| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgss | Structured version Visualization version GIF version | ||
| Description: Subset relation for generated topologies. (Contributed by NM, 7-May-2007.) |
| Ref | Expression |
|---|---|
| tgss | ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin 4187 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐶 → (𝐵 ∩ 𝒫 𝑥) ⊆ (𝐶 ∩ 𝒫 𝑥)) | |
| 2 | 1 | unissd 4864 | . . . . 5 ⊢ (𝐵 ⊆ 𝐶 → ∪ (𝐵 ∩ 𝒫 𝑥) ⊆ ∪ (𝐶 ∩ 𝒫 𝑥)) |
| 3 | sstr2 3936 | . . . . 5 ⊢ (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) → (∪ (𝐵 ∩ 𝒫 𝑥) ⊆ ∪ (𝐶 ∩ 𝒫 𝑥) → 𝑥 ⊆ ∪ (𝐶 ∩ 𝒫 𝑥))) | |
| 4 | 2, 3 | syl5com 31 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 → (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ ∪ (𝐶 ∩ 𝒫 𝑥))) |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ ∪ (𝐶 ∩ 𝒫 𝑥))) |
| 6 | ssexg 5256 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ∈ 𝑉) → 𝐵 ∈ V) | |
| 7 | 6 | ancoms 458 | . . . 4 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → 𝐵 ∈ V) |
| 8 | eltg 22867 | . . . 4 ⊢ (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
| 10 | eltg 22867 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → (𝑥 ∈ (topGen‘𝐶) ↔ 𝑥 ⊆ ∪ (𝐶 ∩ 𝒫 𝑥))) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (𝑥 ∈ (topGen‘𝐶) ↔ 𝑥 ⊆ ∪ (𝐶 ∩ 𝒫 𝑥))) |
| 12 | 5, 9, 11 | 3imtr4d 294 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ (topGen‘𝐶))) |
| 13 | 12 | ssrdv 3935 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 𝒫 cpw 4545 ∪ cuni 4854 ‘cfv 6476 topGenctg 17336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-topgen 17342 |
| This theorem is referenced by: tgidm 22890 tgss3 22896 basgen 22898 2basgen 22900 tgfiss 22901 bastop1 22903 lecldbas 23129 txss12 23515 xrtgioo 24717 |
| Copyright terms: Public domain | W3C validator |