Step | Hyp | Ref
| Expression |
1 | | fveqeq2 6765 |
. . . 4
⊢ (𝑎 = 𝑥 → ((#b‘𝑎) = 𝑦 ↔ (#b‘𝑥) = 𝑦)) |
2 | | id 22 |
. . . . 5
⊢ (𝑎 = 𝑥 → 𝑎 = 𝑥) |
3 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑎 = 𝑥 → (𝑘(digit‘2)𝑎) = (𝑘(digit‘2)𝑥)) |
4 | 3 | oveq1d 7270 |
. . . . . 6
⊢ (𝑎 = 𝑥 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((𝑘(digit‘2)𝑥) · (2↑𝑘))) |
5 | 4 | sumeq2sdv 15344 |
. . . . 5
⊢ (𝑎 = 𝑥 → Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) |
6 | 2, 5 | eqeq12d 2754 |
. . . 4
⊢ (𝑎 = 𝑥 → (𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) |
7 | 1, 6 | imbi12d 344 |
. . 3
⊢ (𝑎 = 𝑥 → (((#b‘𝑎) = 𝑦 → 𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))))) |
8 | 7 | cbvralvw 3372 |
. 2
⊢
(∀𝑎 ∈
ℕ0 ((#b‘𝑎) = 𝑦 → 𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑥 ∈ ℕ0
((#b‘𝑥) =
𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) |
9 | | elnn0 12165 |
. . . . . 6
⊢ (𝑎 ∈ ℕ0
↔ (𝑎 ∈ ℕ
∨ 𝑎 =
0)) |
10 | | nn0sumshdiglemA 45853 |
. . . . . . . . 9
⊢ (((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) ∧
𝑦 ∈ ℕ) →
(∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
11 | 10 | expimpd 453 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) →
((𝑦 ∈ ℕ ∧
∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
12 | | nn0sumshdiglemB 45854 |
. . . . . . . . 9
⊢ (((𝑎 ∈ ℕ ∧ ((𝑎 − 1) / 2) ∈
ℕ0) ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0
((#b‘𝑥) =
𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
13 | 12 | expimpd 453 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℕ ∧ ((𝑎 − 1) / 2) ∈
ℕ0) → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0
((#b‘𝑥) =
𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
14 | | nneom 45761 |
. . . . . . . 8
⊢ (𝑎 ∈ ℕ → ((𝑎 / 2) ∈ ℕ ∨
((𝑎 − 1) / 2) ∈
ℕ0)) |
15 | 11, 13, 14 | mpjaodan 955 |
. . . . . . 7
⊢ (𝑎 ∈ ℕ → ((𝑦 ∈ ℕ ∧
∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
16 | | eqcom 2745 |
. . . . . . . . . . . . . 14
⊢ (1 =
(𝑦 + 1) ↔ (𝑦 + 1) = 1) |
17 | 16 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ → (1 =
(𝑦 + 1) ↔ (𝑦 + 1) = 1)) |
18 | | nncn 11911 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℂ) |
19 | | 1cnd 10901 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℕ → 1 ∈
ℂ) |
20 | 18, 19, 19 | addlsub 11321 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ → ((𝑦 + 1) = 1 ↔ 𝑦 = (1 −
1))) |
21 | | 1m1e0 11975 |
. . . . . . . . . . . . . . 15
⊢ (1
− 1) = 0 |
22 | 21 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℕ → (1
− 1) = 0) |
23 | 22 | eqeq2d 2749 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ → (𝑦 = (1 − 1) ↔ 𝑦 = 0)) |
24 | 17, 20, 23 | 3bitrd 304 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ → (1 =
(𝑦 + 1) ↔ 𝑦 = 0)) |
25 | | oveq1 7262 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 0 → (𝑦 + 1) = (0 + 1)) |
26 | 25 | oveq2d 7271 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 0 → (0..^(𝑦 + 1)) = (0..^(0 +
1))) |
27 | | 0p1e1 12025 |
. . . . . . . . . . . . . . . . 17
⊢ (0 + 1) =
1 |
28 | 27 | oveq2i 7266 |
. . . . . . . . . . . . . . . 16
⊢ (0..^(0 +
1)) = (0..^1) |
29 | | fzo01 13397 |
. . . . . . . . . . . . . . . 16
⊢ (0..^1) =
{0} |
30 | 28, 29 | eqtri 2766 |
. . . . . . . . . . . . . . 15
⊢ (0..^(0 +
1)) = {0} |
31 | 26, 30 | eqtrdi 2795 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 0 → (0..^(𝑦 + 1)) = {0}) |
32 | 31 | sumeq1d 15341 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 0 → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)) = Σ𝑘 ∈ {0} ((𝑘(digit‘2)0) · (2↑𝑘))) |
33 | | 0cn 10898 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℂ |
34 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 0 → (𝑘(digit‘2)0) =
(0(digit‘2)0)) |
35 | | 2nn 11976 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℕ |
36 | | 0z 12260 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℤ |
37 | | dig0 45840 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((2
∈ ℕ ∧ 0 ∈ ℤ) → (0(digit‘2)0) =
0) |
38 | 35, 36, 37 | mp2an 688 |
. . . . . . . . . . . . . . . . . 18
⊢
(0(digit‘2)0) = 0 |
39 | 34, 38 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → (𝑘(digit‘2)0) = 0) |
40 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 0 → (2↑𝑘) = (2↑0)) |
41 | | 2cn 11978 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℂ |
42 | | exp0 13714 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2 ∈
ℂ → (2↑0) = 1) |
43 | 41, 42 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢
(2↑0) = 1 |
44 | 40, 43 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → (2↑𝑘) = 1) |
45 | 39, 44 | oveq12d 7273 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 0 → ((𝑘(digit‘2)0) · (2↑𝑘)) = (0 ·
1)) |
46 | | 1re 10906 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℝ |
47 | | mul02lem2 11082 |
. . . . . . . . . . . . . . . . 17
⊢ (1 ∈
ℝ → (0 · 1) = 0) |
48 | 46, 47 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ (0
· 1) = 0 |
49 | 45, 48 | eqtrdi 2795 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 0 → ((𝑘(digit‘2)0) · (2↑𝑘)) = 0) |
50 | 49 | sumsn 15386 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℂ ∧ 0 ∈ ℂ) → Σ𝑘 ∈ {0} ((𝑘(digit‘2)0) · (2↑𝑘)) = 0) |
51 | 33, 33, 50 | mp2an 688 |
. . . . . . . . . . . . 13
⊢
Σ𝑘 ∈ {0}
((𝑘(digit‘2)0)
· (2↑𝑘)) =
0 |
52 | 32, 51 | eqtr2di 2796 |
. . . . . . . . . . . 12
⊢ (𝑦 = 0 → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘))) |
53 | 24, 52 | syl6bi 252 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℕ → (1 =
(𝑦 + 1) → 0 =
Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))) |
54 | 53 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) → (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))) |
55 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 0 →
(#b‘𝑎) =
(#b‘0)) |
56 | | blen0 45806 |
. . . . . . . . . . . . . 14
⊢
(#b‘0) = 1 |
57 | 55, 56 | eqtrdi 2795 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 0 →
(#b‘𝑎) =
1) |
58 | 57 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ (𝑎 = 0 →
((#b‘𝑎) =
(𝑦 + 1) ↔ 1 = (𝑦 + 1))) |
59 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 0 → 𝑎 = 0) |
60 | | oveq2 7263 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 0 → (𝑘(digit‘2)𝑎) = (𝑘(digit‘2)0)) |
61 | 60 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 0 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((𝑘(digit‘2)0) · (2↑𝑘))) |
62 | 61 | sumeq2sdv 15344 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 0 → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘))) |
63 | 59, 62 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑎 = 0 → (𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))) |
64 | 58, 63 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑎 = 0 →
(((#b‘𝑎) =
(𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘))))) |
65 | 64 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) →
(((#b‘𝑎) =
(𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘))))) |
66 | 54, 65 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) →
((#b‘𝑎) =
(𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))) |
67 | 66 | a1d 25 |
. . . . . . . 8
⊢ ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0
((#b‘𝑥) =
𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
68 | 67 | expimpd 453 |
. . . . . . 7
⊢ (𝑎 = 0 → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0
((#b‘𝑥) =
𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
69 | 15, 68 | jaoi 853 |
. . . . . 6
⊢ ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → ((𝑦 ∈ ℕ ∧
∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
70 | 9, 69 | sylbi 216 |
. . . . 5
⊢ (𝑎 ∈ ℕ0
→ ((𝑦 ∈ ℕ
∧ ∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
71 | 70 | com12 32 |
. . . 4
⊢ ((𝑦 ∈ ℕ ∧
∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → (𝑎 ∈ ℕ0 →
((#b‘𝑎) =
(𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
72 | 71 | ralrimiv 3106 |
. . 3
⊢ ((𝑦 ∈ ℕ ∧
∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ∀𝑎 ∈ ℕ0
((#b‘𝑎) =
(𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))) |
73 | 72 | ex 412 |
. 2
⊢ (𝑦 ∈ ℕ →
(∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0
((#b‘𝑎) =
(𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
74 | 8, 73 | syl5bi 241 |
1
⊢ (𝑦 ∈ ℕ →
(∀𝑎 ∈
ℕ0 ((#b‘𝑎) = 𝑦 → 𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0
((#b‘𝑎) =
(𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |