Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bccval Structured version   Visualization version   GIF version

Theorem bccval 39493
Description: Value of the generalized binomial coefficient, 𝐶 choose 𝐾. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
bccval.c (𝜑𝐶 ∈ ℂ)
bccval.k (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
bccval (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾)))

Proof of Theorem bccval
Dummy variables 𝑘 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-bcc 39492 . . 3 C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘)))
21a1i 11 . 2 (𝜑 → C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘))))
3 simprl 761 . . . 4 ((𝜑 ∧ (𝑐 = 𝐶𝑘 = 𝐾)) → 𝑐 = 𝐶)
4 simprr 763 . . . 4 ((𝜑 ∧ (𝑐 = 𝐶𝑘 = 𝐾)) → 𝑘 = 𝐾)
53, 4oveq12d 6940 . . 3 ((𝜑 ∧ (𝑐 = 𝐶𝑘 = 𝐾)) → (𝑐 FallFac 𝑘) = (𝐶 FallFac 𝐾))
64fveq2d 6450 . . 3 ((𝜑 ∧ (𝑐 = 𝐶𝑘 = 𝐾)) → (!‘𝑘) = (!‘𝐾))
75, 6oveq12d 6940 . 2 ((𝜑 ∧ (𝑐 = 𝐶𝑘 = 𝐾)) → ((𝑐 FallFac 𝑘) / (!‘𝑘)) = ((𝐶 FallFac 𝐾) / (!‘𝐾)))
8 bccval.c . 2 (𝜑𝐶 ∈ ℂ)
9 bccval.k . 2 (𝜑𝐾 ∈ ℕ0)
10 ovexd 6956 . 2 (𝜑 → ((𝐶 FallFac 𝐾) / (!‘𝐾)) ∈ V)
112, 7, 8, 9, 10ovmpt2d 7065 1 (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  Vcvv 3398  cfv 6135  (class class class)co 6922  cmpt2 6924  cc 10270   / cdiv 11032  0cn0 11642  !cfa 13378   FallFac cfallfac 15137  C𝑐cbcc 39491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-iota 6099  df-fun 6137  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-bcc 39492
This theorem is referenced by:  bcccl  39494  bcc0  39495  bccp1k  39496  bccn0  39498  bccbc  39500  binomcxplemwb  39503
  Copyright terms: Public domain W3C validator