Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bccval | Structured version Visualization version GIF version |
Description: Value of the generalized binomial coefficient, 𝐶 choose 𝐾. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
Ref | Expression |
---|---|
bccval.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
bccval.k | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
Ref | Expression |
---|---|
bccval | ⊢ (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bcc 41844 | . . 3 ⊢ C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘))) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘)))) |
3 | simprl 767 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑘 = 𝐾)) → 𝑐 = 𝐶) | |
4 | simprr 769 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑘 = 𝐾)) → 𝑘 = 𝐾) | |
5 | 3, 4 | oveq12d 7273 | . . 3 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑘 = 𝐾)) → (𝑐 FallFac 𝑘) = (𝐶 FallFac 𝐾)) |
6 | 4 | fveq2d 6760 | . . 3 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑘 = 𝐾)) → (!‘𝑘) = (!‘𝐾)) |
7 | 5, 6 | oveq12d 7273 | . 2 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑘 = 𝐾)) → ((𝑐 FallFac 𝑘) / (!‘𝑘)) = ((𝐶 FallFac 𝐾) / (!‘𝐾))) |
8 | bccval.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
9 | bccval.k | . 2 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
10 | ovexd 7290 | . 2 ⊢ (𝜑 → ((𝐶 FallFac 𝐾) / (!‘𝐾)) ∈ V) | |
11 | 2, 7, 8, 9, 10 | ovmpod 7403 | 1 ⊢ (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ℂcc 10800 / cdiv 11562 ℕ0cn0 12163 !cfa 13915 FallFac cfallfac 15642 C𝑐cbcc 41843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-bcc 41844 |
This theorem is referenced by: bcccl 41846 bcc0 41847 bccp1k 41848 bccn0 41850 bccbc 41852 binomcxplemwb 41855 |
Copyright terms: Public domain | W3C validator |