Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgccnv Structured version   Visualization version   GIF version

Theorem mgccnv 31859
Description: The inverse Galois connection is the Galois connection of the dual orders. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgccnv.1 𝐻 = (𝑉MGalConn𝑊)
mgccnv.2 𝑀 = ((ODual‘𝑊)MGalConn(ODual‘𝑉))
Assertion
Ref Expression
mgccnv ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹𝐻𝐺𝐺𝑀𝐹))

Proof of Theorem mgccnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ancom 461 . . . 4 ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ↔ (𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊)))
21a1i 11 . . 3 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ↔ (𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊))))
3 ralcom 3272 . . . 4 (∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)))
4 bicom 221 . . . . . . 7 (((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)) ↔ (𝑥(le‘𝑉)(𝐺𝑦) ↔ (𝐹𝑥)(le‘𝑊)𝑦))
5 fvex 6855 . . . . . . . . . . 11 (𝐺𝑦) ∈ V
6 vex 3449 . . . . . . . . . . 11 𝑥 ∈ V
75, 6brcnv 5838 . . . . . . . . . 10 ((𝐺𝑦)(le‘𝑉)𝑥𝑥(le‘𝑉)(𝐺𝑦))
87bicomi 223 . . . . . . . . 9 (𝑥(le‘𝑉)(𝐺𝑦) ↔ (𝐺𝑦)(le‘𝑉)𝑥)
98a1i 11 . . . . . . . 8 ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → (𝑥(le‘𝑉)(𝐺𝑦) ↔ (𝐺𝑦)(le‘𝑉)𝑥))
10 vex 3449 . . . . . . . . . . 11 𝑦 ∈ V
11 fvex 6855 . . . . . . . . . . 11 (𝐹𝑥) ∈ V
1210, 11brcnv 5838 . . . . . . . . . 10 (𝑦(le‘𝑊)(𝐹𝑥) ↔ (𝐹𝑥)(le‘𝑊)𝑦)
1312bicomi 223 . . . . . . . . 9 ((𝐹𝑥)(le‘𝑊)𝑦𝑦(le‘𝑊)(𝐹𝑥))
1413a1i 11 . . . . . . . 8 ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → ((𝐹𝑥)(le‘𝑊)𝑦𝑦(le‘𝑊)(𝐹𝑥)))
159, 14bibi12d 345 . . . . . . 7 ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → ((𝑥(le‘𝑉)(𝐺𝑦) ↔ (𝐹𝑥)(le‘𝑊)𝑦) ↔ ((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥))))
164, 15bitrid 282 . . . . . 6 ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → (((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)) ↔ ((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥))))
1716ralbidva 3172 . . . . 5 (((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) → (∀𝑥 ∈ (Base‘𝑉)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)) ↔ ∀𝑥 ∈ (Base‘𝑉)((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥))))
1817ralbidva 3172 . . . 4 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥))))
193, 18bitrid 282 . . 3 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥))))
202, 19anbi12d 631 . 2 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦))) ↔ ((𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥)))))
21 eqid 2736 . . 3 (Base‘𝑉) = (Base‘𝑉)
22 eqid 2736 . . 3 (Base‘𝑊) = (Base‘𝑊)
23 eqid 2736 . . 3 (le‘𝑉) = (le‘𝑉)
24 eqid 2736 . . 3 (le‘𝑊) = (le‘𝑊)
25 mgccnv.1 . . 3 𝐻 = (𝑉MGalConn𝑊)
26 simpl 483 . . 3 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → 𝑉 ∈ Proset )
27 simpr 485 . . 3 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → 𝑊 ∈ Proset )
2821, 22, 23, 24, 25, 26, 27mgcval 31847 . 2 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹𝐻𝐺 ↔ ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)))))
29 eqid 2736 . . . 4 (ODual‘𝑊) = (ODual‘𝑊)
3029, 22odubas 18180 . . 3 (Base‘𝑊) = (Base‘(ODual‘𝑊))
31 eqid 2736 . . . 4 (ODual‘𝑉) = (ODual‘𝑉)
3231, 21odubas 18180 . . 3 (Base‘𝑉) = (Base‘(ODual‘𝑉))
3329, 24oduleval 18178 . . 3 (le‘𝑊) = (le‘(ODual‘𝑊))
3431, 23oduleval 18178 . . 3 (le‘𝑉) = (le‘(ODual‘𝑉))
35 mgccnv.2 . . 3 𝑀 = ((ODual‘𝑊)MGalConn(ODual‘𝑉))
3629oduprs 31824 . . . 4 (𝑊 ∈ Proset → (ODual‘𝑊) ∈ Proset )
3727, 36syl 17 . . 3 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (ODual‘𝑊) ∈ Proset )
3831oduprs 31824 . . . 4 (𝑉 ∈ Proset → (ODual‘𝑉) ∈ Proset )
3926, 38syl 17 . . 3 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (ODual‘𝑉) ∈ Proset )
4030, 32, 33, 34, 35, 37, 39mgcval 31847 . 2 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐺𝑀𝐹 ↔ ((𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥)))))
4120, 28, 403bitr4d 310 1 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹𝐻𝐺𝐺𝑀𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064   class class class wbr 5105  ccnv 5632  wf 6492  cfv 6496  (class class class)co 7357  Basecbs 17083  lecple 17140  ODualcodu 18175   Proset cproset 18182  MGalConncmgc 31839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-dec 12619  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ple 17153  df-odu 18176  df-proset 18184  df-mgc 31841
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator