Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0sumshdiglem1 Structured version   Visualization version   GIF version

Theorem nn0sumshdiglem1 48500
Description: Lemma 1 for nn0sumshdig 48502 (induction step). (Contributed by AV, 7-Jun-2020.)
Assertion
Ref Expression
nn0sumshdiglem1 (𝑦 ∈ ℕ → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
Distinct variable group:   𝑘,𝑎,𝑦

Proof of Theorem nn0sumshdiglem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveqeq2 6895 . . . 4 (𝑎 = 𝑥 → ((#b𝑎) = 𝑦 ↔ (#b𝑥) = 𝑦))
2 id 22 . . . . 5 (𝑎 = 𝑥𝑎 = 𝑥)
3 oveq2 7421 . . . . . . 7 (𝑎 = 𝑥 → (𝑘(digit‘2)𝑎) = (𝑘(digit‘2)𝑥))
43oveq1d 7428 . . . . . 6 (𝑎 = 𝑥 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((𝑘(digit‘2)𝑥) · (2↑𝑘)))
54sumeq2sdv 15721 . . . . 5 (𝑎 = 𝑥 → Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))
62, 5eqeq12d 2750 . . . 4 (𝑎 = 𝑥 → (𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))))
71, 6imbi12d 344 . . 3 (𝑎 = 𝑥 → (((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))))
87cbvralvw 3223 . 2 (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))))
9 elnn0 12511 . . . . . 6 (𝑎 ∈ ℕ0 ↔ (𝑎 ∈ ℕ ∨ 𝑎 = 0))
10 nn0sumshdiglemA 48498 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
1110expimpd 453 . . . . . . . 8 ((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
12 nn0sumshdiglemB 48499 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ ((𝑎 − 1) / 2) ∈ ℕ0) ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
1312expimpd 453 . . . . . . . 8 ((𝑎 ∈ ℕ ∧ ((𝑎 − 1) / 2) ∈ ℕ0) → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
14 nneom 48406 . . . . . . . 8 (𝑎 ∈ ℕ → ((𝑎 / 2) ∈ ℕ ∨ ((𝑎 − 1) / 2) ∈ ℕ0))
1511, 13, 14mpjaodan 960 . . . . . . 7 (𝑎 ∈ ℕ → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
16 eqcom 2741 . . . . . . . . . . . . . 14 (1 = (𝑦 + 1) ↔ (𝑦 + 1) = 1)
1716a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (1 = (𝑦 + 1) ↔ (𝑦 + 1) = 1))
18 nncn 12256 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
19 1cnd 11238 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 1 ∈ ℂ)
2018, 19, 19addlsub 11661 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((𝑦 + 1) = 1 ↔ 𝑦 = (1 − 1)))
21 1m1e0 12320 . . . . . . . . . . . . . . 15 (1 − 1) = 0
2221a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (1 − 1) = 0)
2322eqeq2d 2745 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (𝑦 = (1 − 1) ↔ 𝑦 = 0))
2417, 20, 233bitrd 305 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (1 = (𝑦 + 1) ↔ 𝑦 = 0))
25 oveq1 7420 . . . . . . . . . . . . . . . 16 (𝑦 = 0 → (𝑦 + 1) = (0 + 1))
2625oveq2d 7429 . . . . . . . . . . . . . . 15 (𝑦 = 0 → (0..^(𝑦 + 1)) = (0..^(0 + 1)))
27 0p1e1 12370 . . . . . . . . . . . . . . . . 17 (0 + 1) = 1
2827oveq2i 7424 . . . . . . . . . . . . . . . 16 (0..^(0 + 1)) = (0..^1)
29 fzo01 13768 . . . . . . . . . . . . . . . 16 (0..^1) = {0}
3028, 29eqtri 2757 . . . . . . . . . . . . . . 15 (0..^(0 + 1)) = {0}
3126, 30eqtrdi 2785 . . . . . . . . . . . . . 14 (𝑦 = 0 → (0..^(𝑦 + 1)) = {0})
3231sumeq1d 15718 . . . . . . . . . . . . 13 (𝑦 = 0 → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)) = Σ𝑘 ∈ {0} ((𝑘(digit‘2)0) · (2↑𝑘)))
33 0cn 11235 . . . . . . . . . . . . . 14 0 ∈ ℂ
34 oveq1 7420 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → (𝑘(digit‘2)0) = (0(digit‘2)0))
35 2nn 12321 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℕ
36 0z 12607 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℤ
37 dig0 48485 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℕ ∧ 0 ∈ ℤ) → (0(digit‘2)0) = 0)
3835, 36, 37mp2an 692 . . . . . . . . . . . . . . . . . 18 (0(digit‘2)0) = 0
3934, 38eqtrdi 2785 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑘(digit‘2)0) = 0)
40 oveq2 7421 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → (2↑𝑘) = (2↑0))
41 2cn 12323 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℂ
42 exp0 14088 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℂ → (2↑0) = 1)
4341, 42ax-mp 5 . . . . . . . . . . . . . . . . . 18 (2↑0) = 1
4440, 43eqtrdi 2785 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (2↑𝑘) = 1)
4539, 44oveq12d 7431 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → ((𝑘(digit‘2)0) · (2↑𝑘)) = (0 · 1))
46 1re 11243 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
47 mul02lem2 11420 . . . . . . . . . . . . . . . . 17 (1 ∈ ℝ → (0 · 1) = 0)
4846, 47ax-mp 5 . . . . . . . . . . . . . . . 16 (0 · 1) = 0
4945, 48eqtrdi 2785 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ((𝑘(digit‘2)0) · (2↑𝑘)) = 0)
5049sumsn 15764 . . . . . . . . . . . . . 14 ((0 ∈ ℂ ∧ 0 ∈ ℂ) → Σ𝑘 ∈ {0} ((𝑘(digit‘2)0) · (2↑𝑘)) = 0)
5133, 33, 50mp2an 692 . . . . . . . . . . . . 13 Σ𝑘 ∈ {0} ((𝑘(digit‘2)0) · (2↑𝑘)) = 0
5232, 51eqtr2di 2786 . . . . . . . . . . . 12 (𝑦 = 0 → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))
5324, 52biimtrdi 253 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘))))
5453adantl 481 . . . . . . . . . 10 ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) → (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘))))
55 fveq2 6886 . . . . . . . . . . . . . 14 (𝑎 = 0 → (#b𝑎) = (#b‘0))
56 blen0 48451 . . . . . . . . . . . . . 14 (#b‘0) = 1
5755, 56eqtrdi 2785 . . . . . . . . . . . . 13 (𝑎 = 0 → (#b𝑎) = 1)
5857eqeq1d 2736 . . . . . . . . . . . 12 (𝑎 = 0 → ((#b𝑎) = (𝑦 + 1) ↔ 1 = (𝑦 + 1)))
59 id 22 . . . . . . . . . . . . 13 (𝑎 = 0 → 𝑎 = 0)
60 oveq2 7421 . . . . . . . . . . . . . . 15 (𝑎 = 0 → (𝑘(digit‘2)𝑎) = (𝑘(digit‘2)0))
6160oveq1d 7428 . . . . . . . . . . . . . 14 (𝑎 = 0 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((𝑘(digit‘2)0) · (2↑𝑘)))
6261sumeq2sdv 15721 . . . . . . . . . . . . 13 (𝑎 = 0 → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))
6359, 62eqeq12d 2750 . . . . . . . . . . . 12 (𝑎 = 0 → (𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘))))
6458, 63imbi12d 344 . . . . . . . . . . 11 (𝑎 = 0 → (((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))))
6564adantr 480 . . . . . . . . . 10 ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) → (((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))))
6654, 65mpbird 257 . . . . . . . . 9 ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))
6766a1d 25 . . . . . . . 8 ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
6867expimpd 453 . . . . . . 7 (𝑎 = 0 → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
6915, 68jaoi 857 . . . . . 6 ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
709, 69sylbi 217 . . . . 5 (𝑎 ∈ ℕ0 → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
7170com12 32 . . . 4 ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → (𝑎 ∈ ℕ0 → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
7271ralrimiv 3132 . . 3 ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))
7372ex 412 . 2 (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
748, 73biimtrid 242 1 (𝑦 ∈ ℕ → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wcel 2107  wral 3050  {csn 4606  cfv 6541  (class class class)co 7413  cc 11135  cr 11136  0cc0 11137  1c1 11138   + caddc 11140   · cmul 11142  cmin 11474   / cdiv 11902  cn 12248  2c2 12303  0cn0 12509  cz 12596  ..^cfzo 13676  cexp 14084  Σcsu 15704  #bcblen 48448  digitcdig 48474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-ioo 13373  df-ioc 13374  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14295  df-bc 14324  df-hash 14352  df-shft 15088  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-limsup 15489  df-clim 15506  df-rlim 15507  df-sum 15705  df-ef 16085  df-sin 16087  df-cos 16088  df-pi 16090  df-dvds 16273  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-starv 17288  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-unif 17296  df-hom 17297  df-cco 17298  df-rest 17438  df-topn 17439  df-0g 17457  df-gsum 17458  df-topgen 17459  df-pt 17460  df-prds 17463  df-xrs 17518  df-qtop 17523  df-imas 17524  df-xps 17526  df-mre 17600  df-mrc 17601  df-acs 17603  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-submnd 18766  df-mulg 19055  df-cntz 19304  df-cmn 19768  df-psmet 21318  df-xmet 21319  df-met 21320  df-bl 21321  df-mopn 21322  df-fbas 21323  df-fg 21324  df-cnfld 21327  df-top 22848  df-topon 22865  df-topsp 22887  df-bases 22900  df-cld 22973  df-ntr 22974  df-cls 22975  df-nei 23052  df-lp 23090  df-perf 23091  df-cn 23181  df-cnp 23182  df-haus 23269  df-tx 23516  df-hmeo 23709  df-fil 23800  df-fm 23892  df-flim 23893  df-flf 23894  df-xms 24275  df-ms 24276  df-tms 24277  df-cncf 24840  df-limc 25837  df-dv 25838  df-log 26534  df-cxp 26535  df-logb 26744  df-blen 48449  df-dig 48475
This theorem is referenced by:  nn0sumshdiglem2  48501
  Copyright terms: Public domain W3C validator