| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bccval | Structured version Visualization version GIF version | ||
| Description: Value of the generalized binomial coefficient, 𝐶 choose 𝐾. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| Ref | Expression |
|---|---|
| bccval.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| bccval.k | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| bccval | ⊢ (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bcc 44349 | . . 3 ⊢ C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘))) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘)))) |
| 3 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑘 = 𝐾)) → 𝑐 = 𝐶) | |
| 4 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑘 = 𝐾)) → 𝑘 = 𝐾) | |
| 5 | 3, 4 | oveq12d 7359 | . . 3 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑘 = 𝐾)) → (𝑐 FallFac 𝑘) = (𝐶 FallFac 𝐾)) |
| 6 | 4 | fveq2d 6821 | . . 3 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑘 = 𝐾)) → (!‘𝑘) = (!‘𝐾)) |
| 7 | 5, 6 | oveq12d 7359 | . 2 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑘 = 𝐾)) → ((𝑐 FallFac 𝑘) / (!‘𝑘)) = ((𝐶 FallFac 𝐾) / (!‘𝐾))) |
| 8 | bccval.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 9 | bccval.k | . 2 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
| 10 | ovexd 7376 | . 2 ⊢ (𝜑 → ((𝐶 FallFac 𝐾) / (!‘𝐾)) ∈ V) | |
| 11 | 2, 7, 8, 9, 10 | ovmpod 7493 | 1 ⊢ (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 Vcvv 3434 ‘cfv 6477 (class class class)co 7341 ∈ cmpo 7343 ℂcc 10996 / cdiv 11766 ℕ0cn0 12373 !cfa 14172 FallFac cfallfac 15903 C𝑐cbcc 44348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6433 df-fun 6479 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-bcc 44349 |
| This theorem is referenced by: bcccl 44351 bcc0 44352 bccp1k 44353 bccn0 44355 bccbc 44357 binomcxplemwb 44360 |
| Copyright terms: Public domain | W3C validator |