MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgt1 Structured version   Visualization version   GIF version

Theorem mulgt1 11764
Description: The product of two numbers greater than 1 is greater than 1. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
mulgt1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → 1 < (𝐴 · 𝐵))

Proof of Theorem mulgt1
StepHypRef Expression
1 simpl 482 . . . . 5 ((1 < 𝐴 ∧ 1 < 𝐵) → 1 < 𝐴)
21a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 1 < 𝐵) → 1 < 𝐴))
3 0lt1 11427 . . . . . . . . 9 0 < 1
4 0re 10908 . . . . . . . . . 10 0 ∈ ℝ
5 1re 10906 . . . . . . . . . 10 1 ∈ ℝ
6 lttr 10982 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴))
74, 5, 6mp3an12 1449 . . . . . . . . 9 (𝐴 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴))
83, 7mpani 692 . . . . . . . 8 (𝐴 ∈ ℝ → (1 < 𝐴 → 0 < 𝐴))
98adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐴 → 0 < 𝐴))
10 ltmul2 11756 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 < 𝐵 ↔ (𝐴 · 1) < (𝐴 · 𝐵)))
1110biimpd 228 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 < 𝐵 → (𝐴 · 1) < (𝐴 · 𝐵)))
125, 11mp3an1 1446 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 < 𝐵 → (𝐴 · 1) < (𝐴 · 𝐵)))
1312exp32 420 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → (0 < 𝐴 → (1 < 𝐵 → (𝐴 · 1) < (𝐴 · 𝐵)))))
1413impcom 407 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 → (1 < 𝐵 → (𝐴 · 1) < (𝐴 · 𝐵))))
159, 14syld 47 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐴 → (1 < 𝐵 → (𝐴 · 1) < (𝐴 · 𝐵))))
1615impd 410 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 1 < 𝐵) → (𝐴 · 1) < (𝐴 · 𝐵)))
17 ax-1rid 10872 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
1817adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 1) = 𝐴)
1918breq1d 5080 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 1) < (𝐴 · 𝐵) ↔ 𝐴 < (𝐴 · 𝐵)))
2016, 19sylibd 238 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 1 < 𝐵) → 𝐴 < (𝐴 · 𝐵)))
212, 20jcad 512 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 1 < 𝐵) → (1 < 𝐴𝐴 < (𝐴 · 𝐵))))
22 remulcl 10887 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
23 lttr 10982 . . . . 5 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → ((1 < 𝐴𝐴 < (𝐴 · 𝐵)) → 1 < (𝐴 · 𝐵)))
245, 23mp3an1 1446 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → ((1 < 𝐴𝐴 < (𝐴 · 𝐵)) → 1 < (𝐴 · 𝐵)))
2522, 24syldan 590 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴𝐴 < (𝐴 · 𝐵)) → 1 < (𝐴 · 𝐵)))
2621, 25syld 47 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 1 < 𝐵) → 1 < (𝐴 · 𝐵)))
2726imp 406 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → 1 < (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   · cmul 10807   < clt 10940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138
This theorem is referenced by:  mulgt1d  11841  addltmul  12139  uz2mulcl  12595  addltmulALT  30709
  Copyright terms: Public domain W3C validator