| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2submod | Structured version Visualization version GIF version | ||
| Description: If a real number is between a positive real number and twice the positive real number, the real number modulo the positive real number equals the real number minus the positive real number. (Contributed by Alexander van der Vekens, 13-May-2018.) |
| Ref | Expression |
|---|---|
| 2submod | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴 − 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 12891 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
| 2 | ax-1rid 11068 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → (𝐵 · 1) = 𝐵) | |
| 3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ ℝ+ → (𝐵 · 1) = 𝐵) |
| 4 | 3 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · 1) = 𝐵) |
| 5 | 4 | oveq2d 7357 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 − (𝐵 · 1)) = (𝐴 − 𝐵)) |
| 6 | 5 | oveq1d 7356 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = ((𝐴 − 𝐵) mod 𝐵)) |
| 7 | 6 | adantr 480 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = ((𝐴 − 𝐵) mod 𝐵)) |
| 8 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℝ) | |
| 9 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+) | |
| 10 | 1zzd 12495 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 1 ∈ ℤ) | |
| 11 | 8, 9, 10 | 3jca 1128 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 1 ∈ ℤ)) |
| 12 | 11 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 1 ∈ ℤ)) |
| 13 | modcyc2 13803 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 1 ∈ ℤ) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = (𝐴 mod 𝐵)) | |
| 14 | 12, 13 | syl 17 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = (𝐴 mod 𝐵)) |
| 15 | resubcl 11417 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) | |
| 16 | 1, 15 | sylan2 593 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 − 𝐵) ∈ ℝ) |
| 17 | 16, 9 | jca 511 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − 𝐵) ∈ ℝ ∧ 𝐵 ∈ ℝ+)) |
| 18 | subge0 11622 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) | |
| 19 | 1, 18 | sylan2 593 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) |
| 20 | 19 | bicomd 223 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 ≤ 𝐴 ↔ 0 ≤ (𝐴 − 𝐵))) |
| 21 | rpcn 12893 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ) | |
| 22 | 21 | 2timesd 12356 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ+ → (2 · 𝐵) = (𝐵 + 𝐵)) |
| 23 | 22 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (2 · 𝐵) = (𝐵 + 𝐵)) |
| 24 | 23 | breq2d 5101 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 < (2 · 𝐵) ↔ 𝐴 < (𝐵 + 𝐵))) |
| 25 | 1 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ) |
| 26 | 8, 25, 25 | ltsubaddd 11705 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − 𝐵) < 𝐵 ↔ 𝐴 < (𝐵 + 𝐵))) |
| 27 | 24, 26 | bitr4d 282 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 < (2 · 𝐵) ↔ (𝐴 − 𝐵) < 𝐵)) |
| 28 | 20, 27 | anbi12d 632 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵)) ↔ (0 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝐵))) |
| 29 | 28 | biimpa 476 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (0 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝐵)) |
| 30 | modid 13792 | . . 3 ⊢ ((((𝐴 − 𝐵) ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝐵)) → ((𝐴 − 𝐵) mod 𝐵) = (𝐴 − 𝐵)) | |
| 31 | 17, 29, 30 | syl2an2r 685 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → ((𝐴 − 𝐵) mod 𝐵) = (𝐴 − 𝐵)) |
| 32 | 7, 14, 31 | 3eqtr3d 2773 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴 − 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 class class class wbr 5089 (class class class)co 7341 ℝcr 10997 0cc0 10998 1c1 10999 + caddc 11001 · cmul 11003 < clt 11138 ≤ cle 11139 − cmin 11336 2c2 12172 ℤcz 12460 ℝ+crp 12882 mod cmo 13765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-n0 12374 df-z 12461 df-uz 12725 df-rp 12883 df-fl 13688 df-mod 13766 |
| This theorem is referenced by: modifeq2int 13832 modaddmodup 13833 crctcshwlkn0lem5 29785 |
| Copyright terms: Public domain | W3C validator |