| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mulgt0b2d | Structured version Visualization version GIF version | ||
| Description: Biconditional, deductive form of mulgt0 11201. The first factor is positive iff the product is. (Contributed by SN, 24-Nov-2025.) |
| Ref | Expression |
|---|---|
| mulgt0b2d.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| mulgt0b2d.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| mulgt0b2d.1 | ⊢ (𝜑 → 0 < 𝐵) |
| Ref | Expression |
|---|---|
| mulgt0b2d | ⊢ (𝜑 → (0 < 𝐴 ↔ 0 < (𝐴 · 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgt0b2d.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ) |
| 3 | mulgt0b2d.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝐴) → 𝐵 ∈ ℝ) |
| 5 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝐴) → 0 < 𝐴) | |
| 6 | mulgt0b2d.1 | . . . 4 ⊢ (𝜑 → 0 < 𝐵) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝐴) → 0 < 𝐵) |
| 8 | 2, 4, 5, 7 | mulgt0d 11279 | . 2 ⊢ ((𝜑 ∧ 0 < 𝐴) → 0 < (𝐴 · 𝐵)) |
| 9 | 1, 3 | remulcld 11153 | . . . . 5 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝐴 · 𝐵) ∈ ℝ) |
| 11 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐵 ∈ ℝ) |
| 12 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 0 < (𝐴 · 𝐵)) | |
| 13 | 12 | gt0ne0d 11692 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝐴 · 𝐵) ≠ 0) |
| 14 | oveq2 7363 | . . . . . . 7 ⊢ (𝐵 = 0 → (𝐴 · 𝐵) = (𝐴 · 0)) | |
| 15 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ∈ ℝ) |
| 16 | remul01 42577 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴 · 0) = 0) | |
| 17 | 15, 16 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝐴 · 0) = 0) |
| 18 | 14, 17 | sylan9eqr 2790 | . . . . . 6 ⊢ (((𝜑 ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐵 = 0) → (𝐴 · 𝐵) = 0) |
| 19 | 13, 18 | mteqand 3020 | . . . . 5 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐵 ≠ 0) |
| 20 | 11, 19 | sn-rereccld 42618 | . . . 4 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (1 /ℝ 𝐵) ∈ ℝ) |
| 21 | 3, 6 | sn-recgt0d 42647 | . . . . 5 ⊢ (𝜑 → 0 < (1 /ℝ 𝐵)) |
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 0 < (1 /ℝ 𝐵)) |
| 23 | 10, 20, 12, 22 | mulgt0d 11279 | . . 3 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 0 < ((𝐴 · 𝐵) · (1 /ℝ 𝐵))) |
| 24 | 15 | recnd 11151 | . . . . 5 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ∈ ℂ) |
| 25 | 11 | recnd 11151 | . . . . 5 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐵 ∈ ℂ) |
| 26 | 20 | recnd 11151 | . . . . 5 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (1 /ℝ 𝐵) ∈ ℂ) |
| 27 | 24, 25, 26 | mulassd 11146 | . . . 4 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → ((𝐴 · 𝐵) · (1 /ℝ 𝐵)) = (𝐴 · (𝐵 · (1 /ℝ 𝐵)))) |
| 28 | 6 | gt0ne0d 11692 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ≠ 0) |
| 29 | 3, 28 | rerecid 42619 | . . . . . 6 ⊢ (𝜑 → (𝐵 · (1 /ℝ 𝐵)) = 1) |
| 30 | 29 | oveq2d 7371 | . . . . 5 ⊢ (𝜑 → (𝐴 · (𝐵 · (1 /ℝ 𝐵))) = (𝐴 · 1)) |
| 31 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝐴 · (𝐵 · (1 /ℝ 𝐵))) = (𝐴 · 1)) |
| 32 | ax-1rid 11087 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | |
| 33 | 15, 32 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝐴 · 1) = 𝐴) |
| 34 | 27, 31, 33 | 3eqtrd 2772 | . . 3 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → ((𝐴 · 𝐵) · (1 /ℝ 𝐵)) = 𝐴) |
| 35 | 23, 34 | breqtrd 5121 | . 2 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 0 < 𝐴) |
| 36 | 8, 35 | impbida 800 | 1 ⊢ (𝜑 → (0 < 𝐴 ↔ 0 < (𝐴 · 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7355 ℝcr 11016 0cc0 11017 1c1 11018 · cmul 11022 < clt 11157 /ℝ crediv 42610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-ltxr 11162 df-2 12199 df-3 12200 df-resub 42536 df-rediv 42611 |
| This theorem is referenced by: mulltgt0d 42652 |
| Copyright terms: Public domain | W3C validator |