![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bccval | Structured version Visualization version GIF version |
Description: Value of the generalized binomial coefficient, 𝐶 choose 𝐾. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
Ref | Expression |
---|---|
bccval.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
bccval.k | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
Ref | Expression |
---|---|
bccval | ⊢ (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bcc 39492 | . . 3 ⊢ C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘))) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘)))) |
3 | simprl 761 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑘 = 𝐾)) → 𝑐 = 𝐶) | |
4 | simprr 763 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑘 = 𝐾)) → 𝑘 = 𝐾) | |
5 | 3, 4 | oveq12d 6940 | . . 3 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑘 = 𝐾)) → (𝑐 FallFac 𝑘) = (𝐶 FallFac 𝐾)) |
6 | 4 | fveq2d 6450 | . . 3 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑘 = 𝐾)) → (!‘𝑘) = (!‘𝐾)) |
7 | 5, 6 | oveq12d 6940 | . 2 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑘 = 𝐾)) → ((𝑐 FallFac 𝑘) / (!‘𝑘)) = ((𝐶 FallFac 𝐾) / (!‘𝐾))) |
8 | bccval.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
9 | bccval.k | . 2 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
10 | ovexd 6956 | . 2 ⊢ (𝜑 → ((𝐶 FallFac 𝐾) / (!‘𝐾)) ∈ V) | |
11 | 2, 7, 8, 9, 10 | ovmpt2d 7065 | 1 ⊢ (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 Vcvv 3398 ‘cfv 6135 (class class class)co 6922 ↦ cmpt2 6924 ℂcc 10270 / cdiv 11032 ℕ0cn0 11642 !cfa 13378 FallFac cfallfac 15137 C𝑐cbcc 39491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-iota 6099 df-fun 6137 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-bcc 39492 |
This theorem is referenced by: bcccl 39494 bcc0 39495 bccp1k 39496 bccn0 39498 bccbc 39500 binomcxplemwb 39503 |
Copyright terms: Public domain | W3C validator |