| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mulgt0b2d | Structured version Visualization version GIF version | ||
| Description: Biconditional, deductive form of mulgt0 11211. The first factor is positive iff the product is. (Contributed by SN, 24-Nov-2025.) |
| Ref | Expression |
|---|---|
| mulgt0b2d.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| mulgt0b2d.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| mulgt0b2d.1 | ⊢ (𝜑 → 0 < 𝐵) |
| Ref | Expression |
|---|---|
| mulgt0b2d | ⊢ (𝜑 → (0 < 𝐴 ↔ 0 < (𝐴 · 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgt0b2d.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ) |
| 3 | mulgt0b2d.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝐴) → 𝐵 ∈ ℝ) |
| 5 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝐴) → 0 < 𝐴) | |
| 6 | mulgt0b2d.1 | . . . 4 ⊢ (𝜑 → 0 < 𝐵) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝐴) → 0 < 𝐵) |
| 8 | 2, 4, 5, 7 | mulgt0d 11289 | . 2 ⊢ ((𝜑 ∧ 0 < 𝐴) → 0 < (𝐴 · 𝐵)) |
| 9 | 1, 3 | remulcld 11164 | . . . . 5 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝐴 · 𝐵) ∈ ℝ) |
| 11 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐵 ∈ ℝ) |
| 12 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 0 < (𝐴 · 𝐵)) | |
| 13 | 12 | gt0ne0d 11702 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝐴 · 𝐵) ≠ 0) |
| 14 | oveq2 7361 | . . . . . . 7 ⊢ (𝐵 = 0 → (𝐴 · 𝐵) = (𝐴 · 0)) | |
| 15 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ∈ ℝ) |
| 16 | remul01 42383 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴 · 0) = 0) | |
| 17 | 15, 16 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝐴 · 0) = 0) |
| 18 | 14, 17 | sylan9eqr 2786 | . . . . . 6 ⊢ (((𝜑 ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐵 = 0) → (𝐴 · 𝐵) = 0) |
| 19 | 13, 18 | mteqand 3016 | . . . . 5 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐵 ≠ 0) |
| 20 | 11, 19 | sn-rereccld 42424 | . . . 4 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (1 /ℝ 𝐵) ∈ ℝ) |
| 21 | 3, 6 | sn-recgt0d 42453 | . . . . 5 ⊢ (𝜑 → 0 < (1 /ℝ 𝐵)) |
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 0 < (1 /ℝ 𝐵)) |
| 23 | 10, 20, 12, 22 | mulgt0d 11289 | . . 3 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 0 < ((𝐴 · 𝐵) · (1 /ℝ 𝐵))) |
| 24 | 15 | recnd 11162 | . . . . 5 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ∈ ℂ) |
| 25 | 11 | recnd 11162 | . . . . 5 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐵 ∈ ℂ) |
| 26 | 20 | recnd 11162 | . . . . 5 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (1 /ℝ 𝐵) ∈ ℂ) |
| 27 | 24, 25, 26 | mulassd 11157 | . . . 4 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → ((𝐴 · 𝐵) · (1 /ℝ 𝐵)) = (𝐴 · (𝐵 · (1 /ℝ 𝐵)))) |
| 28 | 6 | gt0ne0d 11702 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ≠ 0) |
| 29 | 3, 28 | rerecid 42425 | . . . . . 6 ⊢ (𝜑 → (𝐵 · (1 /ℝ 𝐵)) = 1) |
| 30 | 29 | oveq2d 7369 | . . . . 5 ⊢ (𝜑 → (𝐴 · (𝐵 · (1 /ℝ 𝐵))) = (𝐴 · 1)) |
| 31 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝐴 · (𝐵 · (1 /ℝ 𝐵))) = (𝐴 · 1)) |
| 32 | ax-1rid 11098 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | |
| 33 | 15, 32 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝐴 · 1) = 𝐴) |
| 34 | 27, 31, 33 | 3eqtrd 2768 | . . 3 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → ((𝐴 · 𝐵) · (1 /ℝ 𝐵)) = 𝐴) |
| 35 | 23, 34 | breqtrd 5121 | . 2 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 0 < 𝐴) |
| 36 | 8, 35 | impbida 800 | 1 ⊢ (𝜑 → (0 < 𝐴 ↔ 0 < (𝐴 · 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 (class class class)co 7353 ℝcr 11027 0cc0 11028 1c1 11029 · cmul 11033 < clt 11168 /ℝ crediv 42416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-2 12209 df-3 12210 df-resub 42342 df-rediv 42417 |
| This theorem is referenced by: mulltgt0d 42458 |
| Copyright terms: Public domain | W3C validator |