Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bccp1k Structured version   Visualization version   GIF version

Theorem bccp1k 39066
Description: Generalized binomial coefficient: 𝐶 choose (𝐾 + 1). (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
bccval.c (𝜑𝐶 ∈ ℂ)
bccval.k (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
bccp1k (𝜑 → (𝐶C𝑐(𝐾 + 1)) = ((𝐶C𝑐𝐾) · ((𝐶𝐾) / (𝐾 + 1))))

Proof of Theorem bccp1k
StepHypRef Expression
1 bccval.c . . . . 5 (𝜑𝐶 ∈ ℂ)
2 bccval.k . . . . 5 (𝜑𝐾 ∈ ℕ0)
3 fallfacp1 14967 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐶 FallFac (𝐾 + 1)) = ((𝐶 FallFac 𝐾) · (𝐶𝐾)))
41, 2, 3syl2anc 573 . . . 4 (𝜑 → (𝐶 FallFac (𝐾 + 1)) = ((𝐶 FallFac 𝐾) · (𝐶𝐾)))
5 facp1 13269 . . . . 5 (𝐾 ∈ ℕ0 → (!‘(𝐾 + 1)) = ((!‘𝐾) · (𝐾 + 1)))
62, 5syl 17 . . . 4 (𝜑 → (!‘(𝐾 + 1)) = ((!‘𝐾) · (𝐾 + 1)))
74, 6oveq12d 6811 . . 3 (𝜑 → ((𝐶 FallFac (𝐾 + 1)) / (!‘(𝐾 + 1))) = (((𝐶 FallFac 𝐾) · (𝐶𝐾)) / ((!‘𝐾) · (𝐾 + 1))))
8 peano2nn0 11535 . . . . 5 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
92, 8syl 17 . . . 4 (𝜑 → (𝐾 + 1) ∈ ℕ0)
101, 9bccval 39063 . . 3 (𝜑 → (𝐶C𝑐(𝐾 + 1)) = ((𝐶 FallFac (𝐾 + 1)) / (!‘(𝐾 + 1))))
11 fallfaccl 14953 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐶 FallFac 𝐾) ∈ ℂ)
121, 2, 11syl2anc 573 . . . 4 (𝜑 → (𝐶 FallFac 𝐾) ∈ ℂ)
13 faccl 13274 . . . . . 6 (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℕ)
142, 13syl 17 . . . . 5 (𝜑 → (!‘𝐾) ∈ ℕ)
1514nncnd 11238 . . . 4 (𝜑 → (!‘𝐾) ∈ ℂ)
162nn0cnd 11555 . . . . 5 (𝜑𝐾 ∈ ℂ)
171, 16subcld 10594 . . . 4 (𝜑 → (𝐶𝐾) ∈ ℂ)
189nn0cnd 11555 . . . 4 (𝜑 → (𝐾 + 1) ∈ ℂ)
1914nnne0d 11267 . . . 4 (𝜑 → (!‘𝐾) ≠ 0)
20 nn0p1nn 11534 . . . . . 6 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ)
212, 20syl 17 . . . . 5 (𝜑 → (𝐾 + 1) ∈ ℕ)
2221nnne0d 11267 . . . 4 (𝜑 → (𝐾 + 1) ≠ 0)
2312, 15, 17, 18, 19, 22divmuldivd 11044 . . 3 (𝜑 → (((𝐶 FallFac 𝐾) / (!‘𝐾)) · ((𝐶𝐾) / (𝐾 + 1))) = (((𝐶 FallFac 𝐾) · (𝐶𝐾)) / ((!‘𝐾) · (𝐾 + 1))))
247, 10, 233eqtr4d 2815 . 2 (𝜑 → (𝐶C𝑐(𝐾 + 1)) = (((𝐶 FallFac 𝐾) / (!‘𝐾)) · ((𝐶𝐾) / (𝐾 + 1))))
251, 2bccval 39063 . . 3 (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾)))
2625oveq1d 6808 . 2 (𝜑 → ((𝐶C𝑐𝐾) · ((𝐶𝐾) / (𝐾 + 1))) = (((𝐶 FallFac 𝐾) / (!‘𝐾)) · ((𝐶𝐾) / (𝐾 + 1))))
2724, 26eqtr4d 2808 1 (𝜑 → (𝐶C𝑐(𝐾 + 1)) = ((𝐶C𝑐𝐾) · ((𝐶𝐾) / (𝐾 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  cfv 6031  (class class class)co 6793  cc 10136  1c1 10139   + caddc 10141   · cmul 10143  cmin 10468   / cdiv 10886  cn 11222  0cn0 11494  !cfa 13264   FallFac cfallfac 14941  C𝑐cbcc 39061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-fac 13265  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-prod 14843  df-fallfac 14944  df-bcc 39062
This theorem is referenced by:  bccm1k  39067  bccn1  39069  binomcxplemfrat  39076  binomcxplemnotnn0  39081
  Copyright terms: Public domain W3C validator