Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0sumshdiglem1 Structured version   Visualization version   GIF version

Theorem nn0sumshdiglem1 48610
Description: Lemma 1 for nn0sumshdig 48612 (induction step). (Contributed by AV, 7-Jun-2020.)
Assertion
Ref Expression
nn0sumshdiglem1 (𝑦 ∈ ℕ → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
Distinct variable group:   𝑘,𝑎,𝑦

Proof of Theorem nn0sumshdiglem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveqeq2 6867 . . . 4 (𝑎 = 𝑥 → ((#b𝑎) = 𝑦 ↔ (#b𝑥) = 𝑦))
2 id 22 . . . . 5 (𝑎 = 𝑥𝑎 = 𝑥)
3 oveq2 7395 . . . . . . 7 (𝑎 = 𝑥 → (𝑘(digit‘2)𝑎) = (𝑘(digit‘2)𝑥))
43oveq1d 7402 . . . . . 6 (𝑎 = 𝑥 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((𝑘(digit‘2)𝑥) · (2↑𝑘)))
54sumeq2sdv 15669 . . . . 5 (𝑎 = 𝑥 → Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))
62, 5eqeq12d 2745 . . . 4 (𝑎 = 𝑥 → (𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))))
71, 6imbi12d 344 . . 3 (𝑎 = 𝑥 → (((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))))
87cbvralvw 3215 . 2 (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))))
9 elnn0 12444 . . . . . 6 (𝑎 ∈ ℕ0 ↔ (𝑎 ∈ ℕ ∨ 𝑎 = 0))
10 nn0sumshdiglemA 48608 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
1110expimpd 453 . . . . . . . 8 ((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
12 nn0sumshdiglemB 48609 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ ((𝑎 − 1) / 2) ∈ ℕ0) ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
1312expimpd 453 . . . . . . . 8 ((𝑎 ∈ ℕ ∧ ((𝑎 − 1) / 2) ∈ ℕ0) → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
14 nneom 48516 . . . . . . . 8 (𝑎 ∈ ℕ → ((𝑎 / 2) ∈ ℕ ∨ ((𝑎 − 1) / 2) ∈ ℕ0))
1511, 13, 14mpjaodan 960 . . . . . . 7 (𝑎 ∈ ℕ → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
16 eqcom 2736 . . . . . . . . . . . . . 14 (1 = (𝑦 + 1) ↔ (𝑦 + 1) = 1)
1716a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (1 = (𝑦 + 1) ↔ (𝑦 + 1) = 1))
18 nncn 12194 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
19 1cnd 11169 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 1 ∈ ℂ)
2018, 19, 19addlsub 11594 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((𝑦 + 1) = 1 ↔ 𝑦 = (1 − 1)))
21 1m1e0 12258 . . . . . . . . . . . . . . 15 (1 − 1) = 0
2221a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (1 − 1) = 0)
2322eqeq2d 2740 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (𝑦 = (1 − 1) ↔ 𝑦 = 0))
2417, 20, 233bitrd 305 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (1 = (𝑦 + 1) ↔ 𝑦 = 0))
25 oveq1 7394 . . . . . . . . . . . . . . . 16 (𝑦 = 0 → (𝑦 + 1) = (0 + 1))
2625oveq2d 7403 . . . . . . . . . . . . . . 15 (𝑦 = 0 → (0..^(𝑦 + 1)) = (0..^(0 + 1)))
27 0p1e1 12303 . . . . . . . . . . . . . . . . 17 (0 + 1) = 1
2827oveq2i 7398 . . . . . . . . . . . . . . . 16 (0..^(0 + 1)) = (0..^1)
29 fzo01 13708 . . . . . . . . . . . . . . . 16 (0..^1) = {0}
3028, 29eqtri 2752 . . . . . . . . . . . . . . 15 (0..^(0 + 1)) = {0}
3126, 30eqtrdi 2780 . . . . . . . . . . . . . 14 (𝑦 = 0 → (0..^(𝑦 + 1)) = {0})
3231sumeq1d 15666 . . . . . . . . . . . . 13 (𝑦 = 0 → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)) = Σ𝑘 ∈ {0} ((𝑘(digit‘2)0) · (2↑𝑘)))
33 0cn 11166 . . . . . . . . . . . . . 14 0 ∈ ℂ
34 oveq1 7394 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → (𝑘(digit‘2)0) = (0(digit‘2)0))
35 2nn 12259 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℕ
36 0z 12540 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℤ
37 dig0 48595 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℕ ∧ 0 ∈ ℤ) → (0(digit‘2)0) = 0)
3835, 36, 37mp2an 692 . . . . . . . . . . . . . . . . . 18 (0(digit‘2)0) = 0
3934, 38eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑘(digit‘2)0) = 0)
40 oveq2 7395 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → (2↑𝑘) = (2↑0))
41 2cn 12261 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℂ
42 exp0 14030 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℂ → (2↑0) = 1)
4341, 42ax-mp 5 . . . . . . . . . . . . . . . . . 18 (2↑0) = 1
4440, 43eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (2↑𝑘) = 1)
4539, 44oveq12d 7405 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → ((𝑘(digit‘2)0) · (2↑𝑘)) = (0 · 1))
46 1re 11174 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
47 mul02lem2 11351 . . . . . . . . . . . . . . . . 17 (1 ∈ ℝ → (0 · 1) = 0)
4846, 47ax-mp 5 . . . . . . . . . . . . . . . 16 (0 · 1) = 0
4945, 48eqtrdi 2780 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ((𝑘(digit‘2)0) · (2↑𝑘)) = 0)
5049sumsn 15712 . . . . . . . . . . . . . 14 ((0 ∈ ℂ ∧ 0 ∈ ℂ) → Σ𝑘 ∈ {0} ((𝑘(digit‘2)0) · (2↑𝑘)) = 0)
5133, 33, 50mp2an 692 . . . . . . . . . . . . 13 Σ𝑘 ∈ {0} ((𝑘(digit‘2)0) · (2↑𝑘)) = 0
5232, 51eqtr2di 2781 . . . . . . . . . . . 12 (𝑦 = 0 → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))
5324, 52biimtrdi 253 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘))))
5453adantl 481 . . . . . . . . . 10 ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) → (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘))))
55 fveq2 6858 . . . . . . . . . . . . . 14 (𝑎 = 0 → (#b𝑎) = (#b‘0))
56 blen0 48561 . . . . . . . . . . . . . 14 (#b‘0) = 1
5755, 56eqtrdi 2780 . . . . . . . . . . . . 13 (𝑎 = 0 → (#b𝑎) = 1)
5857eqeq1d 2731 . . . . . . . . . . . 12 (𝑎 = 0 → ((#b𝑎) = (𝑦 + 1) ↔ 1 = (𝑦 + 1)))
59 id 22 . . . . . . . . . . . . 13 (𝑎 = 0 → 𝑎 = 0)
60 oveq2 7395 . . . . . . . . . . . . . . 15 (𝑎 = 0 → (𝑘(digit‘2)𝑎) = (𝑘(digit‘2)0))
6160oveq1d 7402 . . . . . . . . . . . . . 14 (𝑎 = 0 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((𝑘(digit‘2)0) · (2↑𝑘)))
6261sumeq2sdv 15669 . . . . . . . . . . . . 13 (𝑎 = 0 → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))
6359, 62eqeq12d 2745 . . . . . . . . . . . 12 (𝑎 = 0 → (𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘))))
6458, 63imbi12d 344 . . . . . . . . . . 11 (𝑎 = 0 → (((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))))
6564adantr 480 . . . . . . . . . 10 ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) → (((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))))
6654, 65mpbird 257 . . . . . . . . 9 ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))
6766a1d 25 . . . . . . . 8 ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
6867expimpd 453 . . . . . . 7 (𝑎 = 0 → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
6915, 68jaoi 857 . . . . . 6 ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
709, 69sylbi 217 . . . . 5 (𝑎 ∈ ℕ0 → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
7170com12 32 . . . 4 ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → (𝑎 ∈ ℕ0 → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
7271ralrimiv 3124 . . 3 ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))
7372ex 412 . 2 (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
748, 73biimtrid 242 1 (𝑦 ∈ ℕ → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  {csn 4589  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  cz 12529  ..^cfzo 13615  cexp 14026  Σcsu 15652  #bcblen 48558  digitcdig 48584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-dvds 16223  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466  df-logb 26675  df-blen 48559  df-dig 48585
This theorem is referenced by:  nn0sumshdiglem2  48611
  Copyright terms: Public domain W3C validator