Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > blen1b | Structured version Visualization version GIF version |
Description: The binary length of a nonnegative integer is 1 if the integer is 0 or 1. (Contributed by AV, 30-May-2020.) |
Ref | Expression |
---|---|
blen1b | ⊢ (𝑁 ∈ ℕ0 → ((#b‘𝑁) = 1 ↔ (𝑁 = 0 ∨ 𝑁 = 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12281 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | blennn 45979 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (#b‘𝑁) = ((⌊‘(2 logb 𝑁)) + 1)) | |
3 | 2 | eqeq1d 2738 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((#b‘𝑁) = 1 ↔ ((⌊‘(2 logb 𝑁)) + 1) = 1)) |
4 | 2rp 12781 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ+ | |
5 | 4 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℝ+) |
6 | nnrp 12787 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
7 | 1ne2 12227 | . . . . . . . . . . . . 13 ⊢ 1 ≠ 2 | |
8 | 7 | necomi 2996 | . . . . . . . . . . . 12 ⊢ 2 ≠ 1 |
9 | 8 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 2 ≠ 1) |
10 | relogbcl 25968 | . . . . . . . . . . 11 ⊢ ((2 ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb 𝑁) ∈ ℝ) | |
11 | 5, 6, 9, 10 | syl3anc 1371 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → (2 logb 𝑁) ∈ ℝ) |
12 | 11 | flcld 13564 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℤ) |
13 | 12 | zcnd 12473 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℂ) |
14 | 1cnd 11016 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℂ) | |
15 | 13, 14, 14 | addlsub 11437 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) = 1 ↔ (⌊‘(2 logb 𝑁)) = (1 − 1))) |
16 | 1m1e0 12091 | . . . . . . . . 9 ⊢ (1 − 1) = 0 | |
17 | 16 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (1 − 1) = 0) |
18 | 17 | eqeq2d 2747 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) = (1 − 1) ↔ (⌊‘(2 logb 𝑁)) = 0)) |
19 | 0z 12376 | . . . . . . . 8 ⊢ 0 ∈ ℤ | |
20 | flbi 13582 | . . . . . . . 8 ⊢ (((2 logb 𝑁) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(2 logb 𝑁)) = 0 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)))) | |
21 | 11, 19, 20 | sylancl 587 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) = 0 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)))) |
22 | 15, 18, 21 | 3bitrd 305 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) = 1 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)))) |
23 | 0p1e1 12141 | . . . . . . . . 9 ⊢ (0 + 1) = 1 | |
24 | 23 | breq2i 5089 | . . . . . . . 8 ⊢ ((2 logb 𝑁) < (0 + 1) ↔ (2 logb 𝑁) < 1) |
25 | 24 | anbi2i 624 | . . . . . . 7 ⊢ ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)) ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)) |
26 | nnlog2ge0lt1 45970 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1))) | |
27 | 26 | biimpar 479 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)) → 𝑁 = 1) |
28 | 27 | olcd 872 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)) → (𝑁 = 0 ∨ 𝑁 = 1)) |
29 | 28 | ex 414 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1) → (𝑁 = 0 ∨ 𝑁 = 1))) |
30 | 25, 29 | syl5bi 242 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)) → (𝑁 = 0 ∨ 𝑁 = 1))) |
31 | 22, 30 | sylbid 239 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) = 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
32 | 3, 31 | sylbid 239 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((#b‘𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
33 | orc 865 | . . . . 5 ⊢ (𝑁 = 0 → (𝑁 = 0 ∨ 𝑁 = 1)) | |
34 | 33 | a1d 25 | . . . 4 ⊢ (𝑁 = 0 → ((#b‘𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
35 | 32, 34 | jaoi 855 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((#b‘𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
36 | 1, 35 | sylbi 216 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((#b‘𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
37 | fveq2 6804 | . . . 4 ⊢ (𝑁 = 0 → (#b‘𝑁) = (#b‘0)) | |
38 | blen0 45976 | . . . 4 ⊢ (#b‘0) = 1 | |
39 | 37, 38 | eqtrdi 2792 | . . 3 ⊢ (𝑁 = 0 → (#b‘𝑁) = 1) |
40 | fveq2 6804 | . . . 4 ⊢ (𝑁 = 1 → (#b‘𝑁) = (#b‘1)) | |
41 | blen1 45988 | . . . 4 ⊢ (#b‘1) = 1 | |
42 | 40, 41 | eqtrdi 2792 | . . 3 ⊢ (𝑁 = 1 → (#b‘𝑁) = 1) |
43 | 39, 42 | jaoi 855 | . 2 ⊢ ((𝑁 = 0 ∨ 𝑁 = 1) → (#b‘𝑁) = 1) |
44 | 36, 43 | impbid1 224 | 1 ⊢ (𝑁 ∈ ℕ0 → ((#b‘𝑁) = 1 ↔ (𝑁 = 0 ∨ 𝑁 = 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 845 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 ℝcr 10916 0cc0 10917 1c1 10918 + caddc 10920 < clt 11055 ≤ cle 11056 − cmin 11251 ℕcn 12019 2c2 12074 ℕ0cn0 12279 ℤcz 12365 ℝ+crp 12776 ⌊cfl 13556 logb clogb 25959 #bcblen 45973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9443 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 ax-addf 10996 ax-mulf 10997 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-map 8648 df-pm 8649 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9173 df-fi 9214 df-sup 9245 df-inf 9246 df-oi 9313 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-uz 12629 df-q 12735 df-rp 12777 df-xneg 12894 df-xadd 12895 df-xmul 12896 df-ioo 13129 df-ioc 13130 df-ico 13131 df-icc 13132 df-fz 13286 df-fzo 13429 df-fl 13558 df-mod 13636 df-seq 13768 df-exp 13829 df-fac 14034 df-bc 14063 df-hash 14091 df-shft 14823 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-limsup 15225 df-clim 15242 df-rlim 15243 df-sum 15443 df-ef 15822 df-sin 15824 df-cos 15825 df-pi 15827 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-mulr 17021 df-starv 17022 df-sca 17023 df-vsca 17024 df-ip 17025 df-tset 17026 df-ple 17027 df-ds 17029 df-unif 17030 df-hom 17031 df-cco 17032 df-rest 17178 df-topn 17179 df-0g 17197 df-gsum 17198 df-topgen 17199 df-pt 17200 df-prds 17203 df-xrs 17258 df-qtop 17263 df-imas 17264 df-xps 17266 df-mre 17340 df-mrc 17341 df-acs 17343 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-submnd 18476 df-mulg 18746 df-cntz 18968 df-cmn 19433 df-psmet 20634 df-xmet 20635 df-met 20636 df-bl 20637 df-mopn 20638 df-fbas 20639 df-fg 20640 df-cnfld 20643 df-top 22088 df-topon 22105 df-topsp 22127 df-bases 22141 df-cld 22215 df-ntr 22216 df-cls 22217 df-nei 22294 df-lp 22332 df-perf 22333 df-cn 22423 df-cnp 22424 df-haus 22511 df-tx 22758 df-hmeo 22951 df-fil 23042 df-fm 23134 df-flim 23135 df-flf 23136 df-xms 23518 df-ms 23519 df-tms 23520 df-cncf 24086 df-limc 25075 df-dv 25076 df-log 25757 df-logb 25960 df-blen 45974 |
This theorem is referenced by: nn0sumshdiglem2 46026 |
Copyright terms: Public domain | W3C validator |