Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0sumshdiglem1 Structured version   Visualization version   GIF version

Theorem nn0sumshdiglem1 48601
Description: Lemma 1 for nn0sumshdig 48603 (induction step). (Contributed by AV, 7-Jun-2020.)
Assertion
Ref Expression
nn0sumshdiglem1 (𝑦 ∈ ℕ → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
Distinct variable group:   𝑘,𝑎,𝑦

Proof of Theorem nn0sumshdiglem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveqeq2 6885 . . . 4 (𝑎 = 𝑥 → ((#b𝑎) = 𝑦 ↔ (#b𝑥) = 𝑦))
2 id 22 . . . . 5 (𝑎 = 𝑥𝑎 = 𝑥)
3 oveq2 7413 . . . . . . 7 (𝑎 = 𝑥 → (𝑘(digit‘2)𝑎) = (𝑘(digit‘2)𝑥))
43oveq1d 7420 . . . . . 6 (𝑎 = 𝑥 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((𝑘(digit‘2)𝑥) · (2↑𝑘)))
54sumeq2sdv 15719 . . . . 5 (𝑎 = 𝑥 → Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))
62, 5eqeq12d 2751 . . . 4 (𝑎 = 𝑥 → (𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))))
71, 6imbi12d 344 . . 3 (𝑎 = 𝑥 → (((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))))
87cbvralvw 3220 . 2 (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))))
9 elnn0 12503 . . . . . 6 (𝑎 ∈ ℕ0 ↔ (𝑎 ∈ ℕ ∨ 𝑎 = 0))
10 nn0sumshdiglemA 48599 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
1110expimpd 453 . . . . . . . 8 ((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
12 nn0sumshdiglemB 48600 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ ((𝑎 − 1) / 2) ∈ ℕ0) ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
1312expimpd 453 . . . . . . . 8 ((𝑎 ∈ ℕ ∧ ((𝑎 − 1) / 2) ∈ ℕ0) → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
14 nneom 48507 . . . . . . . 8 (𝑎 ∈ ℕ → ((𝑎 / 2) ∈ ℕ ∨ ((𝑎 − 1) / 2) ∈ ℕ0))
1511, 13, 14mpjaodan 960 . . . . . . 7 (𝑎 ∈ ℕ → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
16 eqcom 2742 . . . . . . . . . . . . . 14 (1 = (𝑦 + 1) ↔ (𝑦 + 1) = 1)
1716a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (1 = (𝑦 + 1) ↔ (𝑦 + 1) = 1))
18 nncn 12248 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
19 1cnd 11230 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 1 ∈ ℂ)
2018, 19, 19addlsub 11653 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((𝑦 + 1) = 1 ↔ 𝑦 = (1 − 1)))
21 1m1e0 12312 . . . . . . . . . . . . . . 15 (1 − 1) = 0
2221a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (1 − 1) = 0)
2322eqeq2d 2746 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (𝑦 = (1 − 1) ↔ 𝑦 = 0))
2417, 20, 233bitrd 305 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (1 = (𝑦 + 1) ↔ 𝑦 = 0))
25 oveq1 7412 . . . . . . . . . . . . . . . 16 (𝑦 = 0 → (𝑦 + 1) = (0 + 1))
2625oveq2d 7421 . . . . . . . . . . . . . . 15 (𝑦 = 0 → (0..^(𝑦 + 1)) = (0..^(0 + 1)))
27 0p1e1 12362 . . . . . . . . . . . . . . . . 17 (0 + 1) = 1
2827oveq2i 7416 . . . . . . . . . . . . . . . 16 (0..^(0 + 1)) = (0..^1)
29 fzo01 13763 . . . . . . . . . . . . . . . 16 (0..^1) = {0}
3028, 29eqtri 2758 . . . . . . . . . . . . . . 15 (0..^(0 + 1)) = {0}
3126, 30eqtrdi 2786 . . . . . . . . . . . . . 14 (𝑦 = 0 → (0..^(𝑦 + 1)) = {0})
3231sumeq1d 15716 . . . . . . . . . . . . 13 (𝑦 = 0 → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)) = Σ𝑘 ∈ {0} ((𝑘(digit‘2)0) · (2↑𝑘)))
33 0cn 11227 . . . . . . . . . . . . . 14 0 ∈ ℂ
34 oveq1 7412 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → (𝑘(digit‘2)0) = (0(digit‘2)0))
35 2nn 12313 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℕ
36 0z 12599 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℤ
37 dig0 48586 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℕ ∧ 0 ∈ ℤ) → (0(digit‘2)0) = 0)
3835, 36, 37mp2an 692 . . . . . . . . . . . . . . . . . 18 (0(digit‘2)0) = 0
3934, 38eqtrdi 2786 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑘(digit‘2)0) = 0)
40 oveq2 7413 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → (2↑𝑘) = (2↑0))
41 2cn 12315 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℂ
42 exp0 14083 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℂ → (2↑0) = 1)
4341, 42ax-mp 5 . . . . . . . . . . . . . . . . . 18 (2↑0) = 1
4440, 43eqtrdi 2786 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (2↑𝑘) = 1)
4539, 44oveq12d 7423 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → ((𝑘(digit‘2)0) · (2↑𝑘)) = (0 · 1))
46 1re 11235 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
47 mul02lem2 11412 . . . . . . . . . . . . . . . . 17 (1 ∈ ℝ → (0 · 1) = 0)
4846, 47ax-mp 5 . . . . . . . . . . . . . . . 16 (0 · 1) = 0
4945, 48eqtrdi 2786 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ((𝑘(digit‘2)0) · (2↑𝑘)) = 0)
5049sumsn 15762 . . . . . . . . . . . . . 14 ((0 ∈ ℂ ∧ 0 ∈ ℂ) → Σ𝑘 ∈ {0} ((𝑘(digit‘2)0) · (2↑𝑘)) = 0)
5133, 33, 50mp2an 692 . . . . . . . . . . . . 13 Σ𝑘 ∈ {0} ((𝑘(digit‘2)0) · (2↑𝑘)) = 0
5232, 51eqtr2di 2787 . . . . . . . . . . . 12 (𝑦 = 0 → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))
5324, 52biimtrdi 253 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘))))
5453adantl 481 . . . . . . . . . 10 ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) → (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘))))
55 fveq2 6876 . . . . . . . . . . . . . 14 (𝑎 = 0 → (#b𝑎) = (#b‘0))
56 blen0 48552 . . . . . . . . . . . . . 14 (#b‘0) = 1
5755, 56eqtrdi 2786 . . . . . . . . . . . . 13 (𝑎 = 0 → (#b𝑎) = 1)
5857eqeq1d 2737 . . . . . . . . . . . 12 (𝑎 = 0 → ((#b𝑎) = (𝑦 + 1) ↔ 1 = (𝑦 + 1)))
59 id 22 . . . . . . . . . . . . 13 (𝑎 = 0 → 𝑎 = 0)
60 oveq2 7413 . . . . . . . . . . . . . . 15 (𝑎 = 0 → (𝑘(digit‘2)𝑎) = (𝑘(digit‘2)0))
6160oveq1d 7420 . . . . . . . . . . . . . 14 (𝑎 = 0 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((𝑘(digit‘2)0) · (2↑𝑘)))
6261sumeq2sdv 15719 . . . . . . . . . . . . 13 (𝑎 = 0 → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))
6359, 62eqeq12d 2751 . . . . . . . . . . . 12 (𝑎 = 0 → (𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘))))
6458, 63imbi12d 344 . . . . . . . . . . 11 (𝑎 = 0 → (((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))))
6564adantr 480 . . . . . . . . . 10 ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) → (((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))))
6654, 65mpbird 257 . . . . . . . . 9 ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))
6766a1d 25 . . . . . . . 8 ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
6867expimpd 453 . . . . . . 7 (𝑎 = 0 → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
6915, 68jaoi 857 . . . . . 6 ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
709, 69sylbi 217 . . . . 5 (𝑎 ∈ ℕ0 → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
7170com12 32 . . . 4 ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → (𝑎 ∈ ℕ0 → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
7271ralrimiv 3131 . . 3 ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))
7372ex 412 . 2 (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
748, 73biimtrid 242 1 (𝑦 ∈ ℕ → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wral 3051  {csn 4601  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  cmin 11466   / cdiv 11894  cn 12240  2c2 12295  0cn0 12501  cz 12588  ..^cfzo 13671  cexp 14079  Σcsu 15702  #bcblen 48549  digitcdig 48575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-dvds 16273  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517  df-cxp 26518  df-logb 26727  df-blen 48550  df-dig 48576
This theorem is referenced by:  nn0sumshdiglem2  48602
  Copyright terms: Public domain W3C validator