Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mulgt0b2d Structured version   Visualization version   GIF version

Theorem mulgt0b2d 39912
Description: Biconditional, deductive form of mulgt0 10741. The second factor is positive iff the product is. Note that the commuted form cannot be proven since resubdi 39861 does not have a commuted form. (Contributed by SN, 26-Jun-2024.)
Hypotheses
Ref Expression
mulgt0b2d.a (𝜑𝐴 ∈ ℝ)
mulgt0b2d.b (𝜑𝐵 ∈ ℝ)
mulgt0b2d.1 (𝜑 → 0 < 𝐴)
Assertion
Ref Expression
mulgt0b2d (𝜑 → (0 < 𝐵 ↔ 0 < (𝐴 · 𝐵)))

Proof of Theorem mulgt0b2d
StepHypRef Expression
1 mulgt0b2d.a . . . . 5 (𝜑𝐴 ∈ ℝ)
21adantr 485 . . . 4 ((𝜑 ∧ 0 < 𝐵) → 𝐴 ∈ ℝ)
3 mulgt0b2d.b . . . . 5 (𝜑𝐵 ∈ ℝ)
43adantr 485 . . . 4 ((𝜑 ∧ 0 < 𝐵) → 𝐵 ∈ ℝ)
5 mulgt0b2d.1 . . . . 5 (𝜑 → 0 < 𝐴)
65adantr 485 . . . 4 ((𝜑 ∧ 0 < 𝐵) → 0 < 𝐴)
7 simpr 489 . . . 4 ((𝜑 ∧ 0 < 𝐵) → 0 < 𝐵)
82, 4, 6, 7mulgt0d 10818 . . 3 ((𝜑 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))
98ex 417 . 2 (𝜑 → (0 < 𝐵 → 0 < (𝐴 · 𝐵)))
101adantr 485 . . . . 5 ((𝜑 ∧ ((𝐴 · 𝐵) · (0 − 1)) < 0) → 𝐴 ∈ ℝ)
11 1re 10664 . . . . . . . 8 1 ∈ ℝ
12 rernegcl 39836 . . . . . . . 8 (1 ∈ ℝ → (0 − 1) ∈ ℝ)
1311, 12mp1i 13 . . . . . . 7 (𝜑 → (0 − 1) ∈ ℝ)
143, 13remulcld 10694 . . . . . 6 (𝜑 → (𝐵 · (0 − 1)) ∈ ℝ)
1514adantr 485 . . . . 5 ((𝜑 ∧ ((𝐴 · 𝐵) · (0 − 1)) < 0) → (𝐵 · (0 − 1)) ∈ ℝ)
165adantr 485 . . . . 5 ((𝜑 ∧ ((𝐴 · 𝐵) · (0 − 1)) < 0) → 0 < 𝐴)
171recnd 10692 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
183recnd 10692 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
1913recnd 10692 . . . . . . . 8 (𝜑 → (0 − 1) ∈ ℂ)
2017, 18, 19mulassd 10687 . . . . . . 7 (𝜑 → ((𝐴 · 𝐵) · (0 − 1)) = (𝐴 · (𝐵 · (0 − 1))))
2120breq1d 5035 . . . . . 6 (𝜑 → (((𝐴 · 𝐵) · (0 − 1)) < 0 ↔ (𝐴 · (𝐵 · (0 − 1))) < 0))
2221biimpa 481 . . . . 5 ((𝜑 ∧ ((𝐴 · 𝐵) · (0 − 1)) < 0) → (𝐴 · (𝐵 · (0 − 1))) < 0)
2310, 15, 16, 22mulgt0con2d 39911 . . . 4 ((𝜑 ∧ ((𝐴 · 𝐵) · (0 − 1)) < 0) → (𝐵 · (0 − 1)) < 0)
2423ex 417 . . 3 (𝜑 → (((𝐴 · 𝐵) · (0 − 1)) < 0 → (𝐵 · (0 − 1)) < 0))
251, 3remulcld 10694 . . . . 5 (𝜑 → (𝐴 · 𝐵) ∈ ℝ)
26 relt0neg2 39908 . . . . 5 ((𝐴 · 𝐵) ∈ ℝ → (0 < (𝐴 · 𝐵) ↔ (0 − (𝐴 · 𝐵)) < 0))
2725, 26syl 17 . . . 4 (𝜑 → (0 < (𝐴 · 𝐵) ↔ (0 − (𝐴 · 𝐵)) < 0))
28 0red 10667 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
29 1red 10665 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
30 resubdi 39861 . . . . . . 7 (((𝐴 · 𝐵) ∈ ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐴 · 𝐵) · (0 − 1)) = (((𝐴 · 𝐵) · 0) − ((𝐴 · 𝐵) · 1)))
3125, 28, 29, 30syl3anc 1369 . . . . . 6 (𝜑 → ((𝐴 · 𝐵) · (0 − 1)) = (((𝐴 · 𝐵) · 0) − ((𝐴 · 𝐵) · 1)))
32 remul01 39872 . . . . . . . 8 ((𝐴 · 𝐵) ∈ ℝ → ((𝐴 · 𝐵) · 0) = 0)
33 ax-1rid 10630 . . . . . . . 8 ((𝐴 · 𝐵) ∈ ℝ → ((𝐴 · 𝐵) · 1) = (𝐴 · 𝐵))
3432, 33oveq12d 7161 . . . . . . 7 ((𝐴 · 𝐵) ∈ ℝ → (((𝐴 · 𝐵) · 0) − ((𝐴 · 𝐵) · 1)) = (0 − (𝐴 · 𝐵)))
3525, 34syl 17 . . . . . 6 (𝜑 → (((𝐴 · 𝐵) · 0) − ((𝐴 · 𝐵) · 1)) = (0 − (𝐴 · 𝐵)))
3631, 35eqtrd 2794 . . . . 5 (𝜑 → ((𝐴 · 𝐵) · (0 − 1)) = (0 − (𝐴 · 𝐵)))
3736breq1d 5035 . . . 4 (𝜑 → (((𝐴 · 𝐵) · (0 − 1)) < 0 ↔ (0 − (𝐴 · 𝐵)) < 0))
3827, 37bitr4d 285 . . 3 (𝜑 → (0 < (𝐴 · 𝐵) ↔ ((𝐴 · 𝐵) · (0 − 1)) < 0))
39 relt0neg2 39908 . . . . 5 (𝐵 ∈ ℝ → (0 < 𝐵 ↔ (0 − 𝐵) < 0))
403, 39syl 17 . . . 4 (𝜑 → (0 < 𝐵 ↔ (0 − 𝐵) < 0))
41 resubdi 39861 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐵 · (0 − 1)) = ((𝐵 · 0) − (𝐵 · 1)))
423, 28, 29, 41syl3anc 1369 . . . . . 6 (𝜑 → (𝐵 · (0 − 1)) = ((𝐵 · 0) − (𝐵 · 1)))
43 remul01 39872 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 · 0) = 0)
44 ax-1rid 10630 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 · 1) = 𝐵)
4543, 44oveq12d 7161 . . . . . . 7 (𝐵 ∈ ℝ → ((𝐵 · 0) − (𝐵 · 1)) = (0 − 𝐵))
463, 45syl 17 . . . . . 6 (𝜑 → ((𝐵 · 0) − (𝐵 · 1)) = (0 − 𝐵))
4742, 46eqtrd 2794 . . . . 5 (𝜑 → (𝐵 · (0 − 1)) = (0 − 𝐵))
4847breq1d 5035 . . . 4 (𝜑 → ((𝐵 · (0 − 1)) < 0 ↔ (0 − 𝐵) < 0))
4940, 48bitr4d 285 . . 3 (𝜑 → (0 < 𝐵 ↔ (𝐵 · (0 − 1)) < 0))
5024, 38, 493imtr4d 298 . 2 (𝜑 → (0 < (𝐴 · 𝐵) → 0 < 𝐵))
519, 50impbid 215 1 (𝜑 → (0 < 𝐵 ↔ 0 < (𝐴 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400   = wceq 1539  wcel 2112   class class class wbr 5025  (class class class)co 7143  cr 10559  0cc0 10560  1c1 10561   · cmul 10565   < clt 10698   cresub 39830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-op 4522  df-uni 4792  df-br 5026  df-opab 5088  df-mpt 5106  df-id 5423  df-po 5436  df-so 5437  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-ltxr 10703  df-2 11722  df-3 11723  df-resub 39831
This theorem is referenced by:  sn-ltmul2d  39913
  Copyright terms: Public domain W3C validator