MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgss Structured version   Visualization version   GIF version

Theorem tgss 21578
Description: Subset relation for generated topologies. (Contributed by NM, 7-May-2007.)
Assertion
Ref Expression
tgss ((𝐶𝑉𝐵𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶))

Proof of Theorem tgss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssrin 4212 . . . . . 6 (𝐵𝐶 → (𝐵 ∩ 𝒫 𝑥) ⊆ (𝐶 ∩ 𝒫 𝑥))
21unissd 4850 . . . . 5 (𝐵𝐶 (𝐵 ∩ 𝒫 𝑥) ⊆ (𝐶 ∩ 𝒫 𝑥))
3 sstr2 3976 . . . . 5 (𝑥 (𝐵 ∩ 𝒫 𝑥) → ( (𝐵 ∩ 𝒫 𝑥) ⊆ (𝐶 ∩ 𝒫 𝑥) → 𝑥 (𝐶 ∩ 𝒫 𝑥)))
42, 3syl5com 31 . . . 4 (𝐵𝐶 → (𝑥 (𝐵 ∩ 𝒫 𝑥) → 𝑥 (𝐶 ∩ 𝒫 𝑥)))
54adantl 484 . . 3 ((𝐶𝑉𝐵𝐶) → (𝑥 (𝐵 ∩ 𝒫 𝑥) → 𝑥 (𝐶 ∩ 𝒫 𝑥)))
6 ssexg 5229 . . . . 5 ((𝐵𝐶𝐶𝑉) → 𝐵 ∈ V)
76ancoms 461 . . . 4 ((𝐶𝑉𝐵𝐶) → 𝐵 ∈ V)
8 eltg 21567 . . . 4 (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 (𝐵 ∩ 𝒫 𝑥)))
97, 8syl 17 . . 3 ((𝐶𝑉𝐵𝐶) → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 (𝐵 ∩ 𝒫 𝑥)))
10 eltg 21567 . . . 4 (𝐶𝑉 → (𝑥 ∈ (topGen‘𝐶) ↔ 𝑥 (𝐶 ∩ 𝒫 𝑥)))
1110adantr 483 . . 3 ((𝐶𝑉𝐵𝐶) → (𝑥 ∈ (topGen‘𝐶) ↔ 𝑥 (𝐶 ∩ 𝒫 𝑥)))
125, 9, 113imtr4d 296 . 2 ((𝐶𝑉𝐵𝐶) → (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ (topGen‘𝐶)))
1312ssrdv 3975 1 ((𝐶𝑉𝐵𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2114  Vcvv 3496  cin 3937  wss 3938  𝒫 cpw 4541   cuni 4840  cfv 6357  topGenctg 16713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-topgen 16719
This theorem is referenced by:  tgidm  21590  tgss3  21596  basgen  21598  2basgen  21600  tgfiss  21601  bastop1  21603  lecldbas  21829  txss12  22215  xrtgioo  23416
  Copyright terms: Public domain W3C validator