| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mulgt0b2d | Structured version Visualization version GIF version | ||
| Description: Biconditional, deductive form of mulgt0 11258. The first factor is positive iff the product is. (Contributed by SN, 24-Nov-2025.) |
| Ref | Expression |
|---|---|
| mulgt0b2d.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| mulgt0b2d.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| mulgt0b2d.1 | ⊢ (𝜑 → 0 < 𝐵) |
| Ref | Expression |
|---|---|
| mulgt0b2d | ⊢ (𝜑 → (0 < 𝐴 ↔ 0 < (𝐴 · 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgt0b2d.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ) |
| 3 | mulgt0b2d.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝐴) → 𝐵 ∈ ℝ) |
| 5 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝐴) → 0 < 𝐴) | |
| 6 | mulgt0b2d.1 | . . . 4 ⊢ (𝜑 → 0 < 𝐵) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝐴) → 0 < 𝐵) |
| 8 | 2, 4, 5, 7 | mulgt0d 11336 | . 2 ⊢ ((𝜑 ∧ 0 < 𝐴) → 0 < (𝐴 · 𝐵)) |
| 9 | 1, 3 | remulcld 11211 | . . . . 5 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝐴 · 𝐵) ∈ ℝ) |
| 11 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐵 ∈ ℝ) |
| 12 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 0 < (𝐴 · 𝐵)) | |
| 13 | 12 | gt0ne0d 11749 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝐴 · 𝐵) ≠ 0) |
| 14 | oveq2 7398 | . . . . . . 7 ⊢ (𝐵 = 0 → (𝐴 · 𝐵) = (𝐴 · 0)) | |
| 15 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ∈ ℝ) |
| 16 | remul01 42402 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴 · 0) = 0) | |
| 17 | 15, 16 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝐴 · 0) = 0) |
| 18 | 14, 17 | sylan9eqr 2787 | . . . . . 6 ⊢ (((𝜑 ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐵 = 0) → (𝐴 · 𝐵) = 0) |
| 19 | 13, 18 | mteqand 3017 | . . . . 5 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐵 ≠ 0) |
| 20 | 11, 19 | sn-rereccld 42443 | . . . 4 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (1 /ℝ 𝐵) ∈ ℝ) |
| 21 | 3, 6 | sn-recgt0d 42472 | . . . . 5 ⊢ (𝜑 → 0 < (1 /ℝ 𝐵)) |
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 0 < (1 /ℝ 𝐵)) |
| 23 | 10, 20, 12, 22 | mulgt0d 11336 | . . 3 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 0 < ((𝐴 · 𝐵) · (1 /ℝ 𝐵))) |
| 24 | 15 | recnd 11209 | . . . . 5 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ∈ ℂ) |
| 25 | 11 | recnd 11209 | . . . . 5 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐵 ∈ ℂ) |
| 26 | 20 | recnd 11209 | . . . . 5 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (1 /ℝ 𝐵) ∈ ℂ) |
| 27 | 24, 25, 26 | mulassd 11204 | . . . 4 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → ((𝐴 · 𝐵) · (1 /ℝ 𝐵)) = (𝐴 · (𝐵 · (1 /ℝ 𝐵)))) |
| 28 | 6 | gt0ne0d 11749 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ≠ 0) |
| 29 | 3, 28 | rerecid 42444 | . . . . . 6 ⊢ (𝜑 → (𝐵 · (1 /ℝ 𝐵)) = 1) |
| 30 | 29 | oveq2d 7406 | . . . . 5 ⊢ (𝜑 → (𝐴 · (𝐵 · (1 /ℝ 𝐵))) = (𝐴 · 1)) |
| 31 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝐴 · (𝐵 · (1 /ℝ 𝐵))) = (𝐴 · 1)) |
| 32 | ax-1rid 11145 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | |
| 33 | 15, 32 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝐴 · 1) = 𝐴) |
| 34 | 27, 31, 33 | 3eqtrd 2769 | . . 3 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → ((𝐴 · 𝐵) · (1 /ℝ 𝐵)) = 𝐴) |
| 35 | 23, 34 | breqtrd 5136 | . 2 ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 0 < 𝐴) |
| 36 | 8, 35 | impbida 800 | 1 ⊢ (𝜑 → (0 < 𝐴 ↔ 0 < (𝐴 · 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 · cmul 11080 < clt 11215 /ℝ crediv 42435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-2 12256 df-3 12257 df-resub 42361 df-rediv 42436 |
| This theorem is referenced by: mulltgt0d 42477 |
| Copyright terms: Public domain | W3C validator |