MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basgen Structured version   Visualization version   GIF version

Theorem basgen 22711
Description: Given a topology 𝐽, show that a subset 𝐡 satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81 using abbreviations. (Contributed by NM, 22-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
basgen ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝐽 ∧ 𝐽 βŠ† (topGenβ€˜π΅)) β†’ (topGenβ€˜π΅) = 𝐽)

Proof of Theorem basgen
StepHypRef Expression
1 tgss 22691 . . . 4 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝐽) β†’ (topGenβ€˜π΅) βŠ† (topGenβ€˜π½))
213adant3 1130 . . 3 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝐽 ∧ 𝐽 βŠ† (topGenβ€˜π΅)) β†’ (topGenβ€˜π΅) βŠ† (topGenβ€˜π½))
3 tgtop 22696 . . . 4 (𝐽 ∈ Top β†’ (topGenβ€˜π½) = 𝐽)
433ad2ant1 1131 . . 3 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝐽 ∧ 𝐽 βŠ† (topGenβ€˜π΅)) β†’ (topGenβ€˜π½) = 𝐽)
52, 4sseqtrd 4021 . 2 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝐽 ∧ 𝐽 βŠ† (topGenβ€˜π΅)) β†’ (topGenβ€˜π΅) βŠ† 𝐽)
6 simp3 1136 . 2 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝐽 ∧ 𝐽 βŠ† (topGenβ€˜π΅)) β†’ 𝐽 βŠ† (topGenβ€˜π΅))
75, 6eqssd 3998 1 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝐽 ∧ 𝐽 βŠ† (topGenβ€˜π΅)) β†’ (topGenβ€˜π΅) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   βŠ† wss 3947  β€˜cfv 6542  topGenctg 17387  Topctop 22615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6494  df-fun 6544  df-fv 6550  df-topgen 17393  df-top 22616
This theorem is referenced by:  basgen2  22712
  Copyright terms: Public domain W3C validator