Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blen1b Structured version   Visualization version   GIF version

Theorem blen1b 45992
Description: The binary length of a nonnegative integer is 1 if the integer is 0 or 1. (Contributed by AV, 30-May-2020.)
Assertion
Ref Expression
blen1b (𝑁 ∈ ℕ0 → ((#b𝑁) = 1 ↔ (𝑁 = 0 ∨ 𝑁 = 1)))

Proof of Theorem blen1b
StepHypRef Expression
1 elnn0 12281 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 blennn 45979 . . . . . 6 (𝑁 ∈ ℕ → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
32eqeq1d 2738 . . . . 5 (𝑁 ∈ ℕ → ((#b𝑁) = 1 ↔ ((⌊‘(2 logb 𝑁)) + 1) = 1))
4 2rp 12781 . . . . . . . . . . . 12 2 ∈ ℝ+
54a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
6 nnrp 12787 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
7 1ne2 12227 . . . . . . . . . . . . 13 1 ≠ 2
87necomi 2996 . . . . . . . . . . . 12 2 ≠ 1
98a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ≠ 1)
10 relogbcl 25968 . . . . . . . . . . 11 ((2 ∈ ℝ+𝑁 ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb 𝑁) ∈ ℝ)
115, 6, 9, 10syl3anc 1371 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 logb 𝑁) ∈ ℝ)
1211flcld 13564 . . . . . . . . 9 (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℤ)
1312zcnd 12473 . . . . . . . 8 (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℂ)
14 1cnd 11016 . . . . . . . 8 (𝑁 ∈ ℕ → 1 ∈ ℂ)
1513, 14, 14addlsub 11437 . . . . . . 7 (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) = 1 ↔ (⌊‘(2 logb 𝑁)) = (1 − 1)))
16 1m1e0 12091 . . . . . . . . 9 (1 − 1) = 0
1716a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → (1 − 1) = 0)
1817eqeq2d 2747 . . . . . . 7 (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) = (1 − 1) ↔ (⌊‘(2 logb 𝑁)) = 0))
19 0z 12376 . . . . . . . 8 0 ∈ ℤ
20 flbi 13582 . . . . . . . 8 (((2 logb 𝑁) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(2 logb 𝑁)) = 0 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1))))
2111, 19, 20sylancl 587 . . . . . . 7 (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) = 0 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1))))
2215, 18, 213bitrd 305 . . . . . 6 (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) = 1 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1))))
23 0p1e1 12141 . . . . . . . . 9 (0 + 1) = 1
2423breq2i 5089 . . . . . . . 8 ((2 logb 𝑁) < (0 + 1) ↔ (2 logb 𝑁) < 1)
2524anbi2i 624 . . . . . . 7 ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)) ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1))
26 nnlog2ge0lt1 45970 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 = 1 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)))
2726biimpar 479 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)) → 𝑁 = 1)
2827olcd 872 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)) → (𝑁 = 0 ∨ 𝑁 = 1))
2928ex 414 . . . . . . 7 (𝑁 ∈ ℕ → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1) → (𝑁 = 0 ∨ 𝑁 = 1)))
3025, 29syl5bi 242 . . . . . 6 (𝑁 ∈ ℕ → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)) → (𝑁 = 0 ∨ 𝑁 = 1)))
3122, 30sylbid 239 . . . . 5 (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) = 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
323, 31sylbid 239 . . . 4 (𝑁 ∈ ℕ → ((#b𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
33 orc 865 . . . . 5 (𝑁 = 0 → (𝑁 = 0 ∨ 𝑁 = 1))
3433a1d 25 . . . 4 (𝑁 = 0 → ((#b𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
3532, 34jaoi 855 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((#b𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
361, 35sylbi 216 . 2 (𝑁 ∈ ℕ0 → ((#b𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
37 fveq2 6804 . . . 4 (𝑁 = 0 → (#b𝑁) = (#b‘0))
38 blen0 45976 . . . 4 (#b‘0) = 1
3937, 38eqtrdi 2792 . . 3 (𝑁 = 0 → (#b𝑁) = 1)
40 fveq2 6804 . . . 4 (𝑁 = 1 → (#b𝑁) = (#b‘1))
41 blen1 45988 . . . 4 (#b‘1) = 1
4240, 41eqtrdi 2792 . . 3 (𝑁 = 1 → (#b𝑁) = 1)
4339, 42jaoi 855 . 2 ((𝑁 = 0 ∨ 𝑁 = 1) → (#b𝑁) = 1)
4436, 43impbid1 224 1 (𝑁 ∈ ℕ0 → ((#b𝑁) = 1 ↔ (𝑁 = 0 ∨ 𝑁 = 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 845   = wceq 1539  wcel 2104  wne 2941   class class class wbr 5081  cfv 6458  (class class class)co 7307  cr 10916  0cc0 10917  1c1 10918   + caddc 10920   < clt 11055  cle 11056  cmin 11251  cn 12019  2c2 12074  0cn0 12279  cz 12365  +crp 12776  cfl 13556   logb clogb 25959  #bcblen 45973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9443  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995  ax-addf 10996  ax-mulf 10997
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-iin 4934  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-om 7745  df-1st 7863  df-2nd 7864  df-supp 8009  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-2o 8329  df-er 8529  df-map 8648  df-pm 8649  df-ixp 8717  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-fsupp 9173  df-fi 9214  df-sup 9245  df-inf 9246  df-oi 9313  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-7 12087  df-8 12088  df-9 12089  df-n0 12280  df-z 12366  df-dec 12484  df-uz 12629  df-q 12735  df-rp 12777  df-xneg 12894  df-xadd 12895  df-xmul 12896  df-ioo 13129  df-ioc 13130  df-ico 13131  df-icc 13132  df-fz 13286  df-fzo 13429  df-fl 13558  df-mod 13636  df-seq 13768  df-exp 13829  df-fac 14034  df-bc 14063  df-hash 14091  df-shft 14823  df-cj 14855  df-re 14856  df-im 14857  df-sqrt 14991  df-abs 14992  df-limsup 15225  df-clim 15242  df-rlim 15243  df-sum 15443  df-ef 15822  df-sin 15824  df-cos 15825  df-pi 15827  df-struct 16893  df-sets 16910  df-slot 16928  df-ndx 16940  df-base 16958  df-ress 16987  df-plusg 17020  df-mulr 17021  df-starv 17022  df-sca 17023  df-vsca 17024  df-ip 17025  df-tset 17026  df-ple 17027  df-ds 17029  df-unif 17030  df-hom 17031  df-cco 17032  df-rest 17178  df-topn 17179  df-0g 17197  df-gsum 17198  df-topgen 17199  df-pt 17200  df-prds 17203  df-xrs 17258  df-qtop 17263  df-imas 17264  df-xps 17266  df-mre 17340  df-mrc 17341  df-acs 17343  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-submnd 18476  df-mulg 18746  df-cntz 18968  df-cmn 19433  df-psmet 20634  df-xmet 20635  df-met 20636  df-bl 20637  df-mopn 20638  df-fbas 20639  df-fg 20640  df-cnfld 20643  df-top 22088  df-topon 22105  df-topsp 22127  df-bases 22141  df-cld 22215  df-ntr 22216  df-cls 22217  df-nei 22294  df-lp 22332  df-perf 22333  df-cn 22423  df-cnp 22424  df-haus 22511  df-tx 22758  df-hmeo 22951  df-fil 23042  df-fm 23134  df-flim 23135  df-flf 23136  df-xms 23518  df-ms 23519  df-tms 23520  df-cncf 24086  df-limc 25075  df-dv 25076  df-log 25757  df-logb 25960  df-blen 45974
This theorem is referenced by:  nn0sumshdiglem2  46026
  Copyright terms: Public domain W3C validator