| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bccval | Structured version Visualization version GIF version | ||
| Description: Value of the generalized binomial coefficient, 𝐶 choose 𝐾. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| Ref | Expression |
|---|---|
| bccval.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| bccval.k | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| bccval | ⊢ (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bcc 44298 | . . 3 ⊢ C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘))) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘)))) |
| 3 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑘 = 𝐾)) → 𝑐 = 𝐶) | |
| 4 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑘 = 𝐾)) → 𝑘 = 𝐾) | |
| 5 | 3, 4 | oveq12d 7412 | . . 3 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑘 = 𝐾)) → (𝑐 FallFac 𝑘) = (𝐶 FallFac 𝐾)) |
| 6 | 4 | fveq2d 6869 | . . 3 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑘 = 𝐾)) → (!‘𝑘) = (!‘𝐾)) |
| 7 | 5, 6 | oveq12d 7412 | . 2 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑘 = 𝐾)) → ((𝑐 FallFac 𝑘) / (!‘𝑘)) = ((𝐶 FallFac 𝐾) / (!‘𝐾))) |
| 8 | bccval.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 9 | bccval.k | . 2 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
| 10 | ovexd 7429 | . 2 ⊢ (𝜑 → ((𝐶 FallFac 𝐾) / (!‘𝐾)) ∈ V) | |
| 11 | 2, 7, 8, 9, 10 | ovmpod 7548 | 1 ⊢ (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ‘cfv 6519 (class class class)co 7394 ∈ cmpo 7396 ℂcc 11084 / cdiv 11851 ℕ0cn0 12458 !cfa 14248 FallFac cfallfac 15977 C𝑐cbcc 44297 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-iota 6472 df-fun 6521 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-bcc 44298 |
| This theorem is referenced by: bcccl 44300 bcc0 44301 bccp1k 44302 bccn0 44304 bccbc 44306 binomcxplemwb 44309 |
| Copyright terms: Public domain | W3C validator |