| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bccp1k | Structured version Visualization version GIF version | ||
| Description: Generalized binomial coefficient: 𝐶 choose (𝐾 + 1). (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| Ref | Expression |
|---|---|
| bccval.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| bccval.k | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| bccp1k | ⊢ (𝜑 → (𝐶C𝑐(𝐾 + 1)) = ((𝐶C𝑐𝐾) · ((𝐶 − 𝐾) / (𝐾 + 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bccval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 2 | bccval.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
| 3 | fallfacp1 15939 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐶 FallFac (𝐾 + 1)) = ((𝐶 FallFac 𝐾) · (𝐶 − 𝐾))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐶 FallFac (𝐾 + 1)) = ((𝐶 FallFac 𝐾) · (𝐶 − 𝐾))) |
| 5 | facp1 14187 | . . . . 5 ⊢ (𝐾 ∈ ℕ0 → (!‘(𝐾 + 1)) = ((!‘𝐾) · (𝐾 + 1))) | |
| 6 | 2, 5 | syl 17 | . . . 4 ⊢ (𝜑 → (!‘(𝐾 + 1)) = ((!‘𝐾) · (𝐾 + 1))) |
| 7 | 4, 6 | oveq12d 7370 | . . 3 ⊢ (𝜑 → ((𝐶 FallFac (𝐾 + 1)) / (!‘(𝐾 + 1))) = (((𝐶 FallFac 𝐾) · (𝐶 − 𝐾)) / ((!‘𝐾) · (𝐾 + 1)))) |
| 8 | peano2nn0 12428 | . . . . 5 ⊢ (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0) | |
| 9 | 2, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐾 + 1) ∈ ℕ0) |
| 10 | 1, 9 | bccval 44455 | . . 3 ⊢ (𝜑 → (𝐶C𝑐(𝐾 + 1)) = ((𝐶 FallFac (𝐾 + 1)) / (!‘(𝐾 + 1)))) |
| 11 | fallfaccl 15925 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐶 FallFac 𝐾) ∈ ℂ) | |
| 12 | 1, 2, 11 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐶 FallFac 𝐾) ∈ ℂ) |
| 13 | faccl 14192 | . . . . . 6 ⊢ (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℕ) | |
| 14 | 2, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → (!‘𝐾) ∈ ℕ) |
| 15 | 14 | nncnd 12148 | . . . 4 ⊢ (𝜑 → (!‘𝐾) ∈ ℂ) |
| 16 | 2 | nn0cnd 12451 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 17 | 1, 16 | subcld 11479 | . . . 4 ⊢ (𝜑 → (𝐶 − 𝐾) ∈ ℂ) |
| 18 | 9 | nn0cnd 12451 | . . . 4 ⊢ (𝜑 → (𝐾 + 1) ∈ ℂ) |
| 19 | 14 | nnne0d 12182 | . . . 4 ⊢ (𝜑 → (!‘𝐾) ≠ 0) |
| 20 | nn0p1nn 12427 | . . . . . 6 ⊢ (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ) | |
| 21 | 2, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐾 + 1) ∈ ℕ) |
| 22 | 21 | nnne0d 12182 | . . . 4 ⊢ (𝜑 → (𝐾 + 1) ≠ 0) |
| 23 | 12, 15, 17, 18, 19, 22 | divmuldivd 11945 | . . 3 ⊢ (𝜑 → (((𝐶 FallFac 𝐾) / (!‘𝐾)) · ((𝐶 − 𝐾) / (𝐾 + 1))) = (((𝐶 FallFac 𝐾) · (𝐶 − 𝐾)) / ((!‘𝐾) · (𝐾 + 1)))) |
| 24 | 7, 10, 23 | 3eqtr4d 2778 | . 2 ⊢ (𝜑 → (𝐶C𝑐(𝐾 + 1)) = (((𝐶 FallFac 𝐾) / (!‘𝐾)) · ((𝐶 − 𝐾) / (𝐾 + 1)))) |
| 25 | 1, 2 | bccval 44455 | . . 3 ⊢ (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾))) |
| 26 | 25 | oveq1d 7367 | . 2 ⊢ (𝜑 → ((𝐶C𝑐𝐾) · ((𝐶 − 𝐾) / (𝐾 + 1))) = (((𝐶 FallFac 𝐾) / (!‘𝐾)) · ((𝐶 − 𝐾) / (𝐾 + 1)))) |
| 27 | 24, 26 | eqtr4d 2771 | 1 ⊢ (𝜑 → (𝐶C𝑐(𝐾 + 1)) = ((𝐶C𝑐𝐾) · ((𝐶 − 𝐾) / (𝐾 + 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 1c1 11014 + caddc 11016 · cmul 11018 − cmin 11351 / cdiv 11781 ℕcn 12132 ℕ0cn0 12388 !cfa 14182 FallFac cfallfac 15913 C𝑐cbcc 44453 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-fz 13410 df-fzo 13557 df-seq 13911 df-exp 13971 df-fac 14183 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-prod 15813 df-fallfac 15916 df-bcc 44454 |
| This theorem is referenced by: bccm1k 44459 bccn1 44461 binomcxplemfrat 44468 binomcxplemnotnn0 44473 |
| Copyright terms: Public domain | W3C validator |