MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2submod Structured version   Visualization version   GIF version

Theorem 2submod 13290
Description: If a real number is between a positive real number and twice the positive real number, the real number modulo the positive real number equals the real number minus the positive real number. (Contributed by Alexander van der Vekens, 13-May-2018.)
Assertion
Ref Expression
2submod (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴𝐵))

Proof of Theorem 2submod
StepHypRef Expression
1 rpre 12387 . . . . . . 7 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
2 ax-1rid 10596 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 · 1) = 𝐵)
31, 2syl 17 . . . . . 6 (𝐵 ∈ ℝ+ → (𝐵 · 1) = 𝐵)
43adantl 482 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · 1) = 𝐵)
54oveq2d 7164 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 − (𝐵 · 1)) = (𝐴𝐵))
65oveq1d 7163 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = ((𝐴𝐵) mod 𝐵))
76adantr 481 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = ((𝐴𝐵) mod 𝐵))
8 simpl 483 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℝ)
9 simpr 485 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
10 1zzd 12002 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 1 ∈ ℤ)
118, 9, 103jca 1122 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 1 ∈ ℤ))
1211adantr 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 1 ∈ ℤ))
13 modcyc2 13265 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 1 ∈ ℤ) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = (𝐴 mod 𝐵))
1412, 13syl 17 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = (𝐴 mod 𝐵))
15 resubcl 10939 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵) ∈ ℝ)
161, 15sylan2 592 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴𝐵) ∈ ℝ)
1716, 9jca 512 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴𝐵) ∈ ℝ ∧ 𝐵 ∈ ℝ+))
18 subge0 11142 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴𝐵) ↔ 𝐵𝐴))
191, 18sylan2 592 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (0 ≤ (𝐴𝐵) ↔ 𝐵𝐴))
2019bicomd 224 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵𝐴 ↔ 0 ≤ (𝐴𝐵)))
21 rpcn 12389 . . . . . . . . 9 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
22212timesd 11869 . . . . . . . 8 (𝐵 ∈ ℝ+ → (2 · 𝐵) = (𝐵 + 𝐵))
2322adantl 482 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (2 · 𝐵) = (𝐵 + 𝐵))
2423breq2d 5075 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 < (2 · 𝐵) ↔ 𝐴 < (𝐵 + 𝐵)))
251adantl 482 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ)
268, 25, 25ltsubaddd 11225 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴𝐵) < 𝐵𝐴 < (𝐵 + 𝐵)))
2724, 26bitr4d 283 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 < (2 · 𝐵) ↔ (𝐴𝐵) < 𝐵))
2820, 27anbi12d 630 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐵𝐴𝐴 < (2 · 𝐵)) ↔ (0 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝐵)))
2928biimpa 477 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (0 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝐵))
30 modid 13254 . . 3 ((((𝐴𝐵) ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝐵)) → ((𝐴𝐵) mod 𝐵) = (𝐴𝐵))
3117, 29, 30syl2an2r 681 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → ((𝐴𝐵) mod 𝐵) = (𝐴𝐵))
327, 14, 313eqtr3d 2869 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107   class class class wbr 5063  (class class class)co 7148  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859  2c2 11681  cz 11970  +crp 12379   mod cmo 13227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-sup 8895  df-inf 8896  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-n0 11887  df-z 11971  df-uz 12233  df-rp 12380  df-fl 13152  df-mod 13228
This theorem is referenced by:  modifeq2int  13291  modaddmodup  13292  crctcshwlkn0lem5  27509
  Copyright terms: Public domain W3C validator