| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ancom 460 | . . . 4
⊢ ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ↔ (𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊))) | 
| 2 | 1 | a1i 11 | . . 3
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ↔ (𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊)))) | 
| 3 |  | ralcom 3288 | . . . 4
⊢
(∀𝑥 ∈
(Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦))) | 
| 4 |  | bicom 222 | . . . . . . 7
⊢ (((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦)) ↔ (𝑥(le‘𝑉)(𝐺‘𝑦) ↔ (𝐹‘𝑥)(le‘𝑊)𝑦)) | 
| 5 |  | fvex 6918 | . . . . . . . . . . 11
⊢ (𝐺‘𝑦) ∈ V | 
| 6 |  | vex 3483 | . . . . . . . . . . 11
⊢ 𝑥 ∈ V | 
| 7 | 5, 6 | brcnv 5892 | . . . . . . . . . 10
⊢ ((𝐺‘𝑦)◡(le‘𝑉)𝑥 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦)) | 
| 8 | 7 | bicomi 224 | . . . . . . . . 9
⊢ (𝑥(le‘𝑉)(𝐺‘𝑦) ↔ (𝐺‘𝑦)◡(le‘𝑉)𝑥) | 
| 9 | 8 | a1i 11 | . . . . . . . 8
⊢ ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → (𝑥(le‘𝑉)(𝐺‘𝑦) ↔ (𝐺‘𝑦)◡(le‘𝑉)𝑥)) | 
| 10 |  | vex 3483 | . . . . . . . . . . 11
⊢ 𝑦 ∈ V | 
| 11 |  | fvex 6918 | . . . . . . . . . . 11
⊢ (𝐹‘𝑥) ∈ V | 
| 12 | 10, 11 | brcnv 5892 | . . . . . . . . . 10
⊢ (𝑦◡(le‘𝑊)(𝐹‘𝑥) ↔ (𝐹‘𝑥)(le‘𝑊)𝑦) | 
| 13 | 12 | bicomi 224 | . . . . . . . . 9
⊢ ((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥)) | 
| 14 | 13 | a1i 11 | . . . . . . . 8
⊢ ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → ((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥))) | 
| 15 | 9, 14 | bibi12d 345 | . . . . . . 7
⊢ ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → ((𝑥(le‘𝑉)(𝐺‘𝑦) ↔ (𝐹‘𝑥)(le‘𝑊)𝑦) ↔ ((𝐺‘𝑦)◡(le‘𝑉)𝑥 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥)))) | 
| 16 | 4, 15 | bitrid 283 | . . . . . 6
⊢ ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → (((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦)) ↔ ((𝐺‘𝑦)◡(le‘𝑉)𝑥 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥)))) | 
| 17 | 16 | ralbidva 3175 | . . . . 5
⊢ (((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) → (∀𝑥 ∈ (Base‘𝑉)((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝑉)((𝐺‘𝑦)◡(le‘𝑉)𝑥 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥)))) | 
| 18 | 17 | ralbidva 3175 | . . . 4
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) →
(∀𝑦 ∈
(Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺‘𝑦)◡(le‘𝑉)𝑥 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥)))) | 
| 19 | 3, 18 | bitrid 283 | . . 3
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) →
(∀𝑥 ∈
(Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺‘𝑦)◡(le‘𝑉)𝑥 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥)))) | 
| 20 | 2, 19 | anbi12d 632 | . 2
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦))) ↔ ((𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺‘𝑦)◡(le‘𝑉)𝑥 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥))))) | 
| 21 |  | eqid 2736 | . . 3
⊢
(Base‘𝑉) =
(Base‘𝑉) | 
| 22 |  | eqid 2736 | . . 3
⊢
(Base‘𝑊) =
(Base‘𝑊) | 
| 23 |  | eqid 2736 | . . 3
⊢
(le‘𝑉) =
(le‘𝑉) | 
| 24 |  | eqid 2736 | . . 3
⊢
(le‘𝑊) =
(le‘𝑊) | 
| 25 |  | mgccnv.1 | . . 3
⊢ 𝐻 = (𝑉MGalConn𝑊) | 
| 26 |  | simpl 482 | . . 3
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → 𝑉 ∈ Proset
) | 
| 27 |  | simpr 484 | . . 3
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → 𝑊 ∈ Proset
) | 
| 28 | 21, 22, 23, 24, 25, 26, 27 | mgcval 32978 | . 2
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹𝐻𝐺 ↔ ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹‘𝑥)(le‘𝑊)𝑦 ↔ 𝑥(le‘𝑉)(𝐺‘𝑦))))) | 
| 29 |  | eqid 2736 | . . . 4
⊢
(ODual‘𝑊) =
(ODual‘𝑊) | 
| 30 | 29, 22 | odubas 18337 | . . 3
⊢
(Base‘𝑊) =
(Base‘(ODual‘𝑊)) | 
| 31 |  | eqid 2736 | . . . 4
⊢
(ODual‘𝑉) =
(ODual‘𝑉) | 
| 32 | 31, 21 | odubas 18337 | . . 3
⊢
(Base‘𝑉) =
(Base‘(ODual‘𝑉)) | 
| 33 | 29, 24 | oduleval 18335 | . . 3
⊢ ◡(le‘𝑊) = (le‘(ODual‘𝑊)) | 
| 34 | 31, 23 | oduleval 18335 | . . 3
⊢ ◡(le‘𝑉) = (le‘(ODual‘𝑉)) | 
| 35 |  | mgccnv.2 | . . 3
⊢ 𝑀 = ((ODual‘𝑊)MGalConn(ODual‘𝑉)) | 
| 36 | 29 | oduprs 18347 | . . . 4
⊢ (𝑊 ∈ Proset →
(ODual‘𝑊) ∈
Proset ) | 
| 37 | 27, 36 | syl 17 | . . 3
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) →
(ODual‘𝑊) ∈
Proset ) | 
| 38 | 31 | oduprs 18347 | . . . 4
⊢ (𝑉 ∈ Proset →
(ODual‘𝑉) ∈
Proset ) | 
| 39 | 26, 38 | syl 17 | . . 3
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) →
(ODual‘𝑉) ∈
Proset ) | 
| 40 | 30, 32, 33, 34, 35, 37, 39 | mgcval 32978 | . 2
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐺𝑀𝐹 ↔ ((𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺‘𝑦)◡(le‘𝑉)𝑥 ↔ 𝑦◡(le‘𝑊)(𝐹‘𝑥))))) | 
| 41 | 20, 28, 40 | 3bitr4d 311 | 1
⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹𝐻𝐺 ↔ 𝐺𝑀𝐹)) |