Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mulgt0b2d Structured version   Visualization version   GIF version

Theorem mulgt0b2d 40915
Description: Biconditional, deductive form of mulgt0 11232. The second factor is positive iff the product is. Note that the commuted form cannot be proven since resubdi 40851 does not have a commuted form. (Contributed by SN, 26-Jun-2024.)
Hypotheses
Ref Expression
mulgt0b2d.a (𝜑𝐴 ∈ ℝ)
mulgt0b2d.b (𝜑𝐵 ∈ ℝ)
mulgt0b2d.1 (𝜑 → 0 < 𝐴)
Assertion
Ref Expression
mulgt0b2d (𝜑 → (0 < 𝐵 ↔ 0 < (𝐴 · 𝐵)))

Proof of Theorem mulgt0b2d
StepHypRef Expression
1 mulgt0b2d.a . . . . 5 (𝜑𝐴 ∈ ℝ)
21adantr 481 . . . 4 ((𝜑 ∧ 0 < 𝐵) → 𝐴 ∈ ℝ)
3 mulgt0b2d.b . . . . 5 (𝜑𝐵 ∈ ℝ)
43adantr 481 . . . 4 ((𝜑 ∧ 0 < 𝐵) → 𝐵 ∈ ℝ)
5 mulgt0b2d.1 . . . . 5 (𝜑 → 0 < 𝐴)
65adantr 481 . . . 4 ((𝜑 ∧ 0 < 𝐵) → 0 < 𝐴)
7 simpr 485 . . . 4 ((𝜑 ∧ 0 < 𝐵) → 0 < 𝐵)
82, 4, 6, 7mulgt0d 11310 . . 3 ((𝜑 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))
98ex 413 . 2 (𝜑 → (0 < 𝐵 → 0 < (𝐴 · 𝐵)))
101adantr 481 . . . . 5 ((𝜑 ∧ ((𝐴 · 𝐵) · (0 − 1)) < 0) → 𝐴 ∈ ℝ)
11 1re 11155 . . . . . . . 8 1 ∈ ℝ
12 rernegcl 40826 . . . . . . . 8 (1 ∈ ℝ → (0 − 1) ∈ ℝ)
1311, 12mp1i 13 . . . . . . 7 (𝜑 → (0 − 1) ∈ ℝ)
143, 13remulcld 11185 . . . . . 6 (𝜑 → (𝐵 · (0 − 1)) ∈ ℝ)
1514adantr 481 . . . . 5 ((𝜑 ∧ ((𝐴 · 𝐵) · (0 − 1)) < 0) → (𝐵 · (0 − 1)) ∈ ℝ)
165adantr 481 . . . . 5 ((𝜑 ∧ ((𝐴 · 𝐵) · (0 − 1)) < 0) → 0 < 𝐴)
171recnd 11183 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
183recnd 11183 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
1913recnd 11183 . . . . . . . 8 (𝜑 → (0 − 1) ∈ ℂ)
2017, 18, 19mulassd 11178 . . . . . . 7 (𝜑 → ((𝐴 · 𝐵) · (0 − 1)) = (𝐴 · (𝐵 · (0 − 1))))
2120breq1d 5115 . . . . . 6 (𝜑 → (((𝐴 · 𝐵) · (0 − 1)) < 0 ↔ (𝐴 · (𝐵 · (0 − 1))) < 0))
2221biimpa 477 . . . . 5 ((𝜑 ∧ ((𝐴 · 𝐵) · (0 − 1)) < 0) → (𝐴 · (𝐵 · (0 − 1))) < 0)
2310, 15, 16, 22mulgt0con2d 40914 . . . 4 ((𝜑 ∧ ((𝐴 · 𝐵) · (0 − 1)) < 0) → (𝐵 · (0 − 1)) < 0)
2423ex 413 . . 3 (𝜑 → (((𝐴 · 𝐵) · (0 − 1)) < 0 → (𝐵 · (0 − 1)) < 0))
251, 3remulcld 11185 . . . . 5 (𝜑 → (𝐴 · 𝐵) ∈ ℝ)
26 relt0neg2 40900 . . . . 5 ((𝐴 · 𝐵) ∈ ℝ → (0 < (𝐴 · 𝐵) ↔ (0 − (𝐴 · 𝐵)) < 0))
2725, 26syl 17 . . . 4 (𝜑 → (0 < (𝐴 · 𝐵) ↔ (0 − (𝐴 · 𝐵)) < 0))
28 1red 11156 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
2925, 28remulneg2d 40869 . . . . . 6 (𝜑 → ((𝐴 · 𝐵) · (0 − 1)) = (0 − ((𝐴 · 𝐵) · 1)))
30 ax-1rid 11121 . . . . . . . 8 ((𝐴 · 𝐵) ∈ ℝ → ((𝐴 · 𝐵) · 1) = (𝐴 · 𝐵))
3125, 30syl 17 . . . . . . 7 (𝜑 → ((𝐴 · 𝐵) · 1) = (𝐴 · 𝐵))
3231oveq2d 7373 . . . . . 6 (𝜑 → (0 − ((𝐴 · 𝐵) · 1)) = (0 − (𝐴 · 𝐵)))
3329, 32eqtrd 2776 . . . . 5 (𝜑 → ((𝐴 · 𝐵) · (0 − 1)) = (0 − (𝐴 · 𝐵)))
3433breq1d 5115 . . . 4 (𝜑 → (((𝐴 · 𝐵) · (0 − 1)) < 0 ↔ (0 − (𝐴 · 𝐵)) < 0))
3527, 34bitr4d 281 . . 3 (𝜑 → (0 < (𝐴 · 𝐵) ↔ ((𝐴 · 𝐵) · (0 − 1)) < 0))
36 relt0neg2 40900 . . . . 5 (𝐵 ∈ ℝ → (0 < 𝐵 ↔ (0 − 𝐵) < 0))
373, 36syl 17 . . . 4 (𝜑 → (0 < 𝐵 ↔ (0 − 𝐵) < 0))
383, 28remulneg2d 40869 . . . . . 6 (𝜑 → (𝐵 · (0 − 1)) = (0 − (𝐵 · 1)))
39 ax-1rid 11121 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 · 1) = 𝐵)
403, 39syl 17 . . . . . . 7 (𝜑 → (𝐵 · 1) = 𝐵)
4140oveq2d 7373 . . . . . 6 (𝜑 → (0 − (𝐵 · 1)) = (0 − 𝐵))
4238, 41eqtrd 2776 . . . . 5 (𝜑 → (𝐵 · (0 − 1)) = (0 − 𝐵))
4342breq1d 5115 . . . 4 (𝜑 → ((𝐵 · (0 − 1)) < 0 ↔ (0 − 𝐵) < 0))
4437, 43bitr4d 281 . . 3 (𝜑 → (0 < 𝐵 ↔ (𝐵 · (0 − 1)) < 0))
4524, 35, 443imtr4d 293 . 2 (𝜑 → (0 < (𝐴 · 𝐵) → 0 < 𝐵))
469, 45impbid 211 1 (𝜑 → (0 < 𝐵 ↔ 0 < (𝐴 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106   class class class wbr 5105  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052   · cmul 11056   < clt 11189   cresub 40820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-ltxr 11194  df-2 12216  df-3 12217  df-resub 40821
This theorem is referenced by:  sn-ltmul2d  40916
  Copyright terms: Public domain W3C validator