Step | Hyp | Ref
| Expression |
1 | | ancom 461 |
. . . 4
⊢ ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ↔ (𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊))) |
2 | 1 | a1i 11 |
. . 3
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ↔ (𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊)))) |
3 | | ralcom 3166 |
. . . 4
⊢
(∀𝑥 ∈
(Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦))) |
4 | | bicom 221 |
. . . . . . 7
⊢ (((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦)) ↔ (𝑥(le‘𝑉)(𝐺‘𝑦) ↔ (𝐹‘𝑥)(le‘𝑊)𝑦)) |
5 | | fvex 6787 |
. . . . . . . . . . 11
⊢ (𝐺‘𝑦) ∈ V |
6 | | vex 3436 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
7 | 5, 6 | brcnv 5791 |
. . . . . . . . . 10
⊢ ((𝐺‘𝑦)◡(le‘𝑉)𝑥 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦)) |
8 | 7 | bicomi 223 |
. . . . . . . . 9
⊢ (𝑥(le‘𝑉)(𝐺‘𝑦) ↔ (𝐺‘𝑦)◡(le‘𝑉)𝑥) |
9 | 8 | a1i 11 |
. . . . . . . 8
⊢ ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → (𝑥(le‘𝑉)(𝐺‘𝑦) ↔ (𝐺‘𝑦)◡(le‘𝑉)𝑥)) |
10 | | vex 3436 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
11 | | fvex 6787 |
. . . . . . . . . . 11
⊢ (𝐹‘𝑥) ∈ V |
12 | 10, 11 | brcnv 5791 |
. . . . . . . . . 10
⊢ (𝑦◡(le‘𝑊)(𝐹‘𝑥) ↔ (𝐹‘𝑥)(le‘𝑊)𝑦) |
13 | 12 | bicomi 223 |
. . . . . . . . 9
⊢ ((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥)) |
14 | 13 | a1i 11 |
. . . . . . . 8
⊢ ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → ((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥))) |
15 | 9, 14 | bibi12d 346 |
. . . . . . 7
⊢ ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → ((𝑥(le‘𝑉)(𝐺‘𝑦) ↔ (𝐹‘𝑥)(le‘𝑊)𝑦) ↔ ((𝐺‘𝑦)◡(le‘𝑉)𝑥 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥)))) |
16 | 4, 15 | syl5bb 283 |
. . . . . 6
⊢ ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → (((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦)) ↔ ((𝐺‘𝑦)◡(le‘𝑉)𝑥 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥)))) |
17 | 16 | ralbidva 3111 |
. . . . 5
⊢ (((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) → (∀𝑥 ∈ (Base‘𝑉)((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝑉)((𝐺‘𝑦)◡(le‘𝑉)𝑥 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥)))) |
18 | 17 | ralbidva 3111 |
. . . 4
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) →
(∀𝑦 ∈
(Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺‘𝑦)◡(le‘𝑉)𝑥 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥)))) |
19 | 3, 18 | syl5bb 283 |
. . 3
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) →
(∀𝑥 ∈
(Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺‘𝑦)◡(le‘𝑉)𝑥 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥)))) |
20 | 2, 19 | anbi12d 631 |
. 2
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦))) ↔ ((𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺‘𝑦)◡(le‘𝑉)𝑥 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥))))) |
21 | | eqid 2738 |
. . 3
⊢
(Base‘𝑉) =
(Base‘𝑉) |
22 | | eqid 2738 |
. . 3
⊢
(Base‘𝑊) =
(Base‘𝑊) |
23 | | eqid 2738 |
. . 3
⊢
(le‘𝑉) =
(le‘𝑉) |
24 | | eqid 2738 |
. . 3
⊢
(le‘𝑊) =
(le‘𝑊) |
25 | | mgccnv.1 |
. . 3
⊢ 𝐻 = (𝑉MGalConn𝑊) |
26 | | simpl 483 |
. . 3
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → 𝑉 ∈ Proset
) |
27 | | simpr 485 |
. . 3
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → 𝑊 ∈ Proset
) |
28 | 21, 22, 23, 24, 25, 26, 27 | mgcval 31265 |
. 2
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹𝐻𝐺 ↔ ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦))))) |
29 | | eqid 2738 |
. . . 4
⊢
(ODual‘𝑊) =
(ODual‘𝑊) |
30 | 29, 22 | odubas 18009 |
. . 3
⊢
(Base‘𝑊) =
(Base‘(ODual‘𝑊)) |
31 | | eqid 2738 |
. . . 4
⊢
(ODual‘𝑉) =
(ODual‘𝑉) |
32 | 31, 21 | odubas 18009 |
. . 3
⊢
(Base‘𝑉) =
(Base‘(ODual‘𝑉)) |
33 | 29, 24 | oduleval 18007 |
. . 3
⊢ ◡(le‘𝑊) = (le‘(ODual‘𝑊)) |
34 | 31, 23 | oduleval 18007 |
. . 3
⊢ ◡(le‘𝑉) = (le‘(ODual‘𝑉)) |
35 | | mgccnv.2 |
. . 3
⊢ 𝑀 = ((ODual‘𝑊)MGalConn(ODual‘𝑉)) |
36 | 29 | oduprs 31242 |
. . . 4
⊢ (𝑊 ∈ Proset →
(ODual‘𝑊) ∈
Proset ) |
37 | 27, 36 | syl 17 |
. . 3
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) →
(ODual‘𝑊) ∈
Proset ) |
38 | 31 | oduprs 31242 |
. . . 4
⊢ (𝑉 ∈ Proset →
(ODual‘𝑉) ∈
Proset ) |
39 | 26, 38 | syl 17 |
. . 3
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) →
(ODual‘𝑉) ∈
Proset ) |
40 | 30, 32, 33, 34, 35, 37, 39 | mgcval 31265 |
. 2
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐺𝑀𝐹 ↔ ((𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺‘𝑦)◡(le‘𝑉)𝑥 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥))))) |
41 | 20, 28, 40 | 3bitr4d 311 |
1
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹𝐻𝐺 ↔ 𝐺𝑀𝐹)) |