnegex 11225 ax-rrecex 11226 ax-cnre 11227 ax-pre-lttri 11228 ax-pre-lttrn 11229 ax-pre-ltadd 11230 ax-pre-mulgt0 11231 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5579 df-po 5593 df-so 5594 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7379 df-ov 7426 df-oprab 7427 df-mpo 7428 df-er 8733 df-en 8974 df-dom 8975 df-sdom 8976 df-pnf 11296 df-mnf 11297 df-ltxr 11299 df-2 12322 df-3 12323 df-resub 42088 |
This theorem is referenced by: sn-ltp1 42185 reneg1lt0 42186 |
Copyright terms: Public domain | W3C validator |