Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  renegmulnnass Structured version   Visualization version   GIF version

Theorem renegmulnnass 42429
Description: Move multiplication by a natural number inside and outside negation. (Contributed by SN, 25-Jan-2025.)
Hypotheses
Ref Expression
renegmulnnass.a (𝜑𝐴 ∈ ℝ)
renegmulnnass.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
renegmulnnass (𝜑 → ((0 − 𝐴) · 𝑁) = (0 − (𝐴 · 𝑁)))

Proof of Theorem renegmulnnass
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 renegmulnnass.n . 2 (𝜑𝑁 ∈ ℕ)
2 oveq2 7456 . . . 4 (𝑥 = 1 → ((0 − 𝐴) · 𝑥) = ((0 − 𝐴) · 1))
3 oveq2 7456 . . . . 5 (𝑥 = 1 → (𝐴 · 𝑥) = (𝐴 · 1))
43oveq2d 7464 . . . 4 (𝑥 = 1 → (0 − (𝐴 · 𝑥)) = (0 − (𝐴 · 1)))
52, 4eqeq12d 2756 . . 3 (𝑥 = 1 → (((0 − 𝐴) · 𝑥) = (0 − (𝐴 · 𝑥)) ↔ ((0 − 𝐴) · 1) = (0 − (𝐴 · 1))))
6 oveq2 7456 . . . 4 (𝑥 = 𝑦 → ((0 − 𝐴) · 𝑥) = ((0 − 𝐴) · 𝑦))
7 oveq2 7456 . . . . 5 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
87oveq2d 7464 . . . 4 (𝑥 = 𝑦 → (0 − (𝐴 · 𝑥)) = (0 − (𝐴 · 𝑦)))
96, 8eqeq12d 2756 . . 3 (𝑥 = 𝑦 → (((0 − 𝐴) · 𝑥) = (0 − (𝐴 · 𝑥)) ↔ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))))
10 oveq2 7456 . . . 4 (𝑥 = (𝑦 + 1) → ((0 − 𝐴) · 𝑥) = ((0 − 𝐴) · (𝑦 + 1)))
11 oveq2 7456 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐴 · 𝑥) = (𝐴 · (𝑦 + 1)))
1211oveq2d 7464 . . . 4 (𝑥 = (𝑦 + 1) → (0 − (𝐴 · 𝑥)) = (0 − (𝐴 · (𝑦 + 1))))
1310, 12eqeq12d 2756 . . 3 (𝑥 = (𝑦 + 1) → (((0 − 𝐴) · 𝑥) = (0 − (𝐴 · 𝑥)) ↔ ((0 − 𝐴) · (𝑦 + 1)) = (0 − (𝐴 · (𝑦 + 1)))))
14 oveq2 7456 . . . 4 (𝑥 = 𝑁 → ((0 − 𝐴) · 𝑥) = ((0 − 𝐴) · 𝑁))
15 oveq2 7456 . . . . 5 (𝑥 = 𝑁 → (𝐴 · 𝑥) = (𝐴 · 𝑁))
1615oveq2d 7464 . . . 4 (𝑥 = 𝑁 → (0 − (𝐴 · 𝑥)) = (0 − (𝐴 · 𝑁)))
1714, 16eqeq12d 2756 . . 3 (𝑥 = 𝑁 → (((0 − 𝐴) · 𝑥) = (0 − (𝐴 · 𝑥)) ↔ ((0 − 𝐴) · 𝑁) = (0 − (𝐴 · 𝑁))))
18 renegmulnnass.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
19 rernegcl 42347 . . . . . 6 (𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℝ)
2018, 19syl 17 . . . . 5 (𝜑 → (0 − 𝐴) ∈ ℝ)
21 ax-1rid 11254 . . . . 5 ((0 − 𝐴) ∈ ℝ → ((0 − 𝐴) · 1) = (0 − 𝐴))
2220, 21syl 17 . . . 4 (𝜑 → ((0 − 𝐴) · 1) = (0 − 𝐴))
23 ax-1rid 11254 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
2418, 23syl 17 . . . . 5 (𝜑 → (𝐴 · 1) = 𝐴)
2524oveq2d 7464 . . . 4 (𝜑 → (0 − (𝐴 · 1)) = (0 − 𝐴))
2622, 25eqtr4d 2783 . . 3 (𝜑 → ((0 − 𝐴) · 1) = (0 − (𝐴 · 1)))
27 simpr 484 . . . . . . 7 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦)))
2827oveq2d 7464 . . . . . 6 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → ((0 − 𝐴) + ((0 − 𝐴) · 𝑦)) = ((0 − 𝐴) + (0 − (𝐴 · 𝑦))))
29 0red 11293 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → 0 ∈ ℝ)
3018ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → 𝐴 ∈ ℝ)
31 nnre 12300 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
3231ad2antlr 726 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → 𝑦 ∈ ℝ)
3330, 32remulcld 11320 . . . . . . . . 9 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → (𝐴 · 𝑦) ∈ ℝ)
34 rernegcl 42347 . . . . . . . . 9 ((𝐴 · 𝑦) ∈ ℝ → (0 − (𝐴 · 𝑦)) ∈ ℝ)
3533, 34syl 17 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → (0 − (𝐴 · 𝑦)) ∈ ℝ)
36 readdsub 42360 . . . . . . . 8 ((0 ∈ ℝ ∧ (0 − (𝐴 · 𝑦)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 + (0 − (𝐴 · 𝑦))) − 𝐴) = ((0 − 𝐴) + (0 − (𝐴 · 𝑦))))
3729, 35, 30, 36syl3anc 1371 . . . . . . 7 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → ((0 + (0 − (𝐴 · 𝑦))) − 𝐴) = ((0 − 𝐴) + (0 − (𝐴 · 𝑦))))
38 readdlid 42379 . . . . . . . . 9 ((0 − (𝐴 · 𝑦)) ∈ ℝ → (0 + (0 − (𝐴 · 𝑦))) = (0 − (𝐴 · 𝑦)))
3935, 38syl 17 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → (0 + (0 − (𝐴 · 𝑦))) = (0 − (𝐴 · 𝑦)))
4039oveq1d 7463 . . . . . . 7 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → ((0 + (0 − (𝐴 · 𝑦))) − 𝐴) = ((0 − (𝐴 · 𝑦)) − 𝐴))
4137, 40eqtr3d 2782 . . . . . 6 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → ((0 − 𝐴) + (0 − (𝐴 · 𝑦))) = ((0 − (𝐴 · 𝑦)) − 𝐴))
42 resubsub4 42365 . . . . . . 7 ((0 ∈ ℝ ∧ (𝐴 · 𝑦) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 − (𝐴 · 𝑦)) − 𝐴) = (0 − ((𝐴 · 𝑦) + 𝐴)))
4329, 33, 30, 42syl3anc 1371 . . . . . 6 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → ((0 − (𝐴 · 𝑦)) − 𝐴) = (0 − ((𝐴 · 𝑦) + 𝐴)))
4428, 41, 433eqtrd 2784 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → ((0 − 𝐴) + ((0 − 𝐴) · 𝑦)) = (0 − ((𝐴 · 𝑦) + 𝐴)))
4522oveq1d 7463 . . . . . 6 (𝜑 → (((0 − 𝐴) · 1) + ((0 − 𝐴) · 𝑦)) = ((0 − 𝐴) + ((0 − 𝐴) · 𝑦)))
4645ad2antrr 725 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → (((0 − 𝐴) · 1) + ((0 − 𝐴) · 𝑦)) = ((0 − 𝐴) + ((0 − 𝐴) · 𝑦)))
4724oveq2d 7464 . . . . . . 7 (𝜑 → ((𝐴 · 𝑦) + (𝐴 · 1)) = ((𝐴 · 𝑦) + 𝐴))
4847oveq2d 7464 . . . . . 6 (𝜑 → (0 − ((𝐴 · 𝑦) + (𝐴 · 1))) = (0 − ((𝐴 · 𝑦) + 𝐴)))
4948ad2antrr 725 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → (0 − ((𝐴 · 𝑦) + (𝐴 · 1))) = (0 − ((𝐴 · 𝑦) + 𝐴)))
5044, 46, 493eqtr4d 2790 . . . 4 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → (((0 − 𝐴) · 1) + ((0 − 𝐴) · 𝑦)) = (0 − ((𝐴 · 𝑦) + (𝐴 · 1))))
51 nnadd1com 42256 . . . . . . 7 (𝑦 ∈ ℕ → (𝑦 + 1) = (1 + 𝑦))
5251oveq2d 7464 . . . . . 6 (𝑦 ∈ ℕ → ((0 − 𝐴) · (𝑦 + 1)) = ((0 − 𝐴) · (1 + 𝑦)))
5352ad2antlr 726 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → ((0 − 𝐴) · (𝑦 + 1)) = ((0 − 𝐴) · (1 + 𝑦)))
5420recnd 11318 . . . . . . 7 (𝜑 → (0 − 𝐴) ∈ ℂ)
5554ad2antrr 725 . . . . . 6 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → (0 − 𝐴) ∈ ℂ)
56 1cnd 11285 . . . . . 6 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → 1 ∈ ℂ)
57 nncn 12301 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
5857ad2antlr 726 . . . . . 6 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → 𝑦 ∈ ℂ)
5955, 56, 58adddid 11314 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → ((0 − 𝐴) · (1 + 𝑦)) = (((0 − 𝐴) · 1) + ((0 − 𝐴) · 𝑦)))
6053, 59eqtrd 2780 . . . 4 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → ((0 − 𝐴) · (𝑦 + 1)) = (((0 − 𝐴) · 1) + ((0 − 𝐴) · 𝑦)))
6118recnd 11318 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
6261ad2antrr 725 . . . . . 6 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → 𝐴 ∈ ℂ)
6362, 58, 56adddid 11314 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1)))
6463oveq2d 7464 . . . 4 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → (0 − (𝐴 · (𝑦 + 1))) = (0 − ((𝐴 · 𝑦) + (𝐴 · 1))))
6550, 60, 643eqtr4d 2790 . . 3 (((𝜑𝑦 ∈ ℕ) ∧ ((0 − 𝐴) · 𝑦) = (0 − (𝐴 · 𝑦))) → ((0 − 𝐴) · (𝑦 + 1)) = (0 − (𝐴 · (𝑦 + 1))))
665, 9, 13, 17, 26, 65nnindd 12313 . 2 ((𝜑𝑁 ∈ ℕ) → ((0 − 𝐴) · 𝑁) = (0 − (𝐴 · 𝑁)))
671, 66mpdan 686 1 (𝜑 → ((0 − 𝐴) · 𝑁) = (0 − (𝐴 · 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cn 12293   cresub 42341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-nn 12294  df-resub 42342
This theorem is referenced by:  zmulcomlem  42431  zmulcom  42432
  Copyright terms: Public domain W3C validator