Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0sumshdiglem1 Structured version   Visualization version   GIF version

Theorem nn0sumshdiglem1 48542
Description: Lemma 1 for nn0sumshdig 48544 (induction step). (Contributed by AV, 7-Jun-2020.)
Assertion
Ref Expression
nn0sumshdiglem1 (𝑦 ∈ ℕ → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
Distinct variable group:   𝑘,𝑎,𝑦

Proof of Theorem nn0sumshdiglem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveqeq2 6915 . . . 4 (𝑎 = 𝑥 → ((#b𝑎) = 𝑦 ↔ (#b𝑥) = 𝑦))
2 id 22 . . . . 5 (𝑎 = 𝑥𝑎 = 𝑥)
3 oveq2 7439 . . . . . . 7 (𝑎 = 𝑥 → (𝑘(digit‘2)𝑎) = (𝑘(digit‘2)𝑥))
43oveq1d 7446 . . . . . 6 (𝑎 = 𝑥 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((𝑘(digit‘2)𝑥) · (2↑𝑘)))
54sumeq2sdv 15739 . . . . 5 (𝑎 = 𝑥 → Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))
62, 5eqeq12d 2753 . . . 4 (𝑎 = 𝑥 → (𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))))
71, 6imbi12d 344 . . 3 (𝑎 = 𝑥 → (((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))))
87cbvralvw 3237 . 2 (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))))
9 elnn0 12528 . . . . . 6 (𝑎 ∈ ℕ0 ↔ (𝑎 ∈ ℕ ∨ 𝑎 = 0))
10 nn0sumshdiglemA 48540 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
1110expimpd 453 . . . . . . . 8 ((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
12 nn0sumshdiglemB 48541 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ ((𝑎 − 1) / 2) ∈ ℕ0) ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
1312expimpd 453 . . . . . . . 8 ((𝑎 ∈ ℕ ∧ ((𝑎 − 1) / 2) ∈ ℕ0) → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
14 nneom 48448 . . . . . . . 8 (𝑎 ∈ ℕ → ((𝑎 / 2) ∈ ℕ ∨ ((𝑎 − 1) / 2) ∈ ℕ0))
1511, 13, 14mpjaodan 961 . . . . . . 7 (𝑎 ∈ ℕ → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
16 eqcom 2744 . . . . . . . . . . . . . 14 (1 = (𝑦 + 1) ↔ (𝑦 + 1) = 1)
1716a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (1 = (𝑦 + 1) ↔ (𝑦 + 1) = 1))
18 nncn 12274 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
19 1cnd 11256 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 1 ∈ ℂ)
2018, 19, 19addlsub 11679 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((𝑦 + 1) = 1 ↔ 𝑦 = (1 − 1)))
21 1m1e0 12338 . . . . . . . . . . . . . . 15 (1 − 1) = 0
2221a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (1 − 1) = 0)
2322eqeq2d 2748 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (𝑦 = (1 − 1) ↔ 𝑦 = 0))
2417, 20, 233bitrd 305 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (1 = (𝑦 + 1) ↔ 𝑦 = 0))
25 oveq1 7438 . . . . . . . . . . . . . . . 16 (𝑦 = 0 → (𝑦 + 1) = (0 + 1))
2625oveq2d 7447 . . . . . . . . . . . . . . 15 (𝑦 = 0 → (0..^(𝑦 + 1)) = (0..^(0 + 1)))
27 0p1e1 12388 . . . . . . . . . . . . . . . . 17 (0 + 1) = 1
2827oveq2i 7442 . . . . . . . . . . . . . . . 16 (0..^(0 + 1)) = (0..^1)
29 fzo01 13786 . . . . . . . . . . . . . . . 16 (0..^1) = {0}
3028, 29eqtri 2765 . . . . . . . . . . . . . . 15 (0..^(0 + 1)) = {0}
3126, 30eqtrdi 2793 . . . . . . . . . . . . . 14 (𝑦 = 0 → (0..^(𝑦 + 1)) = {0})
3231sumeq1d 15736 . . . . . . . . . . . . 13 (𝑦 = 0 → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)) = Σ𝑘 ∈ {0} ((𝑘(digit‘2)0) · (2↑𝑘)))
33 0cn 11253 . . . . . . . . . . . . . 14 0 ∈ ℂ
34 oveq1 7438 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → (𝑘(digit‘2)0) = (0(digit‘2)0))
35 2nn 12339 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℕ
36 0z 12624 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℤ
37 dig0 48527 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℕ ∧ 0 ∈ ℤ) → (0(digit‘2)0) = 0)
3835, 36, 37mp2an 692 . . . . . . . . . . . . . . . . . 18 (0(digit‘2)0) = 0
3934, 38eqtrdi 2793 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑘(digit‘2)0) = 0)
40 oveq2 7439 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → (2↑𝑘) = (2↑0))
41 2cn 12341 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℂ
42 exp0 14106 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℂ → (2↑0) = 1)
4341, 42ax-mp 5 . . . . . . . . . . . . . . . . . 18 (2↑0) = 1
4440, 43eqtrdi 2793 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (2↑𝑘) = 1)
4539, 44oveq12d 7449 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → ((𝑘(digit‘2)0) · (2↑𝑘)) = (0 · 1))
46 1re 11261 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
47 mul02lem2 11438 . . . . . . . . . . . . . . . . 17 (1 ∈ ℝ → (0 · 1) = 0)
4846, 47ax-mp 5 . . . . . . . . . . . . . . . 16 (0 · 1) = 0
4945, 48eqtrdi 2793 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ((𝑘(digit‘2)0) · (2↑𝑘)) = 0)
5049sumsn 15782 . . . . . . . . . . . . . 14 ((0 ∈ ℂ ∧ 0 ∈ ℂ) → Σ𝑘 ∈ {0} ((𝑘(digit‘2)0) · (2↑𝑘)) = 0)
5133, 33, 50mp2an 692 . . . . . . . . . . . . 13 Σ𝑘 ∈ {0} ((𝑘(digit‘2)0) · (2↑𝑘)) = 0
5232, 51eqtr2di 2794 . . . . . . . . . . . 12 (𝑦 = 0 → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))
5324, 52biimtrdi 253 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘))))
5453adantl 481 . . . . . . . . . 10 ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) → (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘))))
55 fveq2 6906 . . . . . . . . . . . . . 14 (𝑎 = 0 → (#b𝑎) = (#b‘0))
56 blen0 48493 . . . . . . . . . . . . . 14 (#b‘0) = 1
5755, 56eqtrdi 2793 . . . . . . . . . . . . 13 (𝑎 = 0 → (#b𝑎) = 1)
5857eqeq1d 2739 . . . . . . . . . . . 12 (𝑎 = 0 → ((#b𝑎) = (𝑦 + 1) ↔ 1 = (𝑦 + 1)))
59 id 22 . . . . . . . . . . . . 13 (𝑎 = 0 → 𝑎 = 0)
60 oveq2 7439 . . . . . . . . . . . . . . 15 (𝑎 = 0 → (𝑘(digit‘2)𝑎) = (𝑘(digit‘2)0))
6160oveq1d 7446 . . . . . . . . . . . . . 14 (𝑎 = 0 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((𝑘(digit‘2)0) · (2↑𝑘)))
6261sumeq2sdv 15739 . . . . . . . . . . . . 13 (𝑎 = 0 → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))
6359, 62eqeq12d 2753 . . . . . . . . . . . 12 (𝑎 = 0 → (𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘))))
6458, 63imbi12d 344 . . . . . . . . . . 11 (𝑎 = 0 → (((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))))
6564adantr 480 . . . . . . . . . 10 ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) → (((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))))
6654, 65mpbird 257 . . . . . . . . 9 ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))
6766a1d 25 . . . . . . . 8 ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
6867expimpd 453 . . . . . . 7 (𝑎 = 0 → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
6915, 68jaoi 858 . . . . . 6 ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
709, 69sylbi 217 . . . . 5 (𝑎 ∈ ℕ0 → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
7170com12 32 . . . 4 ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → (𝑎 ∈ ℕ0 → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
7271ralrimiv 3145 . . 3 ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))
7372ex 412 . 2 (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
748, 73biimtrid 242 1 (𝑦 ∈ ℕ → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wral 3061  {csn 4626  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  0cn0 12526  cz 12613  ..^cfzo 13694  cexp 14102  Σcsu 15722  #bcblen 48490  digitcdig 48516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-dvds 16291  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-cxp 26599  df-logb 26808  df-blen 48491  df-dig 48517
This theorem is referenced by:  nn0sumshdiglem2  48543
  Copyright terms: Public domain W3C validator