![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cshwshashnsame | Structured version Visualization version GIF version |
Description: If a word (not consisting of identical symbols) has a length being a prime number, the size of the set of (different!) words resulting by cyclically shifting the original word equals the length of the original word. (Contributed by AV, 19-May-2018.) (Revised by AV, 10-Nov-2018.) |
Ref | Expression |
---|---|
cshwrepswhash1.m | ⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} |
Ref | Expression |
---|---|
cshwshashnsame | ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0) → (♯‘𝑀) = (♯‘𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cshwrepswhash1.m | . . . . . 6 ⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} | |
2 | 1 | cshwsiun 16205 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → 𝑀 = ∪ 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)}) |
3 | 2 | ad2antrr 716 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → 𝑀 = ∪ 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)}) |
4 | 3 | fveq2d 6450 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (♯‘𝑀) = (♯‘∪ 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)})) |
5 | fzofi 13092 | . . . . 5 ⊢ (0..^(♯‘𝑊)) ∈ Fin | |
6 | 5 | a1i 11 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (0..^(♯‘𝑊)) ∈ Fin) |
7 | snfi 8326 | . . . . 5 ⊢ {(𝑊 cyclShift 𝑛)} ∈ Fin | |
8 | 7 | a1i 11 | . . . 4 ⊢ ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → {(𝑊 cyclShift 𝑛)} ∈ Fin) |
9 | id 22 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ)) | |
10 | 9 | cshwsdisj 16204 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → Disj 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)}) |
11 | 6, 8, 10 | hashiun 14958 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (♯‘∪ 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)}) = Σ𝑛 ∈ (0..^(♯‘𝑊))(♯‘{(𝑊 cyclShift 𝑛)})) |
12 | ovex 6954 | . . . . . 6 ⊢ (𝑊 cyclShift 𝑛) ∈ V | |
13 | hashsng 13474 | . . . . . 6 ⊢ ((𝑊 cyclShift 𝑛) ∈ V → (♯‘{(𝑊 cyclShift 𝑛)}) = 1) | |
14 | 12, 13 | mp1i 13 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (♯‘{(𝑊 cyclShift 𝑛)}) = 1) |
15 | 14 | sumeq2sdv 14842 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → Σ𝑛 ∈ (0..^(♯‘𝑊))(♯‘{(𝑊 cyclShift 𝑛)}) = Σ𝑛 ∈ (0..^(♯‘𝑊))1) |
16 | 1cnd 10371 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → 1 ∈ ℂ) | |
17 | fsumconst 14926 | . . . . . . 7 ⊢ (((0..^(♯‘𝑊)) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑛 ∈ (0..^(♯‘𝑊))1 = ((♯‘(0..^(♯‘𝑊))) · 1)) | |
18 | 5, 16, 17 | sylancr 581 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → Σ𝑛 ∈ (0..^(♯‘𝑊))1 = ((♯‘(0..^(♯‘𝑊))) · 1)) |
19 | lencl 13621 | . . . . . . . . 9 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
20 | 19 | adantr 474 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (♯‘𝑊) ∈ ℕ0) |
21 | hashfzo0 13531 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊)) | |
22 | 20, 21 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊)) |
23 | 22 | oveq1d 6937 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘(0..^(♯‘𝑊))) · 1) = ((♯‘𝑊) · 1)) |
24 | prmnn 15793 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ ℙ → (♯‘𝑊) ∈ ℕ) | |
25 | 24 | nnred 11391 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℙ → (♯‘𝑊) ∈ ℝ) |
26 | 25 | adantl 475 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (♯‘𝑊) ∈ ℝ) |
27 | ax-1rid 10342 | . . . . . . 7 ⊢ ((♯‘𝑊) ∈ ℝ → ((♯‘𝑊) · 1) = (♯‘𝑊)) | |
28 | 26, 27 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑊) · 1) = (♯‘𝑊)) |
29 | 18, 23, 28 | 3eqtrd 2818 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → Σ𝑛 ∈ (0..^(♯‘𝑊))1 = (♯‘𝑊)) |
30 | 29 | adantr 474 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → Σ𝑛 ∈ (0..^(♯‘𝑊))1 = (♯‘𝑊)) |
31 | 15, 30 | eqtrd 2814 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → Σ𝑛 ∈ (0..^(♯‘𝑊))(♯‘{(𝑊 cyclShift 𝑛)}) = (♯‘𝑊)) |
32 | 4, 11, 31 | 3eqtrd 2818 | . 2 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (♯‘𝑀) = (♯‘𝑊)) |
33 | 32 | ex 403 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0) → (♯‘𝑀) = (♯‘𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 ∃wrex 3091 {crab 3094 Vcvv 3398 {csn 4398 ∪ ciun 4753 ‘cfv 6135 (class class class)co 6922 Fincfn 8241 ℂcc 10270 ℝcr 10271 0cc0 10272 1c1 10273 · cmul 10277 ℕ0cn0 11642 ..^cfzo 12784 ♯chash 13435 Word cword 13599 cyclShift ccsh 13934 Σcsu 14824 ℙcprime 15790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-disj 4855 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-sup 8636 df-inf 8637 df-oi 8704 df-card 9098 df-cda 9325 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 df-xnn0 11715 df-z 11729 df-uz 11993 df-rp 12138 df-fz 12644 df-fzo 12785 df-fl 12912 df-mod 12988 df-seq 13120 df-exp 13179 df-hash 13436 df-word 13600 df-concat 13661 df-substr 13731 df-pfx 13780 df-reps 13915 df-csh 13936 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-clim 14627 df-sum 14825 df-dvds 15388 df-gcd 15623 df-prm 15791 df-phi 15875 |
This theorem is referenced by: cshwshash 16210 umgrhashecclwwlk 27476 |
Copyright terms: Public domain | W3C validator |