Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cshwshashnsame | Structured version Visualization version GIF version |
Description: If a word (not consisting of identical symbols) has a length being a prime number, the size of the set of (different!) words resulting by cyclically shifting the original word equals the length of the original word. (Contributed by AV, 19-May-2018.) (Revised by AV, 10-Nov-2018.) |
Ref | Expression |
---|---|
cshwrepswhash1.m | ⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} |
Ref | Expression |
---|---|
cshwshashnsame | ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0) → (♯‘𝑀) = (♯‘𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cshwrepswhash1.m | . . . . . 6 ⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} | |
2 | 1 | cshwsiun 16801 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → 𝑀 = ∪ 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)}) |
3 | 2 | ad2antrr 723 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → 𝑀 = ∪ 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)}) |
4 | 3 | fveq2d 6778 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (♯‘𝑀) = (♯‘∪ 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)})) |
5 | fzofi 13694 | . . . . 5 ⊢ (0..^(♯‘𝑊)) ∈ Fin | |
6 | 5 | a1i 11 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (0..^(♯‘𝑊)) ∈ Fin) |
7 | snfi 8834 | . . . . 5 ⊢ {(𝑊 cyclShift 𝑛)} ∈ Fin | |
8 | 7 | a1i 11 | . . . 4 ⊢ ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → {(𝑊 cyclShift 𝑛)} ∈ Fin) |
9 | id 22 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ)) | |
10 | 9 | cshwsdisj 16800 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → Disj 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)}) |
11 | 6, 8, 10 | hashiun 15534 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (♯‘∪ 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)}) = Σ𝑛 ∈ (0..^(♯‘𝑊))(♯‘{(𝑊 cyclShift 𝑛)})) |
12 | ovex 7308 | . . . . . 6 ⊢ (𝑊 cyclShift 𝑛) ∈ V | |
13 | hashsng 14084 | . . . . . 6 ⊢ ((𝑊 cyclShift 𝑛) ∈ V → (♯‘{(𝑊 cyclShift 𝑛)}) = 1) | |
14 | 12, 13 | mp1i 13 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (♯‘{(𝑊 cyclShift 𝑛)}) = 1) |
15 | 14 | sumeq2sdv 15416 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → Σ𝑛 ∈ (0..^(♯‘𝑊))(♯‘{(𝑊 cyclShift 𝑛)}) = Σ𝑛 ∈ (0..^(♯‘𝑊))1) |
16 | 1cnd 10970 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → 1 ∈ ℂ) | |
17 | fsumconst 15502 | . . . . . . 7 ⊢ (((0..^(♯‘𝑊)) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑛 ∈ (0..^(♯‘𝑊))1 = ((♯‘(0..^(♯‘𝑊))) · 1)) | |
18 | 5, 16, 17 | sylancr 587 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → Σ𝑛 ∈ (0..^(♯‘𝑊))1 = ((♯‘(0..^(♯‘𝑊))) · 1)) |
19 | lencl 14236 | . . . . . . . . 9 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
20 | 19 | adantr 481 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (♯‘𝑊) ∈ ℕ0) |
21 | hashfzo0 14145 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊)) | |
22 | 20, 21 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊)) |
23 | 22 | oveq1d 7290 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘(0..^(♯‘𝑊))) · 1) = ((♯‘𝑊) · 1)) |
24 | prmnn 16379 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ ℙ → (♯‘𝑊) ∈ ℕ) | |
25 | 24 | nnred 11988 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℙ → (♯‘𝑊) ∈ ℝ) |
26 | 25 | adantl 482 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (♯‘𝑊) ∈ ℝ) |
27 | ax-1rid 10941 | . . . . . . 7 ⊢ ((♯‘𝑊) ∈ ℝ → ((♯‘𝑊) · 1) = (♯‘𝑊)) | |
28 | 26, 27 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑊) · 1) = (♯‘𝑊)) |
29 | 18, 23, 28 | 3eqtrd 2782 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → Σ𝑛 ∈ (0..^(♯‘𝑊))1 = (♯‘𝑊)) |
30 | 29 | adantr 481 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → Σ𝑛 ∈ (0..^(♯‘𝑊))1 = (♯‘𝑊)) |
31 | 15, 30 | eqtrd 2778 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → Σ𝑛 ∈ (0..^(♯‘𝑊))(♯‘{(𝑊 cyclShift 𝑛)}) = (♯‘𝑊)) |
32 | 4, 11, 31 | 3eqtrd 2782 | . 2 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (♯‘𝑀) = (♯‘𝑊)) |
33 | 32 | ex 413 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0) → (♯‘𝑀) = (♯‘𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 {crab 3068 Vcvv 3432 {csn 4561 ∪ ciun 4924 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 ℂcc 10869 ℝcr 10870 0cc0 10871 1c1 10872 · cmul 10876 ℕ0cn0 12233 ..^cfzo 13382 ♯chash 14044 Word cword 14217 cyclShift ccsh 14501 Σcsu 15397 ℙcprime 16376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-disj 5040 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-hash 14045 df-word 14218 df-concat 14274 df-substr 14354 df-pfx 14384 df-reps 14482 df-csh 14502 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-dvds 15964 df-gcd 16202 df-prm 16377 df-phi 16467 |
This theorem is referenced by: cshwshash 16806 umgrhashecclwwlk 28442 |
Copyright terms: Public domain | W3C validator |