Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  renegmulnnass Structured version   Visualization version   GIF version

Theorem renegmulnnass 40824
Description: Move multiplication by a natural number inside and outside negation. (Contributed by SN, 25-Jan-2025.)
Hypotheses
Ref Expression
renegmulnnass.a (𝜑𝐴 ∈ ℝ)
renegmulnnass.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
renegmulnnass (𝜑 → ((0 − 𝐴) · 𝑁) = (0 − (𝐴 · 𝑁)))

Proof of Theorem renegmulnnass
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 renegmulnnass.n . 2 (𝜑𝑁 ∈ ℕ)
2 oveq2 7359 . . . 4 (𝑥 = 1 → ((0 − 𝐴) · 𝑥) = ((0 − 𝐴) · 1))
3 oveq2 7359 . . . . 5 (𝑥 = 1 → (𝐴 · 𝑥) = (𝐴 · 1))
43oveq2d 7367 . . . 4 (𝑥 = 1 → (0 − (𝐴 · 𝑥)) = (0 − (𝐴 · 1)))
52, 4eqeq12d 2753 . . 3 (𝑥 = 1 → (((0 − 𝐴) · 𝑥) = (0 − (𝐴 · 𝑥)) ↔ ((0 − 𝐴) · 1) = (0 − (𝐴 · 1))))
6 oveq2 7359 . . . 4 (𝑥 = 𝑦 → ((0 − 𝐴) · 𝑥) = ((0 − 𝐴) · 𝑦))
7 oveq2 7359 . . . . 5 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
87oveq2d 7367 . . . 4 (𝑥 = 𝑦 → (0 − (𝐴 · 𝑥)) = (0 − (𝐴 · 𝑦)))
96, 8eqeq12d 2753 . . 3 (𝑥 = 𝑦 → (((0 − 𝐴) · 𝑥) = (0 − (𝐴 · 𝑥)) ↔ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))))
10 oveq2 7359 . . . 4 (𝑥 = (𝑦 + 1) → ((0 − 𝐴) · 𝑥) = ((0 − 𝐴) · (𝑦 + 1)))
11 oveq2 7359 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐴 · 𝑥) = (𝐴 · (𝑦 + 1)))
1211oveq2d 7367 . . . 4 (𝑥 = (𝑦 + 1) → (0 − (𝐴 · 𝑥)) = (0 − (𝐴 · (𝑦 + 1))))
1310, 12eqeq12d 2753 . . 3 (𝑥 = (𝑦 + 1) → (((0 − 𝐴) · 𝑥) = (0 − (𝐴 · 𝑥)) ↔ ((0 − 𝐴) · (𝑦 + 1)) = (0 − (𝐴 · (𝑦 + 1)))))
14 oveq2 7359 . . . 4 (𝑥 = 𝑁 → ((0 − 𝐴) · 𝑥) = ((0 − 𝐴) · 𝑁))
15 oveq2 7359 . . . . 5 (𝑥 = 𝑁 → (𝐴 · 𝑥) = (𝐴 · 𝑁))
1615oveq2d 7367 . . . 4 (𝑥 = 𝑁 → (0 − (𝐴 · 𝑥)) = (0 − (𝐴 · 𝑁)))
1714, 16eqeq12d 2753 . . 3 (𝑥 = 𝑁 → (((0 − 𝐴) · 𝑥) = (0 − (𝐴 · 𝑥)) ↔ ((0 − 𝐴) · 𝑁) = (0 − (𝐴 · 𝑁))))
18 renegmulnnass.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
19 rernegcl 40742 . . . . . 6 (𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℝ)
2018, 19syl 17 . . . . 5 (𝜑 → (0 − 𝐴) ∈ ℝ)
21 ax-1rid 11079 . . . . 5 ((0 − 𝐴) ∈ ℝ → ((0 − 𝐴) · 1) = (0 − 𝐴))
2220, 21syl 17 . . . 4 (𝜑 → ((0 − 𝐴) · 1) = (0 − 𝐴))
23 ax-1rid 11079 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
2418, 23syl 17 . . . . 5 (𝜑 → (𝐴 · 1) = 𝐴)
2524oveq2d 7367 . . . 4 (𝜑 → (0 − (𝐴 · 1)) = (0 − 𝐴))
2622, 25eqtr4d 2780 . . 3 (𝜑 → ((0 − 𝐴) · 1) = (0 − (𝐴 · 1)))
27 simpr 485 . . . . . . 7 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦)))
2827oveq2d 7367 . . . . . 6 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → ((0 − 𝐴) + ((0 − 𝐴) · 𝑦)) = ((0 − 𝐴) + (0 − (𝐴 · 𝑦))))
29 0red 11116 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → 0 ∈ ℝ)
3018ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → 𝐴 ∈ ℝ)
31 nnre 12118 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
3231ad2antlr 725 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → 𝑦 ∈ ℝ)
3330, 32remulcld 11143 . . . . . . . . 9 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → (𝐴 · 𝑦) ∈ ℝ)
34 rernegcl 40742 . . . . . . . . 9 ((𝐴 · 𝑦) ∈ ℝ → (0 − (𝐴 · 𝑦)) ∈ ℝ)
3533, 34syl 17 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → (0 − (𝐴 · 𝑦)) ∈ ℝ)
36 readdsub 40755 . . . . . . . 8 ((0 ∈ ℝ ∧ (0 − (𝐴 · 𝑦)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 + (0 − (𝐴 · 𝑦))) − 𝐴) = ((0 − 𝐴) + (0 − (𝐴 · 𝑦))))
3729, 35, 30, 36syl3anc 1371 . . . . . . 7 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → ((0 + (0 − (𝐴 · 𝑦))) − 𝐴) = ((0 − 𝐴) + (0 − (𝐴 · 𝑦))))
38 readdid2 40774 . . . . . . . . 9 ((0 − (𝐴 · 𝑦)) ∈ ℝ → (0 + (0 − (𝐴 · 𝑦))) = (0 − (𝐴 · 𝑦)))
3935, 38syl 17 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → (0 + (0 − (𝐴 · 𝑦))) = (0 − (𝐴 · 𝑦)))
4039oveq1d 7366 . . . . . . 7 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → ((0 + (0 − (𝐴 · 𝑦))) − 𝐴) = ((0 − (𝐴 · 𝑦)) − 𝐴))
4137, 40eqtr3d 2779 . . . . . 6 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → ((0 − 𝐴) + (0 − (𝐴 · 𝑦))) = ((0 − (𝐴 · 𝑦)) − 𝐴))
42 resubsub4 40760 . . . . . . 7 ((0 ∈ ℝ ∧ (𝐴 · 𝑦) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 − (𝐴 · 𝑦)) − 𝐴) = (0 − ((𝐴 · 𝑦) + 𝐴)))
4329, 33, 30, 42syl3anc 1371 . . . . . 6 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → ((0 − (𝐴 · 𝑦)) − 𝐴) = (0 − ((𝐴 · 𝑦) + 𝐴)))
4428, 41, 433eqtrd 2781 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → ((0 − 𝐴) + ((0 − 𝐴) · 𝑦)) = (0 − ((𝐴 · 𝑦) + 𝐴)))
4522oveq1d 7366 . . . . . 6 (𝜑 → (((0 − 𝐴) · 1) + ((0 − 𝐴) · 𝑦)) = ((0 − 𝐴) + ((0 − 𝐴) · 𝑦)))
4645ad2antrr 724 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → (((0 − 𝐴) · 1) + ((0 − 𝐴) · 𝑦)) = ((0 − 𝐴) + ((0 − 𝐴) · 𝑦)))
4724oveq2d 7367 . . . . . . 7 (𝜑 → ((𝐴 · 𝑦) + (𝐴 · 1)) = ((𝐴 · 𝑦) + 𝐴))
4847oveq2d 7367 . . . . . 6 (𝜑 → (0 − ((𝐴 · 𝑦) + (𝐴 · 1))) = (0 − ((𝐴 · 𝑦) + 𝐴)))
4948ad2antrr 724 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → (0 − ((𝐴 · 𝑦) + (𝐴 · 1))) = (0 − ((𝐴 · 𝑦) + 𝐴)))
5044, 46, 493eqtr4d 2787 . . . 4 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → (((0 − 𝐴) · 1) + ((0 − 𝐴) · 𝑦)) = (0 − ((𝐴 · 𝑦) + (𝐴 · 1))))
51 nnadd1com 40685 . . . . . . 7 (𝑦 ∈ ℕ → (𝑦 + 1) = (1 + 𝑦))
5251oveq2d 7367 . . . . . 6 (𝑦 ∈ ℕ → ((0 − 𝐴) · (𝑦 + 1)) = ((0 − 𝐴) · (1 + 𝑦)))
5352ad2antlr 725 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → ((0 − 𝐴) · (𝑦 + 1)) = ((0 − 𝐴) · (1 + 𝑦)))
5420recnd 11141 . . . . . . 7 (𝜑 → (0 − 𝐴) ∈ ℂ)
5554ad2antrr 724 . . . . . 6 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → (0 − 𝐴) ∈ ℂ)
56 1cnd 11108 . . . . . 6 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → 1 ∈ ℂ)
57 nncn 12119 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
5857ad2antlr 725 . . . . . 6 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → 𝑦 ∈ ℂ)
5955, 56, 58adddid 11137 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → ((0 − 𝐴) · (1 + 𝑦)) = (((0 − 𝐴) · 1) + ((0 − 𝐴) · 𝑦)))
6053, 59eqtrd 2777 . . . 4 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → ((0 − 𝐴) · (𝑦 + 1)) = (((0 − 𝐴) · 1) + ((0 − 𝐴) · 𝑦)))
6118recnd 11141 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
6261ad2antrr 724 . . . . . 6 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → 𝐴 ∈ ℂ)
6362, 58, 56adddid 11137 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1)))
6463oveq2d 7367 . . . 4 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → (0 − (𝐴 · (𝑦 + 1))) = (0 − ((𝐴 · 𝑦) + (𝐴 · 1))))
6550, 60, 643eqtr4d 2787 . . 3 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → ((0 − 𝐴) · (𝑦 + 1)) = (0 − (𝐴 · (𝑦 + 1))))
665, 9, 13, 17, 26, 65nnindd 12131 . 2 ((𝜑𝑁 ∈ ℕ) → ((0 − 𝐴) · 𝑁) = (0 − (𝐴 · 𝑁)))
671, 66mpdan 685 1 (𝜑 → ((0 − 𝐴) · 𝑁) = (0 − (𝐴 · 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  (class class class)co 7351  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  cn 12111   cresub 40736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-om 7795  df-2nd 7914  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-er 8606  df-en 8842  df-dom 8843  df-sdom 8844  df-pnf 11149  df-mnf 11150  df-ltxr 11152  df-nn 12112  df-resub 40737
This theorem is referenced by:  zmulcomlem  40826  zmulcom  40827
  Copyright terms: Public domain W3C validator