Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mulgt0b2d Structured version   Visualization version   GIF version

Theorem mulgt0b2d 42467
Description: Biconditional, deductive form of mulgt0 11336. The second factor is positive iff the product is. Note that the commuted form cannot be proven since resubdi 42403 does not have a commuted form. (Contributed by SN, 26-Jun-2024.)
Hypotheses
Ref Expression
mulgt0b2d.a (𝜑𝐴 ∈ ℝ)
mulgt0b2d.b (𝜑𝐵 ∈ ℝ)
mulgt0b2d.1 (𝜑 → 0 < 𝐴)
Assertion
Ref Expression
mulgt0b2d (𝜑 → (0 < 𝐵 ↔ 0 < (𝐴 · 𝐵)))

Proof of Theorem mulgt0b2d
StepHypRef Expression
1 mulgt0b2d.a . . . . 5 (𝜑𝐴 ∈ ℝ)
21adantr 480 . . . 4 ((𝜑 ∧ 0 < 𝐵) → 𝐴 ∈ ℝ)
3 mulgt0b2d.b . . . . 5 (𝜑𝐵 ∈ ℝ)
43adantr 480 . . . 4 ((𝜑 ∧ 0 < 𝐵) → 𝐵 ∈ ℝ)
5 mulgt0b2d.1 . . . . 5 (𝜑 → 0 < 𝐴)
65adantr 480 . . . 4 ((𝜑 ∧ 0 < 𝐵) → 0 < 𝐴)
7 simpr 484 . . . 4 ((𝜑 ∧ 0 < 𝐵) → 0 < 𝐵)
82, 4, 6, 7mulgt0d 11414 . . 3 ((𝜑 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))
98ex 412 . 2 (𝜑 → (0 < 𝐵 → 0 < (𝐴 · 𝐵)))
101adantr 480 . . . . 5 ((𝜑 ∧ ((𝐴 · 𝐵) · (0 − 1)) < 0) → 𝐴 ∈ ℝ)
11 1re 11259 . . . . . . . 8 1 ∈ ℝ
12 rernegcl 42378 . . . . . . . 8 (1 ∈ ℝ → (0 − 1) ∈ ℝ)
1311, 12mp1i 13 . . . . . . 7 (𝜑 → (0 − 1) ∈ ℝ)
143, 13remulcld 11289 . . . . . 6 (𝜑 → (𝐵 · (0 − 1)) ∈ ℝ)
1514adantr 480 . . . . 5 ((𝜑 ∧ ((𝐴 · 𝐵) · (0 − 1)) < 0) → (𝐵 · (0 − 1)) ∈ ℝ)
165adantr 480 . . . . 5 ((𝜑 ∧ ((𝐴 · 𝐵) · (0 − 1)) < 0) → 0 < 𝐴)
171recnd 11287 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
183recnd 11287 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
1913recnd 11287 . . . . . . . 8 (𝜑 → (0 − 1) ∈ ℂ)
2017, 18, 19mulassd 11282 . . . . . . 7 (𝜑 → ((𝐴 · 𝐵) · (0 − 1)) = (𝐴 · (𝐵 · (0 − 1))))
2120breq1d 5158 . . . . . 6 (𝜑 → (((𝐴 · 𝐵) · (0 − 1)) < 0 ↔ (𝐴 · (𝐵 · (0 − 1))) < 0))
2221biimpa 476 . . . . 5 ((𝜑 ∧ ((𝐴 · 𝐵) · (0 − 1)) < 0) → (𝐴 · (𝐵 · (0 − 1))) < 0)
2310, 15, 16, 22mulgt0con2d 42466 . . . 4 ((𝜑 ∧ ((𝐴 · 𝐵) · (0 − 1)) < 0) → (𝐵 · (0 − 1)) < 0)
2423ex 412 . . 3 (𝜑 → (((𝐴 · 𝐵) · (0 − 1)) < 0 → (𝐵 · (0 − 1)) < 0))
251, 3remulcld 11289 . . . . 5 (𝜑 → (𝐴 · 𝐵) ∈ ℝ)
26 relt0neg2 42452 . . . . 5 ((𝐴 · 𝐵) ∈ ℝ → (0 < (𝐴 · 𝐵) ↔ (0 − (𝐴 · 𝐵)) < 0))
2725, 26syl 17 . . . 4 (𝜑 → (0 < (𝐴 · 𝐵) ↔ (0 − (𝐴 · 𝐵)) < 0))
28 1red 11260 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
2925, 28remulneg2d 42421 . . . . . 6 (𝜑 → ((𝐴 · 𝐵) · (0 − 1)) = (0 − ((𝐴 · 𝐵) · 1)))
30 ax-1rid 11223 . . . . . . . 8 ((𝐴 · 𝐵) ∈ ℝ → ((𝐴 · 𝐵) · 1) = (𝐴 · 𝐵))
3125, 30syl 17 . . . . . . 7 (𝜑 → ((𝐴 · 𝐵) · 1) = (𝐴 · 𝐵))
3231oveq2d 7447 . . . . . 6 (𝜑 → (0 − ((𝐴 · 𝐵) · 1)) = (0 − (𝐴 · 𝐵)))
3329, 32eqtrd 2775 . . . . 5 (𝜑 → ((𝐴 · 𝐵) · (0 − 1)) = (0 − (𝐴 · 𝐵)))
3433breq1d 5158 . . . 4 (𝜑 → (((𝐴 · 𝐵) · (0 − 1)) < 0 ↔ (0 − (𝐴 · 𝐵)) < 0))
3527, 34bitr4d 282 . . 3 (𝜑 → (0 < (𝐴 · 𝐵) ↔ ((𝐴 · 𝐵) · (0 − 1)) < 0))
36 relt0neg2 42452 . . . . 5 (𝐵 ∈ ℝ → (0 < 𝐵 ↔ (0 − 𝐵) < 0))
373, 36syl 17 . . . 4 (𝜑 → (0 < 𝐵 ↔ (0 − 𝐵) < 0))
383, 28remulneg2d 42421 . . . . . 6 (𝜑 → (𝐵 · (0 − 1)) = (0 − (𝐵 · 1)))
39 ax-1rid 11223 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 · 1) = 𝐵)
403, 39syl 17 . . . . . . 7 (𝜑 → (𝐵 · 1) = 𝐵)
4140oveq2d 7447 . . . . . 6 (𝜑 → (0 − (𝐵 · 1)) = (0 − 𝐵))
4238, 41eqtrd 2775 . . . . 5 (𝜑 → (𝐵 · (0 − 1)) = (0 − 𝐵))
4342breq1d 5158 . . . 4 (𝜑 → ((𝐵 · (0 − 1)) < 0 ↔ (0 − 𝐵) < 0))
4437, 43bitr4d 282 . . 3 (𝜑 → (0 < 𝐵 ↔ (𝐵 · (0 − 1)) < 0))
4524, 35, 443imtr4d 294 . 2 (𝜑 → (0 < (𝐴 · 𝐵) → 0 < 𝐵))
469, 45impbid 212 1 (𝜑 → (0 < 𝐵 ↔ 0 < (𝐴 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106   class class class wbr 5148  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   · cmul 11158   < clt 11293   cresub 42372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298  df-2 12327  df-3 12328  df-resub 42373
This theorem is referenced by:  sn-ltmul2d  42468
  Copyright terms: Public domain W3C validator