MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2submod Structured version   Visualization version   GIF version

Theorem 2submod 13849
Description: If a real number is between a positive real number and twice the positive real number, the real number modulo the positive real number equals the real number minus the positive real number. (Contributed by Alexander van der Vekens, 13-May-2018.)
Assertion
Ref Expression
2submod (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴𝐵))

Proof of Theorem 2submod
StepHypRef Expression
1 rpre 12909 . . . . . . 7 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
2 ax-1rid 11086 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 · 1) = 𝐵)
31, 2syl 17 . . . . . 6 (𝐵 ∈ ℝ+ → (𝐵 · 1) = 𝐵)
43adantl 481 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · 1) = 𝐵)
54oveq2d 7371 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 − (𝐵 · 1)) = (𝐴𝐵))
65oveq1d 7370 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = ((𝐴𝐵) mod 𝐵))
76adantr 480 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = ((𝐴𝐵) mod 𝐵))
8 simpl 482 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℝ)
9 simpr 484 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
10 1zzd 12513 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 1 ∈ ℤ)
118, 9, 103jca 1128 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 1 ∈ ℤ))
1211adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 1 ∈ ℤ))
13 modcyc2 13821 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 1 ∈ ℤ) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = (𝐴 mod 𝐵))
1412, 13syl 17 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = (𝐴 mod 𝐵))
15 resubcl 11435 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵) ∈ ℝ)
161, 15sylan2 593 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴𝐵) ∈ ℝ)
1716, 9jca 511 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴𝐵) ∈ ℝ ∧ 𝐵 ∈ ℝ+))
18 subge0 11640 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴𝐵) ↔ 𝐵𝐴))
191, 18sylan2 593 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (0 ≤ (𝐴𝐵) ↔ 𝐵𝐴))
2019bicomd 223 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵𝐴 ↔ 0 ≤ (𝐴𝐵)))
21 rpcn 12911 . . . . . . . . 9 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
22212timesd 12374 . . . . . . . 8 (𝐵 ∈ ℝ+ → (2 · 𝐵) = (𝐵 + 𝐵))
2322adantl 481 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (2 · 𝐵) = (𝐵 + 𝐵))
2423breq2d 5107 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 < (2 · 𝐵) ↔ 𝐴 < (𝐵 + 𝐵)))
251adantl 481 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ)
268, 25, 25ltsubaddd 11723 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴𝐵) < 𝐵𝐴 < (𝐵 + 𝐵)))
2724, 26bitr4d 282 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 < (2 · 𝐵) ↔ (𝐴𝐵) < 𝐵))
2820, 27anbi12d 632 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐵𝐴𝐴 < (2 · 𝐵)) ↔ (0 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝐵)))
2928biimpa 476 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (0 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝐵))
30 modid 13810 . . 3 ((((𝐴𝐵) ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝐵)) → ((𝐴𝐵) mod 𝐵) = (𝐴𝐵))
3117, 29, 30syl2an2r 685 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → ((𝐴𝐵) mod 𝐵) = (𝐴𝐵))
327, 14, 313eqtr3d 2776 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5095  (class class class)co 7355  cr 11015  0cc0 11016  1c1 11017   + caddc 11019   · cmul 11021   < clt 11156  cle 11157  cmin 11354  2c2 12190  cz 12478  +crp 12900   mod cmo 13783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-sup 9336  df-inf 9337  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-n0 12392  df-z 12479  df-uz 12743  df-rp 12901  df-fl 13706  df-mod 13784
This theorem is referenced by:  modifeq2int  13850  modaddmodup  13851  crctcshwlkn0lem5  29803
  Copyright terms: Public domain W3C validator