MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgss Structured version   Visualization version   GIF version

Theorem tgss 22906
Description: Subset relation for generated topologies. (Contributed by NM, 7-May-2007.)
Assertion
Ref Expression
tgss ((𝐶𝑉𝐵𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶))

Proof of Theorem tgss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssrin 4217 . . . . . 6 (𝐵𝐶 → (𝐵 ∩ 𝒫 𝑥) ⊆ (𝐶 ∩ 𝒫 𝑥))
21unissd 4893 . . . . 5 (𝐵𝐶 (𝐵 ∩ 𝒫 𝑥) ⊆ (𝐶 ∩ 𝒫 𝑥))
3 sstr2 3965 . . . . 5 (𝑥 (𝐵 ∩ 𝒫 𝑥) → ( (𝐵 ∩ 𝒫 𝑥) ⊆ (𝐶 ∩ 𝒫 𝑥) → 𝑥 (𝐶 ∩ 𝒫 𝑥)))
42, 3syl5com 31 . . . 4 (𝐵𝐶 → (𝑥 (𝐵 ∩ 𝒫 𝑥) → 𝑥 (𝐶 ∩ 𝒫 𝑥)))
54adantl 481 . . 3 ((𝐶𝑉𝐵𝐶) → (𝑥 (𝐵 ∩ 𝒫 𝑥) → 𝑥 (𝐶 ∩ 𝒫 𝑥)))
6 ssexg 5293 . . . . 5 ((𝐵𝐶𝐶𝑉) → 𝐵 ∈ V)
76ancoms 458 . . . 4 ((𝐶𝑉𝐵𝐶) → 𝐵 ∈ V)
8 eltg 22895 . . . 4 (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 (𝐵 ∩ 𝒫 𝑥)))
97, 8syl 17 . . 3 ((𝐶𝑉𝐵𝐶) → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 (𝐵 ∩ 𝒫 𝑥)))
10 eltg 22895 . . . 4 (𝐶𝑉 → (𝑥 ∈ (topGen‘𝐶) ↔ 𝑥 (𝐶 ∩ 𝒫 𝑥)))
1110adantr 480 . . 3 ((𝐶𝑉𝐵𝐶) → (𝑥 ∈ (topGen‘𝐶) ↔ 𝑥 (𝐶 ∩ 𝒫 𝑥)))
125, 9, 113imtr4d 294 . 2 ((𝐶𝑉𝐵𝐶) → (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ (topGen‘𝐶)))
1312ssrdv 3964 1 ((𝐶𝑉𝐵𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  Vcvv 3459  cin 3925  wss 3926  𝒫 cpw 4575   cuni 4883  cfv 6531  topGenctg 17451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-topgen 17457
This theorem is referenced by:  tgidm  22918  tgss3  22924  basgen  22926  2basgen  22928  tgfiss  22929  bastop1  22931  lecldbas  23157  txss12  23543  xrtgioo  24746
  Copyright terms: Public domain W3C validator