Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-00idlem3 Structured version   Visualization version   GIF version

Theorem sn-00idlem3 41576
Description: Lemma for sn-00id 41577. (Contributed by SN, 25-Dec-2023.)
Assertion
Ref Expression
sn-00idlem3 ((0 − 0) = 1 → (0 + 0) = 0)

Proof of Theorem sn-00idlem3
StepHypRef Expression
1 oveq2 7420 . . 3 ((0 − 0) = 1 → (0 · (0 − 0)) = (0 · 1))
21oveq1d 7427 . 2 ((0 − 0) = 1 → ((0 · (0 − 0)) + 0) = ((0 · 1) + 0))
3 0re 11221 . . . 4 0 ∈ ℝ
4 sn-00idlem1 41574 . . . . . . 7 (0 ∈ ℝ → (0 · (0 − 0)) = (0 − 0))
54adantr 480 . . . . . 6 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → (0 · (0 − 0)) = (0 − 0))
65oveq1d 7427 . . . . 5 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 · (0 − 0)) + 0) = ((0 − 0) + 0))
7 resubidaddlid 41571 . . . . 5 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 − 0) + 0) = 0)
86, 7eqtrd 2771 . . . 4 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 · (0 − 0)) + 0) = 0)
93, 3, 8mp2an 689 . . 3 ((0 · (0 − 0)) + 0) = 0
109a1i 11 . 2 ((0 − 0) = 1 → ((0 · (0 − 0)) + 0) = 0)
11 ax-1rid 11184 . . . 4 (0 ∈ ℝ → (0 · 1) = 0)
123, 11mp1i 13 . . 3 ((0 − 0) = 1 → (0 · 1) = 0)
1312oveq1d 7427 . 2 ((0 − 0) = 1 → ((0 · 1) + 0) = (0 + 0))
142, 10, 133eqtr3rd 2780 1 ((0 − 0) = 1 → (0 + 0) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  (class class class)co 7412  cr 11113  0cc0 11114  1c1 11115   + caddc 11117   · cmul 11119   cresub 41541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-addass 11179  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-ltxr 11258  df-resub 41542
This theorem is referenced by:  sn-00id  41577
  Copyright terms: Public domain W3C validator