![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgt1 | Structured version Visualization version GIF version |
Description: The product of two numbers greater than 1 is greater than 1. (Contributed by NM, 13-Feb-2005.) |
Ref | Expression |
---|---|
mulgt1 | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → 1 < (𝐴 · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . . . 5 ⊢ ((1 < 𝐴 ∧ 1 < 𝐵) → 1 < 𝐴) | |
2 | 1 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 1 < 𝐵) → 1 < 𝐴)) |
3 | 0lt1 11773 | . . . . . . . . 9 ⊢ 0 < 1 | |
4 | 0re 11253 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
5 | 1re 11251 | . . . . . . . . . 10 ⊢ 1 ∈ ℝ | |
6 | lttr 11327 | . . . . . . . . . 10 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴)) | |
7 | 4, 5, 6 | mp3an12 1447 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴)) |
8 | 3, 7 | mpani 694 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (1 < 𝐴 → 0 < 𝐴)) |
9 | 8 | adantr 479 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐴 → 0 < 𝐴)) |
10 | ltmul2 12103 | . . . . . . . . . . 11 ⊢ ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 < 𝐵 ↔ (𝐴 · 1) < (𝐴 · 𝐵))) | |
11 | 10 | biimpd 228 | . . . . . . . . . 10 ⊢ ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 < 𝐵 → (𝐴 · 1) < (𝐴 · 𝐵))) |
12 | 5, 11 | mp3an1 1444 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 < 𝐵 → (𝐴 · 1) < (𝐴 · 𝐵))) |
13 | 12 | exp32 419 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → (0 < 𝐴 → (1 < 𝐵 → (𝐴 · 1) < (𝐴 · 𝐵))))) |
14 | 13 | impcom 406 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 → (1 < 𝐵 → (𝐴 · 1) < (𝐴 · 𝐵)))) |
15 | 9, 14 | syld 47 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐴 → (1 < 𝐵 → (𝐴 · 1) < (𝐴 · 𝐵)))) |
16 | 15 | impd 409 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 1 < 𝐵) → (𝐴 · 1) < (𝐴 · 𝐵))) |
17 | ax-1rid 11215 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | |
18 | 17 | adantr 479 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 1) = 𝐴) |
19 | 18 | breq1d 5159 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 1) < (𝐴 · 𝐵) ↔ 𝐴 < (𝐴 · 𝐵))) |
20 | 16, 19 | sylibd 238 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 1 < 𝐵) → 𝐴 < (𝐴 · 𝐵))) |
21 | 2, 20 | jcad 511 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 1 < 𝐵) → (1 < 𝐴 ∧ 𝐴 < (𝐴 · 𝐵)))) |
22 | remulcl 11230 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
23 | lttr 11327 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → ((1 < 𝐴 ∧ 𝐴 < (𝐴 · 𝐵)) → 1 < (𝐴 · 𝐵))) | |
24 | 5, 23 | mp3an1 1444 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → ((1 < 𝐴 ∧ 𝐴 < (𝐴 · 𝐵)) → 1 < (𝐴 · 𝐵))) |
25 | 22, 24 | syldan 589 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 𝐴 < (𝐴 · 𝐵)) → 1 < (𝐴 · 𝐵))) |
26 | 21, 25 | syld 47 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 1 < 𝐵) → 1 < (𝐴 · 𝐵))) |
27 | 26 | imp 405 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → 1 < (𝐴 · 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 class class class wbr 5149 (class class class)co 7419 ℝcr 11144 0cc0 11145 1c1 11146 · cmul 11150 < clt 11285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 |
This theorem is referenced by: mulgt1d 12188 addltmul 12486 uz2mulcl 12948 addltmulALT 32348 |
Copyright terms: Public domain | W3C validator |