Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemwb Structured version   Visualization version   GIF version

Theorem binomcxplemwb 44341
Description: Lemma for binomcxp 44350. The lemma in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxplem.c (𝜑𝐶 ∈ ℂ)
binomcxplem.k (𝜑𝐾 ∈ ℕ)
Assertion
Ref Expression
binomcxplemwb (𝜑 → (((𝐶𝐾) · (𝐶C𝑐𝐾)) + ((𝐶 − (𝐾 − 1)) · (𝐶C𝑐(𝐾 − 1)))) = (𝐶 · (𝐶C𝑐𝐾)))

Proof of Theorem binomcxplemwb
StepHypRef Expression
1 binomcxplem.c . . . . . 6 (𝜑𝐶 ∈ ℂ)
2 binomcxplem.k . . . . . . 7 (𝜑𝐾 ∈ ℕ)
32nncnd 12144 . . . . . 6 (𝜑𝐾 ∈ ℂ)
41, 3npcand 11479 . . . . 5 (𝜑 → ((𝐶𝐾) + 𝐾) = 𝐶)
54oveq1d 7364 . . . 4 (𝜑 → (((𝐶𝐾) + 𝐾) · (𝐶 FallFac 𝐾)) = (𝐶 · (𝐶 FallFac 𝐾)))
61, 3subcld 11475 . . . . 5 (𝜑 → (𝐶𝐾) ∈ ℂ)
72nnnn0d 12445 . . . . . 6 (𝜑𝐾 ∈ ℕ0)
8 fallfaccl 15923 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐶 FallFac 𝐾) ∈ ℂ)
91, 7, 8syl2anc 584 . . . . 5 (𝜑 → (𝐶 FallFac 𝐾) ∈ ℂ)
106, 3, 9adddird 11140 . . . 4 (𝜑 → (((𝐶𝐾) + 𝐾) · (𝐶 FallFac 𝐾)) = (((𝐶𝐾) · (𝐶 FallFac 𝐾)) + (𝐾 · (𝐶 FallFac 𝐾))))
115, 10eqtr3d 2766 . . 3 (𝜑 → (𝐶 · (𝐶 FallFac 𝐾)) = (((𝐶𝐾) · (𝐶 FallFac 𝐾)) + (𝐾 · (𝐶 FallFac 𝐾))))
1211oveq1d 7364 . 2 (𝜑 → ((𝐶 · (𝐶 FallFac 𝐾)) / (!‘𝐾)) = ((((𝐶𝐾) · (𝐶 FallFac 𝐾)) + (𝐾 · (𝐶 FallFac 𝐾))) / (!‘𝐾)))
131, 7bccval 44331 . . . 4 (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾)))
1413oveq2d 7365 . . 3 (𝜑 → (𝐶 · (𝐶C𝑐𝐾)) = (𝐶 · ((𝐶 FallFac 𝐾) / (!‘𝐾))))
15 faccl 14190 . . . . . 6 (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℕ)
1615nncnd 12144 . . . . 5 (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℂ)
177, 16syl 17 . . . 4 (𝜑 → (!‘𝐾) ∈ ℂ)
18 facne0 14193 . . . . 5 (𝐾 ∈ ℕ0 → (!‘𝐾) ≠ 0)
197, 18syl 17 . . . 4 (𝜑 → (!‘𝐾) ≠ 0)
201, 9, 17, 19divassd 11935 . . 3 (𝜑 → ((𝐶 · (𝐶 FallFac 𝐾)) / (!‘𝐾)) = (𝐶 · ((𝐶 FallFac 𝐾) / (!‘𝐾))))
2114, 20eqtr4d 2767 . 2 (𝜑 → (𝐶 · (𝐶C𝑐𝐾)) = ((𝐶 · (𝐶 FallFac 𝐾)) / (!‘𝐾)))
226, 9, 17, 19divassd 11935 . . . 4 (𝜑 → (((𝐶𝐾) · (𝐶 FallFac 𝐾)) / (!‘𝐾)) = ((𝐶𝐾) · ((𝐶 FallFac 𝐾) / (!‘𝐾))))
2322oveq1d 7364 . . 3 (𝜑 → ((((𝐶𝐾) · (𝐶 FallFac 𝐾)) / (!‘𝐾)) + ((𝐾 · (𝐶 FallFac 𝐾)) / (!‘𝐾))) = (((𝐶𝐾) · ((𝐶 FallFac 𝐾) / (!‘𝐾))) + ((𝐾 · (𝐶 FallFac 𝐾)) / (!‘𝐾))))
246, 9mulcld 11135 . . . 4 (𝜑 → ((𝐶𝐾) · (𝐶 FallFac 𝐾)) ∈ ℂ)
253, 9mulcld 11135 . . . 4 (𝜑 → (𝐾 · (𝐶 FallFac 𝐾)) ∈ ℂ)
2624, 25, 17, 19divdird 11938 . . 3 (𝜑 → ((((𝐶𝐾) · (𝐶 FallFac 𝐾)) + (𝐾 · (𝐶 FallFac 𝐾))) / (!‘𝐾)) = ((((𝐶𝐾) · (𝐶 FallFac 𝐾)) / (!‘𝐾)) + ((𝐾 · (𝐶 FallFac 𝐾)) / (!‘𝐾))))
2713oveq2d 7365 . . . 4 (𝜑 → ((𝐶𝐾) · (𝐶C𝑐𝐾)) = ((𝐶𝐾) · ((𝐶 FallFac 𝐾) / (!‘𝐾))))
28 nnm1nn0 12425 . . . . . . . 8 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
292, 28syl 17 . . . . . . 7 (𝜑 → (𝐾 − 1) ∈ ℕ0)
30 faccl 14190 . . . . . . . 8 ((𝐾 − 1) ∈ ℕ0 → (!‘(𝐾 − 1)) ∈ ℕ)
3130nncnd 12144 . . . . . . 7 ((𝐾 − 1) ∈ ℕ0 → (!‘(𝐾 − 1)) ∈ ℂ)
3229, 31syl 17 . . . . . 6 (𝜑 → (!‘(𝐾 − 1)) ∈ ℂ)
33 facne0 14193 . . . . . . 7 ((𝐾 − 1) ∈ ℕ0 → (!‘(𝐾 − 1)) ≠ 0)
3429, 33syl 17 . . . . . 6 (𝜑 → (!‘(𝐾 − 1)) ≠ 0)
352nnne0d 12178 . . . . . 6 (𝜑𝐾 ≠ 0)
369, 32, 3, 34, 35divcan5d 11926 . . . . 5 (𝜑 → ((𝐾 · (𝐶 FallFac 𝐾)) / (𝐾 · (!‘(𝐾 − 1)))) = ((𝐶 FallFac 𝐾) / (!‘(𝐾 − 1))))
37 1cnd 11110 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
383, 37npcand 11479 . . . . . . . 8 (𝜑 → ((𝐾 − 1) + 1) = 𝐾)
3938fveq2d 6826 . . . . . . 7 (𝜑 → (!‘((𝐾 − 1) + 1)) = (!‘𝐾))
4038oveq2d 7365 . . . . . . . 8 (𝜑 → ((!‘(𝐾 − 1)) · ((𝐾 − 1) + 1)) = ((!‘(𝐾 − 1)) · 𝐾))
41 facp1 14185 . . . . . . . . 9 ((𝐾 − 1) ∈ ℕ0 → (!‘((𝐾 − 1) + 1)) = ((!‘(𝐾 − 1)) · ((𝐾 − 1) + 1)))
4229, 41syl 17 . . . . . . . 8 (𝜑 → (!‘((𝐾 − 1) + 1)) = ((!‘(𝐾 − 1)) · ((𝐾 − 1) + 1)))
433, 32mulcomd 11136 . . . . . . . 8 (𝜑 → (𝐾 · (!‘(𝐾 − 1))) = ((!‘(𝐾 − 1)) · 𝐾))
4440, 42, 433eqtr4d 2774 . . . . . . 7 (𝜑 → (!‘((𝐾 − 1) + 1)) = (𝐾 · (!‘(𝐾 − 1))))
4539, 44eqtr3d 2766 . . . . . 6 (𝜑 → (!‘𝐾) = (𝐾 · (!‘(𝐾 − 1))))
4645oveq2d 7365 . . . . 5 (𝜑 → ((𝐾 · (𝐶 FallFac 𝐾)) / (!‘𝐾)) = ((𝐾 · (𝐶 FallFac 𝐾)) / (𝐾 · (!‘(𝐾 − 1)))))
473, 37subcld 11475 . . . . . . . 8 (𝜑 → (𝐾 − 1) ∈ ℂ)
481, 47subcld 11475 . . . . . . 7 (𝜑 → (𝐶 − (𝐾 − 1)) ∈ ℂ)
49 fallfaccl 15923 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ (𝐾 − 1) ∈ ℕ0) → (𝐶 FallFac (𝐾 − 1)) ∈ ℂ)
501, 29, 49syl2anc 584 . . . . . . 7 (𝜑 → (𝐶 FallFac (𝐾 − 1)) ∈ ℂ)
5148, 50, 32, 34divassd 11935 . . . . . 6 (𝜑 → (((𝐶 − (𝐾 − 1)) · (𝐶 FallFac (𝐾 − 1))) / (!‘(𝐾 − 1))) = ((𝐶 − (𝐾 − 1)) · ((𝐶 FallFac (𝐾 − 1)) / (!‘(𝐾 − 1)))))
5238oveq2d 7365 . . . . . . . . 9 (𝜑 → (𝐶 FallFac ((𝐾 − 1) + 1)) = (𝐶 FallFac 𝐾))
53 fallfacp1 15937 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ (𝐾 − 1) ∈ ℕ0) → (𝐶 FallFac ((𝐾 − 1) + 1)) = ((𝐶 FallFac (𝐾 − 1)) · (𝐶 − (𝐾 − 1))))
541, 29, 53syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐶 FallFac ((𝐾 − 1) + 1)) = ((𝐶 FallFac (𝐾 − 1)) · (𝐶 − (𝐾 − 1))))
5552, 54eqtr3d 2766 . . . . . . . 8 (𝜑 → (𝐶 FallFac 𝐾) = ((𝐶 FallFac (𝐾 − 1)) · (𝐶 − (𝐾 − 1))))
5648, 50mulcomd 11136 . . . . . . . 8 (𝜑 → ((𝐶 − (𝐾 − 1)) · (𝐶 FallFac (𝐾 − 1))) = ((𝐶 FallFac (𝐾 − 1)) · (𝐶 − (𝐾 − 1))))
5755, 56eqtr4d 2767 . . . . . . 7 (𝜑 → (𝐶 FallFac 𝐾) = ((𝐶 − (𝐾 − 1)) · (𝐶 FallFac (𝐾 − 1))))
5857oveq1d 7364 . . . . . 6 (𝜑 → ((𝐶 FallFac 𝐾) / (!‘(𝐾 − 1))) = (((𝐶 − (𝐾 − 1)) · (𝐶 FallFac (𝐾 − 1))) / (!‘(𝐾 − 1))))
591, 29bccval 44331 . . . . . . 7 (𝜑 → (𝐶C𝑐(𝐾 − 1)) = ((𝐶 FallFac (𝐾 − 1)) / (!‘(𝐾 − 1))))
6059oveq2d 7365 . . . . . 6 (𝜑 → ((𝐶 − (𝐾 − 1)) · (𝐶C𝑐(𝐾 − 1))) = ((𝐶 − (𝐾 − 1)) · ((𝐶 FallFac (𝐾 − 1)) / (!‘(𝐾 − 1)))))
6151, 58, 603eqtr4rd 2775 . . . . 5 (𝜑 → ((𝐶 − (𝐾 − 1)) · (𝐶C𝑐(𝐾 − 1))) = ((𝐶 FallFac 𝐾) / (!‘(𝐾 − 1))))
6236, 46, 613eqtr4rd 2775 . . . 4 (𝜑 → ((𝐶 − (𝐾 − 1)) · (𝐶C𝑐(𝐾 − 1))) = ((𝐾 · (𝐶 FallFac 𝐾)) / (!‘𝐾)))
6327, 62oveq12d 7367 . . 3 (𝜑 → (((𝐶𝐾) · (𝐶C𝑐𝐾)) + ((𝐶 − (𝐾 − 1)) · (𝐶C𝑐(𝐾 − 1)))) = (((𝐶𝐾) · ((𝐶 FallFac 𝐾) / (!‘𝐾))) + ((𝐾 · (𝐶 FallFac 𝐾)) / (!‘𝐾))))
6423, 26, 633eqtr4rd 2775 . 2 (𝜑 → (((𝐶𝐾) · (𝐶C𝑐𝐾)) + ((𝐶 − (𝐾 − 1)) · (𝐶C𝑐(𝐾 − 1)))) = ((((𝐶𝐾) · (𝐶 FallFac 𝐾)) + (𝐾 · (𝐶 FallFac 𝐾))) / (!‘𝐾)))
6512, 21, 643eqtr4rd 2775 1 (𝜑 → (((𝐶𝐾) · (𝐶C𝑐𝐾)) + ((𝐶 − (𝐾 − 1)) · (𝐶C𝑐(𝐾 − 1)))) = (𝐶 · (𝐶C𝑐𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  cmin 11347   / cdiv 11777  cn 12128  0cn0 12384  !cfa 14180   FallFac cfallfac 15911  C𝑐cbcc 44329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-fac 14181  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-prod 15811  df-fallfac 15914  df-bcc 44330
This theorem is referenced by:  binomcxplemnotnn0  44349
  Copyright terms: Public domain W3C validator