![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > blen1b | Structured version Visualization version GIF version |
Description: The binary length of a nonnegative integer is 1 if the integer is 0 or 1. (Contributed by AV, 30-May-2020.) |
Ref | Expression |
---|---|
blen1b | ⊢ (𝑁 ∈ ℕ0 → ((#b‘𝑁) = 1 ↔ (𝑁 = 0 ∨ 𝑁 = 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12479 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | blennn 47349 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (#b‘𝑁) = ((⌊‘(2 logb 𝑁)) + 1)) | |
3 | 2 | eqeq1d 2733 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((#b‘𝑁) = 1 ↔ ((⌊‘(2 logb 𝑁)) + 1) = 1)) |
4 | 2rp 12984 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ+ | |
5 | 4 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℝ+) |
6 | nnrp 12990 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
7 | 1ne2 12425 | . . . . . . . . . . . . 13 ⊢ 1 ≠ 2 | |
8 | 7 | necomi 2994 | . . . . . . . . . . . 12 ⊢ 2 ≠ 1 |
9 | 8 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 2 ≠ 1) |
10 | relogbcl 26515 | . . . . . . . . . . 11 ⊢ ((2 ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb 𝑁) ∈ ℝ) | |
11 | 5, 6, 9, 10 | syl3anc 1370 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → (2 logb 𝑁) ∈ ℝ) |
12 | 11 | flcld 13768 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℤ) |
13 | 12 | zcnd 12672 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℂ) |
14 | 1cnd 11214 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℂ) | |
15 | 13, 14, 14 | addlsub 11635 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) = 1 ↔ (⌊‘(2 logb 𝑁)) = (1 − 1))) |
16 | 1m1e0 12289 | . . . . . . . . 9 ⊢ (1 − 1) = 0 | |
17 | 16 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (1 − 1) = 0) |
18 | 17 | eqeq2d 2742 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) = (1 − 1) ↔ (⌊‘(2 logb 𝑁)) = 0)) |
19 | 0z 12574 | . . . . . . . 8 ⊢ 0 ∈ ℤ | |
20 | flbi 13786 | . . . . . . . 8 ⊢ (((2 logb 𝑁) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(2 logb 𝑁)) = 0 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)))) | |
21 | 11, 19, 20 | sylancl 585 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) = 0 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)))) |
22 | 15, 18, 21 | 3bitrd 305 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) = 1 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)))) |
23 | 0p1e1 12339 | . . . . . . . . 9 ⊢ (0 + 1) = 1 | |
24 | 23 | breq2i 5156 | . . . . . . . 8 ⊢ ((2 logb 𝑁) < (0 + 1) ↔ (2 logb 𝑁) < 1) |
25 | 24 | anbi2i 622 | . . . . . . 7 ⊢ ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)) ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)) |
26 | nnlog2ge0lt1 47340 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1))) | |
27 | 26 | biimpar 477 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)) → 𝑁 = 1) |
28 | 27 | olcd 871 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)) → (𝑁 = 0 ∨ 𝑁 = 1)) |
29 | 28 | ex 412 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1) → (𝑁 = 0 ∨ 𝑁 = 1))) |
30 | 25, 29 | biimtrid 241 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)) → (𝑁 = 0 ∨ 𝑁 = 1))) |
31 | 22, 30 | sylbid 239 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) = 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
32 | 3, 31 | sylbid 239 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((#b‘𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
33 | orc 864 | . . . . 5 ⊢ (𝑁 = 0 → (𝑁 = 0 ∨ 𝑁 = 1)) | |
34 | 33 | a1d 25 | . . . 4 ⊢ (𝑁 = 0 → ((#b‘𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
35 | 32, 34 | jaoi 854 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((#b‘𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
36 | 1, 35 | sylbi 216 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((#b‘𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
37 | fveq2 6891 | . . . 4 ⊢ (𝑁 = 0 → (#b‘𝑁) = (#b‘0)) | |
38 | blen0 47346 | . . . 4 ⊢ (#b‘0) = 1 | |
39 | 37, 38 | eqtrdi 2787 | . . 3 ⊢ (𝑁 = 0 → (#b‘𝑁) = 1) |
40 | fveq2 6891 | . . . 4 ⊢ (𝑁 = 1 → (#b‘𝑁) = (#b‘1)) | |
41 | blen1 47358 | . . . 4 ⊢ (#b‘1) = 1 | |
42 | 40, 41 | eqtrdi 2787 | . . 3 ⊢ (𝑁 = 1 → (#b‘𝑁) = 1) |
43 | 39, 42 | jaoi 854 | . 2 ⊢ ((𝑁 = 0 ∨ 𝑁 = 1) → (#b‘𝑁) = 1) |
44 | 36, 43 | impbid1 224 | 1 ⊢ (𝑁 ∈ ℕ0 → ((#b‘𝑁) = 1 ↔ (𝑁 = 0 ∨ 𝑁 = 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 ℝcr 11112 0cc0 11113 1c1 11114 + caddc 11116 < clt 11253 ≤ cle 11254 − cmin 11449 ℕcn 12217 2c2 12272 ℕ0cn0 12477 ℤcz 12563 ℝ+crp 12979 ⌊cfl 13760 logb clogb 26506 #bcblen 47343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-inf2 9639 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 ax-addf 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7673 df-om 7859 df-1st 7978 df-2nd 7979 df-supp 8150 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-2o 8470 df-er 8706 df-map 8825 df-pm 8826 df-ixp 8895 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-fsupp 9365 df-fi 9409 df-sup 9440 df-inf 9441 df-oi 9508 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-ioo 13333 df-ioc 13334 df-ico 13335 df-icc 13336 df-fz 13490 df-fzo 13633 df-fl 13762 df-mod 13840 df-seq 13972 df-exp 14033 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15019 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-limsup 15420 df-clim 15437 df-rlim 15438 df-sum 15638 df-ef 16016 df-sin 16018 df-cos 16019 df-pi 16021 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-hom 17226 df-cco 17227 df-rest 17373 df-topn 17374 df-0g 17392 df-gsum 17393 df-topgen 17394 df-pt 17395 df-prds 17398 df-xrs 17453 df-qtop 17458 df-imas 17459 df-xps 17461 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 df-mulg 18988 df-cntz 19223 df-cmn 19692 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-fbas 21142 df-fg 21143 df-cnfld 21146 df-top 22617 df-topon 22634 df-topsp 22656 df-bases 22670 df-cld 22744 df-ntr 22745 df-cls 22746 df-nei 22823 df-lp 22861 df-perf 22862 df-cn 22952 df-cnp 22953 df-haus 23040 df-tx 23287 df-hmeo 23480 df-fil 23571 df-fm 23663 df-flim 23664 df-flf 23665 df-xms 24047 df-ms 24048 df-tms 24049 df-cncf 24619 df-limc 25616 df-dv 25617 df-log 26302 df-logb 26507 df-blen 47344 |
This theorem is referenced by: nn0sumshdiglem2 47396 |
Copyright terms: Public domain | W3C validator |