Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-00idlem3 | Structured version Visualization version GIF version |
Description: Lemma for sn-00id 40381. (Contributed by SN, 25-Dec-2023.) |
Ref | Expression |
---|---|
sn-00idlem3 | ⊢ ((0 −ℝ 0) = 1 → (0 + 0) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7279 | . . 3 ⊢ ((0 −ℝ 0) = 1 → (0 · (0 −ℝ 0)) = (0 · 1)) | |
2 | 1 | oveq1d 7286 | . 2 ⊢ ((0 −ℝ 0) = 1 → ((0 · (0 −ℝ 0)) + 0) = ((0 · 1) + 0)) |
3 | 0re 10978 | . . . 4 ⊢ 0 ∈ ℝ | |
4 | sn-00idlem1 40378 | . . . . . . 7 ⊢ (0 ∈ ℝ → (0 · (0 −ℝ 0)) = (0 −ℝ 0)) | |
5 | 4 | adantr 481 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ 0 ∈ ℝ) → (0 · (0 −ℝ 0)) = (0 −ℝ 0)) |
6 | 5 | oveq1d 7286 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 · (0 −ℝ 0)) + 0) = ((0 −ℝ 0) + 0)) |
7 | resubidaddid1 40375 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 −ℝ 0) + 0) = 0) | |
8 | 6, 7 | eqtrd 2780 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 · (0 −ℝ 0)) + 0) = 0) |
9 | 3, 3, 8 | mp2an 689 | . . 3 ⊢ ((0 · (0 −ℝ 0)) + 0) = 0 |
10 | 9 | a1i 11 | . 2 ⊢ ((0 −ℝ 0) = 1 → ((0 · (0 −ℝ 0)) + 0) = 0) |
11 | ax-1rid 10942 | . . . 4 ⊢ (0 ∈ ℝ → (0 · 1) = 0) | |
12 | 3, 11 | mp1i 13 | . . 3 ⊢ ((0 −ℝ 0) = 1 → (0 · 1) = 0) |
13 | 12 | oveq1d 7286 | . 2 ⊢ ((0 −ℝ 0) = 1 → ((0 · 1) + 0) = (0 + 0)) |
14 | 2, 10, 13 | 3eqtr3rd 2789 | 1 ⊢ ((0 −ℝ 0) = 1 → (0 + 0) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 (class class class)co 7271 ℝcr 10871 0cc0 10872 1c1 10873 + caddc 10875 · cmul 10877 −ℝ cresub 40345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-addass 10937 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-ltxr 11015 df-resub 40346 |
This theorem is referenced by: sn-00id 40381 |
Copyright terms: Public domain | W3C validator |