Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemwb Structured version   Visualization version   GIF version

Theorem binomcxplemwb 41966
Description: Lemma for binomcxp 41975. The lemma in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxplem.c (𝜑𝐶 ∈ ℂ)
binomcxplem.k (𝜑𝐾 ∈ ℕ)
Assertion
Ref Expression
binomcxplemwb (𝜑 → (((𝐶𝐾) · (𝐶C𝑐𝐾)) + ((𝐶 − (𝐾 − 1)) · (𝐶C𝑐(𝐾 − 1)))) = (𝐶 · (𝐶C𝑐𝐾)))

Proof of Theorem binomcxplemwb
StepHypRef Expression
1 binomcxplem.c . . . . . 6 (𝜑𝐶 ∈ ℂ)
2 binomcxplem.k . . . . . . 7 (𝜑𝐾 ∈ ℕ)
32nncnd 11989 . . . . . 6 (𝜑𝐾 ∈ ℂ)
41, 3npcand 11336 . . . . 5 (𝜑 → ((𝐶𝐾) + 𝐾) = 𝐶)
54oveq1d 7290 . . . 4 (𝜑 → (((𝐶𝐾) + 𝐾) · (𝐶 FallFac 𝐾)) = (𝐶 · (𝐶 FallFac 𝐾)))
61, 3subcld 11332 . . . . 5 (𝜑 → (𝐶𝐾) ∈ ℂ)
72nnnn0d 12293 . . . . . 6 (𝜑𝐾 ∈ ℕ0)
8 fallfaccl 15726 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐶 FallFac 𝐾) ∈ ℂ)
91, 7, 8syl2anc 584 . . . . 5 (𝜑 → (𝐶 FallFac 𝐾) ∈ ℂ)
106, 3, 9adddird 11000 . . . 4 (𝜑 → (((𝐶𝐾) + 𝐾) · (𝐶 FallFac 𝐾)) = (((𝐶𝐾) · (𝐶 FallFac 𝐾)) + (𝐾 · (𝐶 FallFac 𝐾))))
115, 10eqtr3d 2780 . . 3 (𝜑 → (𝐶 · (𝐶 FallFac 𝐾)) = (((𝐶𝐾) · (𝐶 FallFac 𝐾)) + (𝐾 · (𝐶 FallFac 𝐾))))
1211oveq1d 7290 . 2 (𝜑 → ((𝐶 · (𝐶 FallFac 𝐾)) / (!‘𝐾)) = ((((𝐶𝐾) · (𝐶 FallFac 𝐾)) + (𝐾 · (𝐶 FallFac 𝐾))) / (!‘𝐾)))
131, 7bccval 41956 . . . 4 (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾)))
1413oveq2d 7291 . . 3 (𝜑 → (𝐶 · (𝐶C𝑐𝐾)) = (𝐶 · ((𝐶 FallFac 𝐾) / (!‘𝐾))))
15 faccl 13997 . . . . . 6 (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℕ)
1615nncnd 11989 . . . . 5 (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℂ)
177, 16syl 17 . . . 4 (𝜑 → (!‘𝐾) ∈ ℂ)
18 facne0 14000 . . . . 5 (𝐾 ∈ ℕ0 → (!‘𝐾) ≠ 0)
197, 18syl 17 . . . 4 (𝜑 → (!‘𝐾) ≠ 0)
201, 9, 17, 19divassd 11786 . . 3 (𝜑 → ((𝐶 · (𝐶 FallFac 𝐾)) / (!‘𝐾)) = (𝐶 · ((𝐶 FallFac 𝐾) / (!‘𝐾))))
2114, 20eqtr4d 2781 . 2 (𝜑 → (𝐶 · (𝐶C𝑐𝐾)) = ((𝐶 · (𝐶 FallFac 𝐾)) / (!‘𝐾)))
226, 9, 17, 19divassd 11786 . . . 4 (𝜑 → (((𝐶𝐾) · (𝐶 FallFac 𝐾)) / (!‘𝐾)) = ((𝐶𝐾) · ((𝐶 FallFac 𝐾) / (!‘𝐾))))
2322oveq1d 7290 . . 3 (𝜑 → ((((𝐶𝐾) · (𝐶 FallFac 𝐾)) / (!‘𝐾)) + ((𝐾 · (𝐶 FallFac 𝐾)) / (!‘𝐾))) = (((𝐶𝐾) · ((𝐶 FallFac 𝐾) / (!‘𝐾))) + ((𝐾 · (𝐶 FallFac 𝐾)) / (!‘𝐾))))
246, 9mulcld 10995 . . . 4 (𝜑 → ((𝐶𝐾) · (𝐶 FallFac 𝐾)) ∈ ℂ)
253, 9mulcld 10995 . . . 4 (𝜑 → (𝐾 · (𝐶 FallFac 𝐾)) ∈ ℂ)
2624, 25, 17, 19divdird 11789 . . 3 (𝜑 → ((((𝐶𝐾) · (𝐶 FallFac 𝐾)) + (𝐾 · (𝐶 FallFac 𝐾))) / (!‘𝐾)) = ((((𝐶𝐾) · (𝐶 FallFac 𝐾)) / (!‘𝐾)) + ((𝐾 · (𝐶 FallFac 𝐾)) / (!‘𝐾))))
2713oveq2d 7291 . . . 4 (𝜑 → ((𝐶𝐾) · (𝐶C𝑐𝐾)) = ((𝐶𝐾) · ((𝐶 FallFac 𝐾) / (!‘𝐾))))
28 nnm1nn0 12274 . . . . . . . 8 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
292, 28syl 17 . . . . . . 7 (𝜑 → (𝐾 − 1) ∈ ℕ0)
30 faccl 13997 . . . . . . . 8 ((𝐾 − 1) ∈ ℕ0 → (!‘(𝐾 − 1)) ∈ ℕ)
3130nncnd 11989 . . . . . . 7 ((𝐾 − 1) ∈ ℕ0 → (!‘(𝐾 − 1)) ∈ ℂ)
3229, 31syl 17 . . . . . 6 (𝜑 → (!‘(𝐾 − 1)) ∈ ℂ)
33 facne0 14000 . . . . . . 7 ((𝐾 − 1) ∈ ℕ0 → (!‘(𝐾 − 1)) ≠ 0)
3429, 33syl 17 . . . . . 6 (𝜑 → (!‘(𝐾 − 1)) ≠ 0)
352nnne0d 12023 . . . . . 6 (𝜑𝐾 ≠ 0)
369, 32, 3, 34, 35divcan5d 11777 . . . . 5 (𝜑 → ((𝐾 · (𝐶 FallFac 𝐾)) / (𝐾 · (!‘(𝐾 − 1)))) = ((𝐶 FallFac 𝐾) / (!‘(𝐾 − 1))))
37 1cnd 10970 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
383, 37npcand 11336 . . . . . . . 8 (𝜑 → ((𝐾 − 1) + 1) = 𝐾)
3938fveq2d 6778 . . . . . . 7 (𝜑 → (!‘((𝐾 − 1) + 1)) = (!‘𝐾))
4038oveq2d 7291 . . . . . . . 8 (𝜑 → ((!‘(𝐾 − 1)) · ((𝐾 − 1) + 1)) = ((!‘(𝐾 − 1)) · 𝐾))
41 facp1 13992 . . . . . . . . 9 ((𝐾 − 1) ∈ ℕ0 → (!‘((𝐾 − 1) + 1)) = ((!‘(𝐾 − 1)) · ((𝐾 − 1) + 1)))
4229, 41syl 17 . . . . . . . 8 (𝜑 → (!‘((𝐾 − 1) + 1)) = ((!‘(𝐾 − 1)) · ((𝐾 − 1) + 1)))
433, 32mulcomd 10996 . . . . . . . 8 (𝜑 → (𝐾 · (!‘(𝐾 − 1))) = ((!‘(𝐾 − 1)) · 𝐾))
4440, 42, 433eqtr4d 2788 . . . . . . 7 (𝜑 → (!‘((𝐾 − 1) + 1)) = (𝐾 · (!‘(𝐾 − 1))))
4539, 44eqtr3d 2780 . . . . . 6 (𝜑 → (!‘𝐾) = (𝐾 · (!‘(𝐾 − 1))))
4645oveq2d 7291 . . . . 5 (𝜑 → ((𝐾 · (𝐶 FallFac 𝐾)) / (!‘𝐾)) = ((𝐾 · (𝐶 FallFac 𝐾)) / (𝐾 · (!‘(𝐾 − 1)))))
473, 37subcld 11332 . . . . . . . 8 (𝜑 → (𝐾 − 1) ∈ ℂ)
481, 47subcld 11332 . . . . . . 7 (𝜑 → (𝐶 − (𝐾 − 1)) ∈ ℂ)
49 fallfaccl 15726 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ (𝐾 − 1) ∈ ℕ0) → (𝐶 FallFac (𝐾 − 1)) ∈ ℂ)
501, 29, 49syl2anc 584 . . . . . . 7 (𝜑 → (𝐶 FallFac (𝐾 − 1)) ∈ ℂ)
5148, 50, 32, 34divassd 11786 . . . . . 6 (𝜑 → (((𝐶 − (𝐾 − 1)) · (𝐶 FallFac (𝐾 − 1))) / (!‘(𝐾 − 1))) = ((𝐶 − (𝐾 − 1)) · ((𝐶 FallFac (𝐾 − 1)) / (!‘(𝐾 − 1)))))
5238oveq2d 7291 . . . . . . . . 9 (𝜑 → (𝐶 FallFac ((𝐾 − 1) + 1)) = (𝐶 FallFac 𝐾))
53 fallfacp1 15740 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ (𝐾 − 1) ∈ ℕ0) → (𝐶 FallFac ((𝐾 − 1) + 1)) = ((𝐶 FallFac (𝐾 − 1)) · (𝐶 − (𝐾 − 1))))
541, 29, 53syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐶 FallFac ((𝐾 − 1) + 1)) = ((𝐶 FallFac (𝐾 − 1)) · (𝐶 − (𝐾 − 1))))
5552, 54eqtr3d 2780 . . . . . . . 8 (𝜑 → (𝐶 FallFac 𝐾) = ((𝐶 FallFac (𝐾 − 1)) · (𝐶 − (𝐾 − 1))))
5648, 50mulcomd 10996 . . . . . . . 8 (𝜑 → ((𝐶 − (𝐾 − 1)) · (𝐶 FallFac (𝐾 − 1))) = ((𝐶 FallFac (𝐾 − 1)) · (𝐶 − (𝐾 − 1))))
5755, 56eqtr4d 2781 . . . . . . 7 (𝜑 → (𝐶 FallFac 𝐾) = ((𝐶 − (𝐾 − 1)) · (𝐶 FallFac (𝐾 − 1))))
5857oveq1d 7290 . . . . . 6 (𝜑 → ((𝐶 FallFac 𝐾) / (!‘(𝐾 − 1))) = (((𝐶 − (𝐾 − 1)) · (𝐶 FallFac (𝐾 − 1))) / (!‘(𝐾 − 1))))
591, 29bccval 41956 . . . . . . 7 (𝜑 → (𝐶C𝑐(𝐾 − 1)) = ((𝐶 FallFac (𝐾 − 1)) / (!‘(𝐾 − 1))))
6059oveq2d 7291 . . . . . 6 (𝜑 → ((𝐶 − (𝐾 − 1)) · (𝐶C𝑐(𝐾 − 1))) = ((𝐶 − (𝐾 − 1)) · ((𝐶 FallFac (𝐾 − 1)) / (!‘(𝐾 − 1)))))
6151, 58, 603eqtr4rd 2789 . . . . 5 (𝜑 → ((𝐶 − (𝐾 − 1)) · (𝐶C𝑐(𝐾 − 1))) = ((𝐶 FallFac 𝐾) / (!‘(𝐾 − 1))))
6236, 46, 613eqtr4rd 2789 . . . 4 (𝜑 → ((𝐶 − (𝐾 − 1)) · (𝐶C𝑐(𝐾 − 1))) = ((𝐾 · (𝐶 FallFac 𝐾)) / (!‘𝐾)))
6327, 62oveq12d 7293 . . 3 (𝜑 → (((𝐶𝐾) · (𝐶C𝑐𝐾)) + ((𝐶 − (𝐾 − 1)) · (𝐶C𝑐(𝐾 − 1)))) = (((𝐶𝐾) · ((𝐶 FallFac 𝐾) / (!‘𝐾))) + ((𝐾 · (𝐶 FallFac 𝐾)) / (!‘𝐾))))
6423, 26, 633eqtr4rd 2789 . 2 (𝜑 → (((𝐶𝐾) · (𝐶C𝑐𝐾)) + ((𝐶 − (𝐾 − 1)) · (𝐶C𝑐(𝐾 − 1)))) = ((((𝐶𝐾) · (𝐶 FallFac 𝐾)) + (𝐾 · (𝐶 FallFac 𝐾))) / (!‘𝐾)))
6512, 21, 643eqtr4rd 2789 1 (𝜑 → (((𝐶𝐾) · (𝐶C𝑐𝐾)) + ((𝐶 − (𝐾 − 1)) · (𝐶C𝑐(𝐾 − 1)))) = (𝐶 · (𝐶C𝑐𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wne 2943  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205   / cdiv 11632  cn 11973  0cn0 12233  !cfa 13987   FallFac cfallfac 15714  C𝑐cbcc 41954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-fac 13988  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-prod 15616  df-fallfac 15717  df-bcc 41955
This theorem is referenced by:  binomcxplemnotnn0  41974
  Copyright terms: Public domain W3C validator