| Step | Hyp | Ref
| Expression |
| 1 | | ancom 460 |
. . . 4
⊢ ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ↔ (𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊))) |
| 2 | 1 | a1i 11 |
. . 3
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ↔ (𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊)))) |
| 3 | | ralcom 3274 |
. . . 4
⊢
(∀𝑥 ∈
(Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦))) |
| 4 | | bicom 222 |
. . . . . . 7
⊢ (((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦)) ↔ (𝑥(le‘𝑉)(𝐺‘𝑦) ↔ (𝐹‘𝑥)(le‘𝑊)𝑦)) |
| 5 | | fvex 6894 |
. . . . . . . . . . 11
⊢ (𝐺‘𝑦) ∈ V |
| 6 | | vex 3468 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
| 7 | 5, 6 | brcnv 5867 |
. . . . . . . . . 10
⊢ ((𝐺‘𝑦)◡(le‘𝑉)𝑥 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦)) |
| 8 | 7 | bicomi 224 |
. . . . . . . . 9
⊢ (𝑥(le‘𝑉)(𝐺‘𝑦) ↔ (𝐺‘𝑦)◡(le‘𝑉)𝑥) |
| 9 | 8 | a1i 11 |
. . . . . . . 8
⊢ ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → (𝑥(le‘𝑉)(𝐺‘𝑦) ↔ (𝐺‘𝑦)◡(le‘𝑉)𝑥)) |
| 10 | | vex 3468 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
| 11 | | fvex 6894 |
. . . . . . . . . . 11
⊢ (𝐹‘𝑥) ∈ V |
| 12 | 10, 11 | brcnv 5867 |
. . . . . . . . . 10
⊢ (𝑦◡(le‘𝑊)(𝐹‘𝑥) ↔ (𝐹‘𝑥)(le‘𝑊)𝑦) |
| 13 | 12 | bicomi 224 |
. . . . . . . . 9
⊢ ((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥)) |
| 14 | 13 | a1i 11 |
. . . . . . . 8
⊢ ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → ((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥))) |
| 15 | 9, 14 | bibi12d 345 |
. . . . . . 7
⊢ ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → ((𝑥(le‘𝑉)(𝐺‘𝑦) ↔ (𝐹‘𝑥)(le‘𝑊)𝑦) ↔ ((𝐺‘𝑦)◡(le‘𝑉)𝑥 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥)))) |
| 16 | 4, 15 | bitrid 283 |
. . . . . 6
⊢ ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → (((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦)) ↔ ((𝐺‘𝑦)◡(le‘𝑉)𝑥 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥)))) |
| 17 | 16 | ralbidva 3162 |
. . . . 5
⊢ (((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) → (∀𝑥 ∈ (Base‘𝑉)((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝑉)((𝐺‘𝑦)◡(le‘𝑉)𝑥 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥)))) |
| 18 | 17 | ralbidva 3162 |
. . . 4
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) →
(∀𝑦 ∈
(Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺‘𝑦)◡(le‘𝑉)𝑥 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥)))) |
| 19 | 3, 18 | bitrid 283 |
. . 3
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) →
(∀𝑥 ∈
(Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺‘𝑦)◡(le‘𝑉)𝑥 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥)))) |
| 20 | 2, 19 | anbi12d 632 |
. 2
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦))) ↔ ((𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺‘𝑦)◡(le‘𝑉)𝑥 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥))))) |
| 21 | | eqid 2736 |
. . 3
⊢
(Base‘𝑉) =
(Base‘𝑉) |
| 22 | | eqid 2736 |
. . 3
⊢
(Base‘𝑊) =
(Base‘𝑊) |
| 23 | | eqid 2736 |
. . 3
⊢
(le‘𝑉) =
(le‘𝑉) |
| 24 | | eqid 2736 |
. . 3
⊢
(le‘𝑊) =
(le‘𝑊) |
| 25 | | mgccnv.1 |
. . 3
⊢ 𝐻 = (𝑉MGalConn𝑊) |
| 26 | | simpl 482 |
. . 3
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → 𝑉 ∈ Proset
) |
| 27 | | simpr 484 |
. . 3
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → 𝑊 ∈ Proset
) |
| 28 | 21, 22, 23, 24, 25, 26, 27 | mgcval 32972 |
. 2
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹𝐻𝐺 ↔ ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦))))) |
| 29 | | eqid 2736 |
. . . 4
⊢
(ODual‘𝑊) =
(ODual‘𝑊) |
| 30 | 29, 22 | odubas 18308 |
. . 3
⊢
(Base‘𝑊) =
(Base‘(ODual‘𝑊)) |
| 31 | | eqid 2736 |
. . . 4
⊢
(ODual‘𝑉) =
(ODual‘𝑉) |
| 32 | 31, 21 | odubas 18308 |
. . 3
⊢
(Base‘𝑉) =
(Base‘(ODual‘𝑉)) |
| 33 | 29, 24 | oduleval 18306 |
. . 3
⊢ ◡(le‘𝑊) = (le‘(ODual‘𝑊)) |
| 34 | 31, 23 | oduleval 18306 |
. . 3
⊢ ◡(le‘𝑉) = (le‘(ODual‘𝑉)) |
| 35 | | mgccnv.2 |
. . 3
⊢ 𝑀 = ((ODual‘𝑊)MGalConn(ODual‘𝑉)) |
| 36 | 29 | oduprs 18317 |
. . . 4
⊢ (𝑊 ∈ Proset →
(ODual‘𝑊) ∈
Proset ) |
| 37 | 27, 36 | syl 17 |
. . 3
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) →
(ODual‘𝑊) ∈
Proset ) |
| 38 | 31 | oduprs 18317 |
. . . 4
⊢ (𝑉 ∈ Proset →
(ODual‘𝑉) ∈
Proset ) |
| 39 | 26, 38 | syl 17 |
. . 3
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) →
(ODual‘𝑉) ∈
Proset ) |
| 40 | 30, 32, 33, 34, 35, 37, 39 | mgcval 32972 |
. 2
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐺𝑀𝐹 ↔ ((𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺‘𝑦)◡(le‘𝑉)𝑥 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥))))) |
| 41 | 20, 28, 40 | 3bitr4d 311 |
1
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹𝐻𝐺 ↔ 𝐺𝑀𝐹)) |