Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgccnv Structured version   Visualization version   GIF version

Theorem mgccnv 32925
Description: The inverse Galois connection is the Galois connection of the dual orders. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgccnv.1 𝐻 = (𝑉MGalConn𝑊)
mgccnv.2 𝑀 = ((ODual‘𝑊)MGalConn(ODual‘𝑉))
Assertion
Ref Expression
mgccnv ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹𝐻𝐺𝐺𝑀𝐹))

Proof of Theorem mgccnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ancom 460 . . . 4 ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ↔ (𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊)))
21a1i 11 . . 3 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ↔ (𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊))))
3 ralcom 3265 . . . 4 (∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)))
4 bicom 222 . . . . . . 7 (((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)) ↔ (𝑥(le‘𝑉)(𝐺𝑦) ↔ (𝐹𝑥)(le‘𝑊)𝑦))
5 fvex 6871 . . . . . . . . . . 11 (𝐺𝑦) ∈ V
6 vex 3451 . . . . . . . . . . 11 𝑥 ∈ V
75, 6brcnv 5846 . . . . . . . . . 10 ((𝐺𝑦)(le‘𝑉)𝑥𝑥(le‘𝑉)(𝐺𝑦))
87bicomi 224 . . . . . . . . 9 (𝑥(le‘𝑉)(𝐺𝑦) ↔ (𝐺𝑦)(le‘𝑉)𝑥)
98a1i 11 . . . . . . . 8 ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → (𝑥(le‘𝑉)(𝐺𝑦) ↔ (𝐺𝑦)(le‘𝑉)𝑥))
10 vex 3451 . . . . . . . . . . 11 𝑦 ∈ V
11 fvex 6871 . . . . . . . . . . 11 (𝐹𝑥) ∈ V
1210, 11brcnv 5846 . . . . . . . . . 10 (𝑦(le‘𝑊)(𝐹𝑥) ↔ (𝐹𝑥)(le‘𝑊)𝑦)
1312bicomi 224 . . . . . . . . 9 ((𝐹𝑥)(le‘𝑊)𝑦𝑦(le‘𝑊)(𝐹𝑥))
1413a1i 11 . . . . . . . 8 ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → ((𝐹𝑥)(le‘𝑊)𝑦𝑦(le‘𝑊)(𝐹𝑥)))
159, 14bibi12d 345 . . . . . . 7 ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → ((𝑥(le‘𝑉)(𝐺𝑦) ↔ (𝐹𝑥)(le‘𝑊)𝑦) ↔ ((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥))))
164, 15bitrid 283 . . . . . 6 ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → (((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)) ↔ ((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥))))
1716ralbidva 3154 . . . . 5 (((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) → (∀𝑥 ∈ (Base‘𝑉)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)) ↔ ∀𝑥 ∈ (Base‘𝑉)((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥))))
1817ralbidva 3154 . . . 4 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥))))
193, 18bitrid 283 . . 3 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥))))
202, 19anbi12d 632 . 2 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦))) ↔ ((𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥)))))
21 eqid 2729 . . 3 (Base‘𝑉) = (Base‘𝑉)
22 eqid 2729 . . 3 (Base‘𝑊) = (Base‘𝑊)
23 eqid 2729 . . 3 (le‘𝑉) = (le‘𝑉)
24 eqid 2729 . . 3 (le‘𝑊) = (le‘𝑊)
25 mgccnv.1 . . 3 𝐻 = (𝑉MGalConn𝑊)
26 simpl 482 . . 3 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → 𝑉 ∈ Proset )
27 simpr 484 . . 3 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → 𝑊 ∈ Proset )
2821, 22, 23, 24, 25, 26, 27mgcval 32913 . 2 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹𝐻𝐺 ↔ ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)))))
29 eqid 2729 . . . 4 (ODual‘𝑊) = (ODual‘𝑊)
3029, 22odubas 18252 . . 3 (Base‘𝑊) = (Base‘(ODual‘𝑊))
31 eqid 2729 . . . 4 (ODual‘𝑉) = (ODual‘𝑉)
3231, 21odubas 18252 . . 3 (Base‘𝑉) = (Base‘(ODual‘𝑉))
3329, 24oduleval 18250 . . 3 (le‘𝑊) = (le‘(ODual‘𝑊))
3431, 23oduleval 18250 . . 3 (le‘𝑉) = (le‘(ODual‘𝑉))
35 mgccnv.2 . . 3 𝑀 = ((ODual‘𝑊)MGalConn(ODual‘𝑉))
3629oduprs 18261 . . . 4 (𝑊 ∈ Proset → (ODual‘𝑊) ∈ Proset )
3727, 36syl 17 . . 3 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (ODual‘𝑊) ∈ Proset )
3831oduprs 18261 . . . 4 (𝑉 ∈ Proset → (ODual‘𝑉) ∈ Proset )
3926, 38syl 17 . . 3 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (ODual‘𝑉) ∈ Proset )
4030, 32, 33, 34, 35, 37, 39mgcval 32913 . 2 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐺𝑀𝐹 ↔ ((𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥)))))
4120, 28, 403bitr4d 311 1 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹𝐻𝐺𝐺𝑀𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5107  ccnv 5637  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  ODualcodu 18247   Proset cproset 18253  MGalConncmgc 32905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-dec 12650  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ple 17240  df-odu 18248  df-proset 18255  df-mgc 32907
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator