Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bccval Structured version   Visualization version   GIF version

Theorem bccval 44348
Description: Value of the generalized binomial coefficient, 𝐶 choose 𝐾. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
bccval.c (𝜑𝐶 ∈ ℂ)
bccval.k (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
bccval (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾)))

Proof of Theorem bccval
Dummy variables 𝑘 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-bcc 44347 . . 3 C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘)))
21a1i 11 . 2 (𝜑 → C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘))))
3 simprl 771 . . . 4 ((𝜑 ∧ (𝑐 = 𝐶𝑘 = 𝐾)) → 𝑐 = 𝐶)
4 simprr 773 . . . 4 ((𝜑 ∧ (𝑐 = 𝐶𝑘 = 𝐾)) → 𝑘 = 𝐾)
53, 4oveq12d 7453 . . 3 ((𝜑 ∧ (𝑐 = 𝐶𝑘 = 𝐾)) → (𝑐 FallFac 𝑘) = (𝐶 FallFac 𝐾))
64fveq2d 6915 . . 3 ((𝜑 ∧ (𝑐 = 𝐶𝑘 = 𝐾)) → (!‘𝑘) = (!‘𝐾))
75, 6oveq12d 7453 . 2 ((𝜑 ∧ (𝑐 = 𝐶𝑘 = 𝐾)) → ((𝑐 FallFac 𝑘) / (!‘𝑘)) = ((𝐶 FallFac 𝐾) / (!‘𝐾)))
8 bccval.c . 2 (𝜑𝐶 ∈ ℂ)
9 bccval.k . 2 (𝜑𝐾 ∈ ℕ0)
10 ovexd 7470 . 2 (𝜑 → ((𝐶 FallFac 𝐾) / (!‘𝐾)) ∈ V)
112, 7, 8, 9, 10ovmpod 7589 1 (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1538  wcel 2107  Vcvv 3479  cfv 6566  (class class class)co 7435  cmpo 7437  cc 11157   / cdiv 11924  0cn0 12530  !cfa 14315   FallFac cfallfac 16043  C𝑐cbcc 44346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-sbc 3793  df-dif 3967  df-un 3969  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-br 5150  df-opab 5212  df-id 5584  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-iota 6519  df-fun 6568  df-fv 6574  df-ov 7438  df-oprab 7439  df-mpo 7440  df-bcc 44347
This theorem is referenced by:  bcccl  44349  bcc0  44350  bccp1k  44351  bccn0  44353  bccbc  44355  binomcxplemwb  44358
  Copyright terms: Public domain W3C validator