Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bccval Structured version   Visualization version   GIF version

Theorem bccval 44436
Description: Value of the generalized binomial coefficient, 𝐶 choose 𝐾. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
bccval.c (𝜑𝐶 ∈ ℂ)
bccval.k (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
bccval (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾)))

Proof of Theorem bccval
Dummy variables 𝑘 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-bcc 44435 . . 3 C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘)))
21a1i 11 . 2 (𝜑 → C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘))))
3 simprl 770 . . . 4 ((𝜑 ∧ (𝑐 = 𝐶𝑘 = 𝐾)) → 𝑐 = 𝐶)
4 simprr 772 . . . 4 ((𝜑 ∧ (𝑐 = 𝐶𝑘 = 𝐾)) → 𝑘 = 𝐾)
53, 4oveq12d 7370 . . 3 ((𝜑 ∧ (𝑐 = 𝐶𝑘 = 𝐾)) → (𝑐 FallFac 𝑘) = (𝐶 FallFac 𝐾))
64fveq2d 6832 . . 3 ((𝜑 ∧ (𝑐 = 𝐶𝑘 = 𝐾)) → (!‘𝑘) = (!‘𝐾))
75, 6oveq12d 7370 . 2 ((𝜑 ∧ (𝑐 = 𝐶𝑘 = 𝐾)) → ((𝑐 FallFac 𝑘) / (!‘𝑘)) = ((𝐶 FallFac 𝐾) / (!‘𝐾)))
8 bccval.c . 2 (𝜑𝐶 ∈ ℂ)
9 bccval.k . 2 (𝜑𝐾 ∈ ℕ0)
10 ovexd 7387 . 2 (𝜑 → ((𝐶 FallFac 𝐾) / (!‘𝐾)) ∈ V)
112, 7, 8, 9, 10ovmpod 7504 1 (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cfv 6487  (class class class)co 7352  cmpo 7354  cc 11010   / cdiv 11780  0cn0 12387  !cfa 14186   FallFac cfallfac 15917  C𝑐cbcc 44434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6443  df-fun 6489  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-bcc 44435
This theorem is referenced by:  bcccl  44437  bcc0  44438  bccp1k  44439  bccn0  44441  bccbc  44443  binomcxplemwb  44446
  Copyright terms: Public domain W3C validator