Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blen1b Structured version   Visualization version   GIF version

Theorem blen1b 48628
Description: The binary length of a nonnegative integer is 1 if the integer is 0 or 1. (Contributed by AV, 30-May-2020.)
Assertion
Ref Expression
blen1b (𝑁 ∈ ℕ0 → ((#b𝑁) = 1 ↔ (𝑁 = 0 ∨ 𝑁 = 1)))

Proof of Theorem blen1b
StepHypRef Expression
1 elnn0 12383 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 blennn 48615 . . . . . 6 (𝑁 ∈ ℕ → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
32eqeq1d 2733 . . . . 5 (𝑁 ∈ ℕ → ((#b𝑁) = 1 ↔ ((⌊‘(2 logb 𝑁)) + 1) = 1))
4 2rp 12895 . . . . . . . . . . . 12 2 ∈ ℝ+
54a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
6 nnrp 12902 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
7 1ne2 12328 . . . . . . . . . . . . 13 1 ≠ 2
87necomi 2982 . . . . . . . . . . . 12 2 ≠ 1
98a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ≠ 1)
10 relogbcl 26710 . . . . . . . . . . 11 ((2 ∈ ℝ+𝑁 ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb 𝑁) ∈ ℝ)
115, 6, 9, 10syl3anc 1373 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 logb 𝑁) ∈ ℝ)
1211flcld 13702 . . . . . . . . 9 (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℤ)
1312zcnd 12578 . . . . . . . 8 (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℂ)
14 1cnd 11107 . . . . . . . 8 (𝑁 ∈ ℕ → 1 ∈ ℂ)
1513, 14, 14addlsub 11533 . . . . . . 7 (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) = 1 ↔ (⌊‘(2 logb 𝑁)) = (1 − 1)))
16 1m1e0 12197 . . . . . . . . 9 (1 − 1) = 0
1716a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → (1 − 1) = 0)
1817eqeq2d 2742 . . . . . . 7 (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) = (1 − 1) ↔ (⌊‘(2 logb 𝑁)) = 0))
19 0z 12479 . . . . . . . 8 0 ∈ ℤ
20 flbi 13720 . . . . . . . 8 (((2 logb 𝑁) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(2 logb 𝑁)) = 0 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1))))
2111, 19, 20sylancl 586 . . . . . . 7 (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) = 0 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1))))
2215, 18, 213bitrd 305 . . . . . 6 (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) = 1 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1))))
23 0p1e1 12242 . . . . . . . . 9 (0 + 1) = 1
2423breq2i 5097 . . . . . . . 8 ((2 logb 𝑁) < (0 + 1) ↔ (2 logb 𝑁) < 1)
2524anbi2i 623 . . . . . . 7 ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)) ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1))
26 nnlog2ge0lt1 48606 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 = 1 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)))
2726biimpar 477 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)) → 𝑁 = 1)
2827olcd 874 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)) → (𝑁 = 0 ∨ 𝑁 = 1))
2928ex 412 . . . . . . 7 (𝑁 ∈ ℕ → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1) → (𝑁 = 0 ∨ 𝑁 = 1)))
3025, 29biimtrid 242 . . . . . 6 (𝑁 ∈ ℕ → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)) → (𝑁 = 0 ∨ 𝑁 = 1)))
3122, 30sylbid 240 . . . . 5 (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) = 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
323, 31sylbid 240 . . . 4 (𝑁 ∈ ℕ → ((#b𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
33 orc 867 . . . . 5 (𝑁 = 0 → (𝑁 = 0 ∨ 𝑁 = 1))
3433a1d 25 . . . 4 (𝑁 = 0 → ((#b𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
3532, 34jaoi 857 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((#b𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
361, 35sylbi 217 . 2 (𝑁 ∈ ℕ0 → ((#b𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
37 fveq2 6822 . . . 4 (𝑁 = 0 → (#b𝑁) = (#b‘0))
38 blen0 48612 . . . 4 (#b‘0) = 1
3937, 38eqtrdi 2782 . . 3 (𝑁 = 0 → (#b𝑁) = 1)
40 fveq2 6822 . . . 4 (𝑁 = 1 → (#b𝑁) = (#b‘1))
41 blen1 48624 . . . 4 (#b‘1) = 1
4240, 41eqtrdi 2782 . . 3 (𝑁 = 1 → (#b𝑁) = 1)
4339, 42jaoi 857 . 2 ((𝑁 = 0 ∨ 𝑁 = 1) → (#b𝑁) = 1)
4436, 43impbid1 225 1 (𝑁 ∈ ℕ0 → ((#b𝑁) = 1 ↔ (𝑁 = 0 ∨ 𝑁 = 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cle 11147  cmin 11344  cn 12125  2c2 12180  0cn0 12381  cz 12468  +crp 12890  cfl 13694   logb clogb 26701  #bcblen 48609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-log 26492  df-logb 26702  df-blen 48610
This theorem is referenced by:  nn0sumshdiglem2  48662
  Copyright terms: Public domain W3C validator