| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > blen1b | Structured version Visualization version GIF version | ||
| Description: The binary length of a nonnegative integer is 1 if the integer is 0 or 1. (Contributed by AV, 30-May-2020.) |
| Ref | Expression |
|---|---|
| blen1b | ⊢ (𝑁 ∈ ℕ0 → ((#b‘𝑁) = 1 ↔ (𝑁 = 0 ∨ 𝑁 = 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12383 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | blennn 48615 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (#b‘𝑁) = ((⌊‘(2 logb 𝑁)) + 1)) | |
| 3 | 2 | eqeq1d 2733 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((#b‘𝑁) = 1 ↔ ((⌊‘(2 logb 𝑁)) + 1) = 1)) |
| 4 | 2rp 12895 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ+ | |
| 5 | 4 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℝ+) |
| 6 | nnrp 12902 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
| 7 | 1ne2 12328 | . . . . . . . . . . . . 13 ⊢ 1 ≠ 2 | |
| 8 | 7 | necomi 2982 | . . . . . . . . . . . 12 ⊢ 2 ≠ 1 |
| 9 | 8 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 2 ≠ 1) |
| 10 | relogbcl 26710 | . . . . . . . . . . 11 ⊢ ((2 ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb 𝑁) ∈ ℝ) | |
| 11 | 5, 6, 9, 10 | syl3anc 1373 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → (2 logb 𝑁) ∈ ℝ) |
| 12 | 11 | flcld 13702 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℤ) |
| 13 | 12 | zcnd 12578 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℂ) |
| 14 | 1cnd 11107 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℂ) | |
| 15 | 13, 14, 14 | addlsub 11533 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) = 1 ↔ (⌊‘(2 logb 𝑁)) = (1 − 1))) |
| 16 | 1m1e0 12197 | . . . . . . . . 9 ⊢ (1 − 1) = 0 | |
| 17 | 16 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (1 − 1) = 0) |
| 18 | 17 | eqeq2d 2742 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) = (1 − 1) ↔ (⌊‘(2 logb 𝑁)) = 0)) |
| 19 | 0z 12479 | . . . . . . . 8 ⊢ 0 ∈ ℤ | |
| 20 | flbi 13720 | . . . . . . . 8 ⊢ (((2 logb 𝑁) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(2 logb 𝑁)) = 0 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)))) | |
| 21 | 11, 19, 20 | sylancl 586 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) = 0 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)))) |
| 22 | 15, 18, 21 | 3bitrd 305 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) = 1 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)))) |
| 23 | 0p1e1 12242 | . . . . . . . . 9 ⊢ (0 + 1) = 1 | |
| 24 | 23 | breq2i 5097 | . . . . . . . 8 ⊢ ((2 logb 𝑁) < (0 + 1) ↔ (2 logb 𝑁) < 1) |
| 25 | 24 | anbi2i 623 | . . . . . . 7 ⊢ ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)) ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)) |
| 26 | nnlog2ge0lt1 48606 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1))) | |
| 27 | 26 | biimpar 477 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)) → 𝑁 = 1) |
| 28 | 27 | olcd 874 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)) → (𝑁 = 0 ∨ 𝑁 = 1)) |
| 29 | 28 | ex 412 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1) → (𝑁 = 0 ∨ 𝑁 = 1))) |
| 30 | 25, 29 | biimtrid 242 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)) → (𝑁 = 0 ∨ 𝑁 = 1))) |
| 31 | 22, 30 | sylbid 240 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) = 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
| 32 | 3, 31 | sylbid 240 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((#b‘𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
| 33 | orc 867 | . . . . 5 ⊢ (𝑁 = 0 → (𝑁 = 0 ∨ 𝑁 = 1)) | |
| 34 | 33 | a1d 25 | . . . 4 ⊢ (𝑁 = 0 → ((#b‘𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
| 35 | 32, 34 | jaoi 857 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((#b‘𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
| 36 | 1, 35 | sylbi 217 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((#b‘𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
| 37 | fveq2 6822 | . . . 4 ⊢ (𝑁 = 0 → (#b‘𝑁) = (#b‘0)) | |
| 38 | blen0 48612 | . . . 4 ⊢ (#b‘0) = 1 | |
| 39 | 37, 38 | eqtrdi 2782 | . . 3 ⊢ (𝑁 = 0 → (#b‘𝑁) = 1) |
| 40 | fveq2 6822 | . . . 4 ⊢ (𝑁 = 1 → (#b‘𝑁) = (#b‘1)) | |
| 41 | blen1 48624 | . . . 4 ⊢ (#b‘1) = 1 | |
| 42 | 40, 41 | eqtrdi 2782 | . . 3 ⊢ (𝑁 = 1 → (#b‘𝑁) = 1) |
| 43 | 39, 42 | jaoi 857 | . 2 ⊢ ((𝑁 = 0 ∨ 𝑁 = 1) → (#b‘𝑁) = 1) |
| 44 | 36, 43 | impbid1 225 | 1 ⊢ (𝑁 ∈ ℕ0 → ((#b‘𝑁) = 1 ↔ (𝑁 = 0 ∨ 𝑁 = 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 < clt 11146 ≤ cle 11147 − cmin 11344 ℕcn 12125 2c2 12180 ℕ0cn0 12381 ℤcz 12468 ℝ+crp 12890 ⌊cfl 13694 logb clogb 26701 #bcblen 48609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-lp 23051 df-perf 23052 df-cn 23142 df-cnp 23143 df-haus 23230 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-xms 24235 df-ms 24236 df-tms 24237 df-cncf 24798 df-limc 25794 df-dv 25795 df-log 26492 df-logb 26702 df-blen 48610 |
| This theorem is referenced by: nn0sumshdiglem2 48662 |
| Copyright terms: Public domain | W3C validator |