| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2submod | Structured version Visualization version GIF version | ||
| Description: If a real number is between a positive real number and twice the positive real number, the real number modulo the positive real number equals the real number minus the positive real number. (Contributed by Alexander van der Vekens, 13-May-2018.) |
| Ref | Expression |
|---|---|
| 2submod | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴 − 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 12920 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
| 2 | ax-1rid 11098 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → (𝐵 · 1) = 𝐵) | |
| 3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ ℝ+ → (𝐵 · 1) = 𝐵) |
| 4 | 3 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · 1) = 𝐵) |
| 5 | 4 | oveq2d 7369 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 − (𝐵 · 1)) = (𝐴 − 𝐵)) |
| 6 | 5 | oveq1d 7368 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = ((𝐴 − 𝐵) mod 𝐵)) |
| 7 | 6 | adantr 480 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = ((𝐴 − 𝐵) mod 𝐵)) |
| 8 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℝ) | |
| 9 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+) | |
| 10 | 1zzd 12524 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 1 ∈ ℤ) | |
| 11 | 8, 9, 10 | 3jca 1128 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 1 ∈ ℤ)) |
| 12 | 11 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 1 ∈ ℤ)) |
| 13 | modcyc2 13829 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 1 ∈ ℤ) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = (𝐴 mod 𝐵)) | |
| 14 | 12, 13 | syl 17 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = (𝐴 mod 𝐵)) |
| 15 | resubcl 11446 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) | |
| 16 | 1, 15 | sylan2 593 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 − 𝐵) ∈ ℝ) |
| 17 | 16, 9 | jca 511 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − 𝐵) ∈ ℝ ∧ 𝐵 ∈ ℝ+)) |
| 18 | subge0 11651 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) | |
| 19 | 1, 18 | sylan2 593 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) |
| 20 | 19 | bicomd 223 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 ≤ 𝐴 ↔ 0 ≤ (𝐴 − 𝐵))) |
| 21 | rpcn 12922 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ) | |
| 22 | 21 | 2timesd 12385 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ+ → (2 · 𝐵) = (𝐵 + 𝐵)) |
| 23 | 22 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (2 · 𝐵) = (𝐵 + 𝐵)) |
| 24 | 23 | breq2d 5107 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 < (2 · 𝐵) ↔ 𝐴 < (𝐵 + 𝐵))) |
| 25 | 1 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ) |
| 26 | 8, 25, 25 | ltsubaddd 11734 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − 𝐵) < 𝐵 ↔ 𝐴 < (𝐵 + 𝐵))) |
| 27 | 24, 26 | bitr4d 282 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 < (2 · 𝐵) ↔ (𝐴 − 𝐵) < 𝐵)) |
| 28 | 20, 27 | anbi12d 632 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵)) ↔ (0 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝐵))) |
| 29 | 28 | biimpa 476 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (0 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝐵)) |
| 30 | modid 13818 | . . 3 ⊢ ((((𝐴 − 𝐵) ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝐵)) → ((𝐴 − 𝐵) mod 𝐵) = (𝐴 − 𝐵)) | |
| 31 | 17, 29, 30 | syl2an2r 685 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → ((𝐴 − 𝐵) mod 𝐵) = (𝐴 − 𝐵)) |
| 32 | 7, 14, 31 | 3eqtr3d 2772 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴 − 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 (class class class)co 7353 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 < clt 11168 ≤ cle 11169 − cmin 11365 2c2 12201 ℤcz 12489 ℝ+crp 12911 mod cmo 13791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fl 13714 df-mod 13792 |
| This theorem is referenced by: modifeq2int 13858 modaddmodup 13859 crctcshwlkn0lem5 29777 |
| Copyright terms: Public domain | W3C validator |