Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blen1b Structured version   Visualization version   GIF version

Theorem blen1b 45550
Description: The binary length of a nonnegative integer is 1 if the integer is 0 or 1. (Contributed by AV, 30-May-2020.)
Assertion
Ref Expression
blen1b (𝑁 ∈ ℕ0 → ((#b𝑁) = 1 ↔ (𝑁 = 0 ∨ 𝑁 = 1)))

Proof of Theorem blen1b
StepHypRef Expression
1 elnn0 12057 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 blennn 45537 . . . . . 6 (𝑁 ∈ ℕ → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
32eqeq1d 2738 . . . . 5 (𝑁 ∈ ℕ → ((#b𝑁) = 1 ↔ ((⌊‘(2 logb 𝑁)) + 1) = 1))
4 2rp 12556 . . . . . . . . . . . 12 2 ∈ ℝ+
54a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
6 nnrp 12562 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
7 1ne2 12003 . . . . . . . . . . . . 13 1 ≠ 2
87necomi 2986 . . . . . . . . . . . 12 2 ≠ 1
98a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ≠ 1)
10 relogbcl 25610 . . . . . . . . . . 11 ((2 ∈ ℝ+𝑁 ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb 𝑁) ∈ ℝ)
115, 6, 9, 10syl3anc 1373 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 logb 𝑁) ∈ ℝ)
1211flcld 13338 . . . . . . . . 9 (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℤ)
1312zcnd 12248 . . . . . . . 8 (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℂ)
14 1cnd 10793 . . . . . . . 8 (𝑁 ∈ ℕ → 1 ∈ ℂ)
1513, 14, 14addlsub 11213 . . . . . . 7 (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) = 1 ↔ (⌊‘(2 logb 𝑁)) = (1 − 1)))
16 1m1e0 11867 . . . . . . . . 9 (1 − 1) = 0
1716a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → (1 − 1) = 0)
1817eqeq2d 2747 . . . . . . 7 (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) = (1 − 1) ↔ (⌊‘(2 logb 𝑁)) = 0))
19 0z 12152 . . . . . . . 8 0 ∈ ℤ
20 flbi 13356 . . . . . . . 8 (((2 logb 𝑁) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(2 logb 𝑁)) = 0 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1))))
2111, 19, 20sylancl 589 . . . . . . 7 (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) = 0 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1))))
2215, 18, 213bitrd 308 . . . . . 6 (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) = 1 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1))))
23 0p1e1 11917 . . . . . . . . 9 (0 + 1) = 1
2423breq2i 5047 . . . . . . . 8 ((2 logb 𝑁) < (0 + 1) ↔ (2 logb 𝑁) < 1)
2524anbi2i 626 . . . . . . 7 ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)) ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1))
26 nnlog2ge0lt1 45528 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 = 1 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)))
2726biimpar 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)) → 𝑁 = 1)
2827olcd 874 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)) → (𝑁 = 0 ∨ 𝑁 = 1))
2928ex 416 . . . . . . 7 (𝑁 ∈ ℕ → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1) → (𝑁 = 0 ∨ 𝑁 = 1)))
3025, 29syl5bi 245 . . . . . 6 (𝑁 ∈ ℕ → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)) → (𝑁 = 0 ∨ 𝑁 = 1)))
3122, 30sylbid 243 . . . . 5 (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) = 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
323, 31sylbid 243 . . . 4 (𝑁 ∈ ℕ → ((#b𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
33 orc 867 . . . . 5 (𝑁 = 0 → (𝑁 = 0 ∨ 𝑁 = 1))
3433a1d 25 . . . 4 (𝑁 = 0 → ((#b𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
3532, 34jaoi 857 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((#b𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
361, 35sylbi 220 . 2 (𝑁 ∈ ℕ0 → ((#b𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
37 fveq2 6695 . . . 4 (𝑁 = 0 → (#b𝑁) = (#b‘0))
38 blen0 45534 . . . 4 (#b‘0) = 1
3937, 38eqtrdi 2787 . . 3 (𝑁 = 0 → (#b𝑁) = 1)
40 fveq2 6695 . . . 4 (𝑁 = 1 → (#b𝑁) = (#b‘1))
41 blen1 45546 . . . 4 (#b‘1) = 1
4240, 41eqtrdi 2787 . . 3 (𝑁 = 1 → (#b𝑁) = 1)
4339, 42jaoi 857 . 2 ((𝑁 = 0 ∨ 𝑁 = 1) → (#b𝑁) = 1)
4436, 43impbid1 228 1 (𝑁 ∈ ℕ0 → ((#b𝑁) = 1 ↔ (𝑁 = 0 ∨ 𝑁 = 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2112  wne 2932   class class class wbr 5039  cfv 6358  (class class class)co 7191  cr 10693  0cc0 10694  1c1 10695   + caddc 10697   < clt 10832  cle 10833  cmin 11027  cn 11795  2c2 11850  0cn0 12055  cz 12141  +crp 12551  cfl 13330   logb clogb 25601  #bcblen 45531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773  ax-mulf 10774
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-map 8488  df-pm 8489  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-fi 9005  df-sup 9036  df-inf 9037  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-ioo 12904  df-ioc 12905  df-ico 12906  df-icc 12907  df-fz 13061  df-fzo 13204  df-fl 13332  df-mod 13408  df-seq 13540  df-exp 13601  df-fac 13805  df-bc 13834  df-hash 13862  df-shft 14595  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-limsup 14997  df-clim 15014  df-rlim 15015  df-sum 15215  df-ef 15592  df-sin 15594  df-cos 15595  df-pi 15597  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-starv 16764  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-hom 16773  df-cco 16774  df-rest 16881  df-topn 16882  df-0g 16900  df-gsum 16901  df-topgen 16902  df-pt 16903  df-prds 16906  df-xrs 16961  df-qtop 16966  df-imas 16967  df-xps 16969  df-mre 17043  df-mrc 17044  df-acs 17046  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-submnd 18173  df-mulg 18443  df-cntz 18665  df-cmn 19126  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-fbas 20314  df-fg 20315  df-cnfld 20318  df-top 21745  df-topon 21762  df-topsp 21784  df-bases 21797  df-cld 21870  df-ntr 21871  df-cls 21872  df-nei 21949  df-lp 21987  df-perf 21988  df-cn 22078  df-cnp 22079  df-haus 22166  df-tx 22413  df-hmeo 22606  df-fil 22697  df-fm 22789  df-flim 22790  df-flf 22791  df-xms 23172  df-ms 23173  df-tms 23174  df-cncf 23729  df-limc 24717  df-dv 24718  df-log 25399  df-logb 25602  df-blen 45532
This theorem is referenced by:  nn0sumshdiglem2  45584
  Copyright terms: Public domain W3C validator