![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > basgen | Structured version Visualization version GIF version |
Description: Given a topology π½, show that a subset π΅ satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81 using abbreviations. (Contributed by NM, 22-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
basgen | β’ ((π½ β Top β§ π΅ β π½ β§ π½ β (topGenβπ΅)) β (topGenβπ΅) = π½) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgss 22691 | . . . 4 β’ ((π½ β Top β§ π΅ β π½) β (topGenβπ΅) β (topGenβπ½)) | |
2 | 1 | 3adant3 1130 | . . 3 β’ ((π½ β Top β§ π΅ β π½ β§ π½ β (topGenβπ΅)) β (topGenβπ΅) β (topGenβπ½)) |
3 | tgtop 22696 | . . . 4 β’ (π½ β Top β (topGenβπ½) = π½) | |
4 | 3 | 3ad2ant1 1131 | . . 3 β’ ((π½ β Top β§ π΅ β π½ β§ π½ β (topGenβπ΅)) β (topGenβπ½) = π½) |
5 | 2, 4 | sseqtrd 4021 | . 2 β’ ((π½ β Top β§ π΅ β π½ β§ π½ β (topGenβπ΅)) β (topGenβπ΅) β π½) |
6 | simp3 1136 | . 2 β’ ((π½ β Top β§ π΅ β π½ β§ π½ β (topGenβπ΅)) β π½ β (topGenβπ΅)) | |
7 | 5, 6 | eqssd 3998 | 1 β’ ((π½ β Top β§ π΅ β π½ β§ π½ β (topGenβπ΅)) β (topGenβπ΅) = π½) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1085 = wceq 1539 β wcel 2104 β wss 3947 βcfv 6542 topGenctg 17387 Topctop 22615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-topgen 17393 df-top 22616 |
This theorem is referenced by: basgen2 22712 |
Copyright terms: Public domain | W3C validator |