Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgccnv Structured version   Visualization version   GIF version

Theorem mgccnv 32974
Description: The inverse Galois connection is the Galois connection of the dual orders. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgccnv.1 𝐻 = (𝑉MGalConn𝑊)
mgccnv.2 𝑀 = ((ODual‘𝑊)MGalConn(ODual‘𝑉))
Assertion
Ref Expression
mgccnv ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹𝐻𝐺𝐺𝑀𝐹))

Proof of Theorem mgccnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ancom 460 . . . 4 ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ↔ (𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊)))
21a1i 11 . . 3 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ↔ (𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊))))
3 ralcom 3287 . . . 4 (∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)))
4 bicom 222 . . . . . . 7 (((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)) ↔ (𝑥(le‘𝑉)(𝐺𝑦) ↔ (𝐹𝑥)(le‘𝑊)𝑦))
5 fvex 6920 . . . . . . . . . . 11 (𝐺𝑦) ∈ V
6 vex 3482 . . . . . . . . . . 11 𝑥 ∈ V
75, 6brcnv 5896 . . . . . . . . . 10 ((𝐺𝑦)(le‘𝑉)𝑥𝑥(le‘𝑉)(𝐺𝑦))
87bicomi 224 . . . . . . . . 9 (𝑥(le‘𝑉)(𝐺𝑦) ↔ (𝐺𝑦)(le‘𝑉)𝑥)
98a1i 11 . . . . . . . 8 ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → (𝑥(le‘𝑉)(𝐺𝑦) ↔ (𝐺𝑦)(le‘𝑉)𝑥))
10 vex 3482 . . . . . . . . . . 11 𝑦 ∈ V
11 fvex 6920 . . . . . . . . . . 11 (𝐹𝑥) ∈ V
1210, 11brcnv 5896 . . . . . . . . . 10 (𝑦(le‘𝑊)(𝐹𝑥) ↔ (𝐹𝑥)(le‘𝑊)𝑦)
1312bicomi 224 . . . . . . . . 9 ((𝐹𝑥)(le‘𝑊)𝑦𝑦(le‘𝑊)(𝐹𝑥))
1413a1i 11 . . . . . . . 8 ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → ((𝐹𝑥)(le‘𝑊)𝑦𝑦(le‘𝑊)(𝐹𝑥)))
159, 14bibi12d 345 . . . . . . 7 ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → ((𝑥(le‘𝑉)(𝐺𝑦) ↔ (𝐹𝑥)(le‘𝑊)𝑦) ↔ ((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥))))
164, 15bitrid 283 . . . . . 6 ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → (((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)) ↔ ((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥))))
1716ralbidva 3174 . . . . 5 (((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) → (∀𝑥 ∈ (Base‘𝑉)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)) ↔ ∀𝑥 ∈ (Base‘𝑉)((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥))))
1817ralbidva 3174 . . . 4 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥))))
193, 18bitrid 283 . . 3 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥))))
202, 19anbi12d 632 . 2 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦))) ↔ ((𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥)))))
21 eqid 2735 . . 3 (Base‘𝑉) = (Base‘𝑉)
22 eqid 2735 . . 3 (Base‘𝑊) = (Base‘𝑊)
23 eqid 2735 . . 3 (le‘𝑉) = (le‘𝑉)
24 eqid 2735 . . 3 (le‘𝑊) = (le‘𝑊)
25 mgccnv.1 . . 3 𝐻 = (𝑉MGalConn𝑊)
26 simpl 482 . . 3 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → 𝑉 ∈ Proset )
27 simpr 484 . . 3 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → 𝑊 ∈ Proset )
2821, 22, 23, 24, 25, 26, 27mgcval 32962 . 2 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹𝐻𝐺 ↔ ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)))))
29 eqid 2735 . . . 4 (ODual‘𝑊) = (ODual‘𝑊)
3029, 22odubas 18348 . . 3 (Base‘𝑊) = (Base‘(ODual‘𝑊))
31 eqid 2735 . . . 4 (ODual‘𝑉) = (ODual‘𝑉)
3231, 21odubas 18348 . . 3 (Base‘𝑉) = (Base‘(ODual‘𝑉))
3329, 24oduleval 18346 . . 3 (le‘𝑊) = (le‘(ODual‘𝑊))
3431, 23oduleval 18346 . . 3 (le‘𝑉) = (le‘(ODual‘𝑉))
35 mgccnv.2 . . 3 𝑀 = ((ODual‘𝑊)MGalConn(ODual‘𝑉))
3629oduprs 18358 . . . 4 (𝑊 ∈ Proset → (ODual‘𝑊) ∈ Proset )
3727, 36syl 17 . . 3 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (ODual‘𝑊) ∈ Proset )
3831oduprs 18358 . . . 4 (𝑉 ∈ Proset → (ODual‘𝑉) ∈ Proset )
3926, 38syl 17 . . 3 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (ODual‘𝑉) ∈ Proset )
4030, 32, 33, 34, 35, 37, 39mgcval 32962 . 2 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐺𝑀𝐹 ↔ ((𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥)))))
4120, 28, 403bitr4d 311 1 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹𝐻𝐺𝐺𝑀𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059   class class class wbr 5148  ccnv 5688  wf 6559  cfv 6563  (class class class)co 7431  Basecbs 17245  lecple 17305  ODualcodu 18343   Proset cproset 18350  MGalConncmgc 32954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-dec 12732  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ple 17318  df-odu 18344  df-proset 18352  df-mgc 32956
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator