| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bccp1k | Structured version Visualization version GIF version | ||
| Description: Generalized binomial coefficient: 𝐶 choose (𝐾 + 1). (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| Ref | Expression |
|---|---|
| bccval.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| bccval.k | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| bccp1k | ⊢ (𝜑 → (𝐶C𝑐(𝐾 + 1)) = ((𝐶C𝑐𝐾) · ((𝐶 − 𝐾) / (𝐾 + 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bccval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 2 | bccval.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
| 3 | fallfacp1 16046 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐶 FallFac (𝐾 + 1)) = ((𝐶 FallFac 𝐾) · (𝐶 − 𝐾))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐶 FallFac (𝐾 + 1)) = ((𝐶 FallFac 𝐾) · (𝐶 − 𝐾))) |
| 5 | facp1 14296 | . . . . 5 ⊢ (𝐾 ∈ ℕ0 → (!‘(𝐾 + 1)) = ((!‘𝐾) · (𝐾 + 1))) | |
| 6 | 2, 5 | syl 17 | . . . 4 ⊢ (𝜑 → (!‘(𝐾 + 1)) = ((!‘𝐾) · (𝐾 + 1))) |
| 7 | 4, 6 | oveq12d 7423 | . . 3 ⊢ (𝜑 → ((𝐶 FallFac (𝐾 + 1)) / (!‘(𝐾 + 1))) = (((𝐶 FallFac 𝐾) · (𝐶 − 𝐾)) / ((!‘𝐾) · (𝐾 + 1)))) |
| 8 | peano2nn0 12541 | . . . . 5 ⊢ (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0) | |
| 9 | 2, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐾 + 1) ∈ ℕ0) |
| 10 | 1, 9 | bccval 44362 | . . 3 ⊢ (𝜑 → (𝐶C𝑐(𝐾 + 1)) = ((𝐶 FallFac (𝐾 + 1)) / (!‘(𝐾 + 1)))) |
| 11 | fallfaccl 16032 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐶 FallFac 𝐾) ∈ ℂ) | |
| 12 | 1, 2, 11 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐶 FallFac 𝐾) ∈ ℂ) |
| 13 | faccl 14301 | . . . . . 6 ⊢ (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℕ) | |
| 14 | 2, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → (!‘𝐾) ∈ ℕ) |
| 15 | 14 | nncnd 12256 | . . . 4 ⊢ (𝜑 → (!‘𝐾) ∈ ℂ) |
| 16 | 2 | nn0cnd 12564 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 17 | 1, 16 | subcld 11594 | . . . 4 ⊢ (𝜑 → (𝐶 − 𝐾) ∈ ℂ) |
| 18 | 9 | nn0cnd 12564 | . . . 4 ⊢ (𝜑 → (𝐾 + 1) ∈ ℂ) |
| 19 | 14 | nnne0d 12290 | . . . 4 ⊢ (𝜑 → (!‘𝐾) ≠ 0) |
| 20 | nn0p1nn 12540 | . . . . . 6 ⊢ (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ) | |
| 21 | 2, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐾 + 1) ∈ ℕ) |
| 22 | 21 | nnne0d 12290 | . . . 4 ⊢ (𝜑 → (𝐾 + 1) ≠ 0) |
| 23 | 12, 15, 17, 18, 19, 22 | divmuldivd 12058 | . . 3 ⊢ (𝜑 → (((𝐶 FallFac 𝐾) / (!‘𝐾)) · ((𝐶 − 𝐾) / (𝐾 + 1))) = (((𝐶 FallFac 𝐾) · (𝐶 − 𝐾)) / ((!‘𝐾) · (𝐾 + 1)))) |
| 24 | 7, 10, 23 | 3eqtr4d 2780 | . 2 ⊢ (𝜑 → (𝐶C𝑐(𝐾 + 1)) = (((𝐶 FallFac 𝐾) / (!‘𝐾)) · ((𝐶 − 𝐾) / (𝐾 + 1)))) |
| 25 | 1, 2 | bccval 44362 | . . 3 ⊢ (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾))) |
| 26 | 25 | oveq1d 7420 | . 2 ⊢ (𝜑 → ((𝐶C𝑐𝐾) · ((𝐶 − 𝐾) / (𝐾 + 1))) = (((𝐶 FallFac 𝐾) / (!‘𝐾)) · ((𝐶 − 𝐾) / (𝐾 + 1)))) |
| 27 | 24, 26 | eqtr4d 2773 | 1 ⊢ (𝜑 → (𝐶C𝑐(𝐾 + 1)) = ((𝐶C𝑐𝐾) · ((𝐶 − 𝐾) / (𝐾 + 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 1c1 11130 + caddc 11132 · cmul 11134 − cmin 11466 / cdiv 11894 ℕcn 12240 ℕ0cn0 12501 !cfa 14291 FallFac cfallfac 16020 C𝑐cbcc 44360 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-fac 14292 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-prod 15920 df-fallfac 16023 df-bcc 44361 |
| This theorem is referenced by: bccm1k 44366 bccn1 44368 binomcxplemfrat 44375 binomcxplemnotnn0 44380 |
| Copyright terms: Public domain | W3C validator |