| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brin2 | Structured version Visualization version GIF version | ||
| Description: Binary relation on an intersection is a special case of binary relation on range Cartesian product. (Contributed by Peter Mazsa, 21-Aug-2021.) |
| Ref | Expression |
|---|---|
| brin2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ 𝐴(𝑅 ⋉ 𝑆)〈𝐵, 𝐵〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brin 5168 | . 2 ⊢ (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵)) | |
| 2 | brxrn 38313 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ⋉ 𝑆)〈𝐵, 𝐵〉 ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵))) | |
| 3 | 2 | 3anidm23 1422 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ⋉ 𝑆)〈𝐵, 𝐵〉 ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵))) |
| 4 | 1, 3 | bitr4id 290 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ 𝐴(𝑅 ⋉ 𝑆)〈𝐵, 𝐵〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ∩ cin 3923 〈cop 4605 class class class wbr 5116 ⋉ cxrn 38119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-fo 6533 df-fv 6535 df-1st 7982 df-2nd 7983 df-xrn 38310 |
| This theorem is referenced by: brin3 38349 |
| Copyright terms: Public domain | W3C validator |