Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cshwshashnsame | Structured version Visualization version GIF version |
Description: If a word (not consisting of identical symbols) has a length being a prime number, the size of the set of (different!) words resulting by cyclically shifting the original word equals the length of the original word. (Contributed by AV, 19-May-2018.) (Revised by AV, 10-Nov-2018.) |
Ref | Expression |
---|---|
cshwrepswhash1.m | ⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} |
Ref | Expression |
---|---|
cshwshashnsame | ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0) → (♯‘𝑀) = (♯‘𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cshwrepswhash1.m | . . . . . 6 ⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} | |
2 | 1 | cshwsiun 16729 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → 𝑀 = ∪ 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)}) |
3 | 2 | ad2antrr 722 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → 𝑀 = ∪ 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)}) |
4 | 3 | fveq2d 6760 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (♯‘𝑀) = (♯‘∪ 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)})) |
5 | fzofi 13622 | . . . . 5 ⊢ (0..^(♯‘𝑊)) ∈ Fin | |
6 | 5 | a1i 11 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (0..^(♯‘𝑊)) ∈ Fin) |
7 | snfi 8788 | . . . . 5 ⊢ {(𝑊 cyclShift 𝑛)} ∈ Fin | |
8 | 7 | a1i 11 | . . . 4 ⊢ ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → {(𝑊 cyclShift 𝑛)} ∈ Fin) |
9 | id 22 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ)) | |
10 | 9 | cshwsdisj 16728 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → Disj 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)}) |
11 | 6, 8, 10 | hashiun 15462 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (♯‘∪ 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)}) = Σ𝑛 ∈ (0..^(♯‘𝑊))(♯‘{(𝑊 cyclShift 𝑛)})) |
12 | ovex 7288 | . . . . . 6 ⊢ (𝑊 cyclShift 𝑛) ∈ V | |
13 | hashsng 14012 | . . . . . 6 ⊢ ((𝑊 cyclShift 𝑛) ∈ V → (♯‘{(𝑊 cyclShift 𝑛)}) = 1) | |
14 | 12, 13 | mp1i 13 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (♯‘{(𝑊 cyclShift 𝑛)}) = 1) |
15 | 14 | sumeq2sdv 15344 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → Σ𝑛 ∈ (0..^(♯‘𝑊))(♯‘{(𝑊 cyclShift 𝑛)}) = Σ𝑛 ∈ (0..^(♯‘𝑊))1) |
16 | 1cnd 10901 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → 1 ∈ ℂ) | |
17 | fsumconst 15430 | . . . . . . 7 ⊢ (((0..^(♯‘𝑊)) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑛 ∈ (0..^(♯‘𝑊))1 = ((♯‘(0..^(♯‘𝑊))) · 1)) | |
18 | 5, 16, 17 | sylancr 586 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → Σ𝑛 ∈ (0..^(♯‘𝑊))1 = ((♯‘(0..^(♯‘𝑊))) · 1)) |
19 | lencl 14164 | . . . . . . . . 9 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
20 | 19 | adantr 480 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (♯‘𝑊) ∈ ℕ0) |
21 | hashfzo0 14073 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊)) | |
22 | 20, 21 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊)) |
23 | 22 | oveq1d 7270 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘(0..^(♯‘𝑊))) · 1) = ((♯‘𝑊) · 1)) |
24 | prmnn 16307 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ ℙ → (♯‘𝑊) ∈ ℕ) | |
25 | 24 | nnred 11918 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℙ → (♯‘𝑊) ∈ ℝ) |
26 | 25 | adantl 481 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (♯‘𝑊) ∈ ℝ) |
27 | ax-1rid 10872 | . . . . . . 7 ⊢ ((♯‘𝑊) ∈ ℝ → ((♯‘𝑊) · 1) = (♯‘𝑊)) | |
28 | 26, 27 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑊) · 1) = (♯‘𝑊)) |
29 | 18, 23, 28 | 3eqtrd 2782 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → Σ𝑛 ∈ (0..^(♯‘𝑊))1 = (♯‘𝑊)) |
30 | 29 | adantr 480 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → Σ𝑛 ∈ (0..^(♯‘𝑊))1 = (♯‘𝑊)) |
31 | 15, 30 | eqtrd 2778 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → Σ𝑛 ∈ (0..^(♯‘𝑊))(♯‘{(𝑊 cyclShift 𝑛)}) = (♯‘𝑊)) |
32 | 4, 11, 31 | 3eqtrd 2782 | . 2 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (♯‘𝑀) = (♯‘𝑊)) |
33 | 32 | ex 412 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0) → (♯‘𝑀) = (♯‘𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 {crab 3067 Vcvv 3422 {csn 4558 ∪ ciun 4921 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 · cmul 10807 ℕ0cn0 12163 ..^cfzo 13311 ♯chash 13972 Word cword 14145 cyclShift ccsh 14429 Σcsu 15325 ℙcprime 16304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-hash 13973 df-word 14146 df-concat 14202 df-substr 14282 df-pfx 14312 df-reps 14410 df-csh 14430 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-dvds 15892 df-gcd 16130 df-prm 16305 df-phi 16395 |
This theorem is referenced by: cshwshash 16734 umgrhashecclwwlk 28343 |
Copyright terms: Public domain | W3C validator |