![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brin2 | Structured version Visualization version GIF version |
Description: Binary relation on an intersection is a special case of binary relation on range Cartesian product. (Contributed by Peter Mazsa, 21-Aug-2021.) |
Ref | Expression |
---|---|
brin2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ 𝐴(𝑅 ⋉ 𝑆)⟨𝐵, 𝐵⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brin 5200 | . 2 ⊢ (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵)) | |
2 | brxrn 37846 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ⋉ 𝑆)⟨𝐵, 𝐵⟩ ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵))) | |
3 | 2 | 3anidm23 1419 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ⋉ 𝑆)⟨𝐵, 𝐵⟩ ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵))) |
4 | 1, 3 | bitr4id 290 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ 𝐴(𝑅 ⋉ 𝑆)⟨𝐵, 𝐵⟩)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2099 ∩ cin 3946 ⟨cop 4635 class class class wbr 5148 ⋉ cxrn 37647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fo 6554 df-fv 6556 df-1st 7993 df-2nd 7994 df-xrn 37843 |
This theorem is referenced by: brin3 37882 |
Copyright terms: Public domain | W3C validator |