Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bccval Structured version   Visualization version   GIF version

Theorem bccval 40977
Description: Value of the generalized binomial coefficient, 𝐶 choose 𝐾. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
bccval.c (𝜑𝐶 ∈ ℂ)
bccval.k (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
bccval (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾)))

Proof of Theorem bccval
Dummy variables 𝑘 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-bcc 40976 . . 3 C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘)))
21a1i 11 . 2 (𝜑 → C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘))))
3 simprl 770 . . . 4 ((𝜑 ∧ (𝑐 = 𝐶𝑘 = 𝐾)) → 𝑐 = 𝐶)
4 simprr 772 . . . 4 ((𝜑 ∧ (𝑐 = 𝐶𝑘 = 𝐾)) → 𝑘 = 𝐾)
53, 4oveq12d 7158 . . 3 ((𝜑 ∧ (𝑐 = 𝐶𝑘 = 𝐾)) → (𝑐 FallFac 𝑘) = (𝐶 FallFac 𝐾))
64fveq2d 6656 . . 3 ((𝜑 ∧ (𝑐 = 𝐶𝑘 = 𝐾)) → (!‘𝑘) = (!‘𝐾))
75, 6oveq12d 7158 . 2 ((𝜑 ∧ (𝑐 = 𝐶𝑘 = 𝐾)) → ((𝑐 FallFac 𝑘) / (!‘𝑘)) = ((𝐶 FallFac 𝐾) / (!‘𝐾)))
8 bccval.c . 2 (𝜑𝐶 ∈ ℂ)
9 bccval.k . 2 (𝜑𝐾 ∈ ℕ0)
10 ovexd 7175 . 2 (𝜑 → ((𝐶 FallFac 𝐾) / (!‘𝐾)) ∈ V)
112, 7, 8, 9, 10ovmpod 7286 1 (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2114  Vcvv 3469  cfv 6334  (class class class)co 7140  cmpo 7142  cc 10524   / cdiv 11286  0cn0 11885  !cfa 13629   FallFac cfallfac 15349  C𝑐cbcc 40975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ral 3135  df-rex 3136  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-iota 6293  df-fun 6336  df-fv 6342  df-ov 7143  df-oprab 7144  df-mpo 7145  df-bcc 40976
This theorem is referenced by:  bcccl  40978  bcc0  40979  bccp1k  40980  bccn0  40982  bccbc  40984  binomcxplemwb  40987
  Copyright terms: Public domain W3C validator