| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bccval | Structured version Visualization version GIF version | ||
| Description: Value of the generalized binomial coefficient, 𝐶 choose 𝐾. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| Ref | Expression |
|---|---|
| bccval.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| bccval.k | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| bccval | ⊢ (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bcc 44289 | . . 3 ⊢ C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘))) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘)))) |
| 3 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑘 = 𝐾)) → 𝑐 = 𝐶) | |
| 4 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑘 = 𝐾)) → 𝑘 = 𝐾) | |
| 5 | 3, 4 | oveq12d 7430 | . . 3 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑘 = 𝐾)) → (𝑐 FallFac 𝑘) = (𝐶 FallFac 𝐾)) |
| 6 | 4 | fveq2d 6889 | . . 3 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑘 = 𝐾)) → (!‘𝑘) = (!‘𝐾)) |
| 7 | 5, 6 | oveq12d 7430 | . 2 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑘 = 𝐾)) → ((𝑐 FallFac 𝑘) / (!‘𝑘)) = ((𝐶 FallFac 𝐾) / (!‘𝐾))) |
| 8 | bccval.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 9 | bccval.k | . 2 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
| 10 | ovexd 7447 | . 2 ⊢ (𝜑 → ((𝐶 FallFac 𝐾) / (!‘𝐾)) ∈ V) | |
| 11 | 2, 7, 8, 9, 10 | ovmpod 7566 | 1 ⊢ (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ‘cfv 6540 (class class class)co 7412 ∈ cmpo 7414 ℂcc 11134 / cdiv 11901 ℕ0cn0 12508 !cfa 14293 FallFac cfallfac 16021 C𝑐cbcc 44288 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6493 df-fun 6542 df-fv 6548 df-ov 7415 df-oprab 7416 df-mpo 7417 df-bcc 44289 |
| This theorem is referenced by: bcccl 44291 bcc0 44292 bccp1k 44293 bccn0 44295 bccbc 44297 binomcxplemwb 44300 |
| Copyright terms: Public domain | W3C validator |