![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brin2 | Structured version Visualization version GIF version |
Description: Binary relation on an intersection is a special case of binary relation on range Cartesian product. (Contributed by Peter Mazsa, 21-Aug-2021.) |
Ref | Expression |
---|---|
brin2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ 𝐴(𝑅 ⋉ 𝑆)⟨𝐵, 𝐵⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brin 5191 | . 2 ⊢ (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵)) | |
2 | brxrn 37747 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ⋉ 𝑆)⟨𝐵, 𝐵⟩ ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵))) | |
3 | 2 | 3anidm23 1418 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ⋉ 𝑆)⟨𝐵, 𝐵⟩ ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵))) |
4 | 1, 3 | bitr4id 290 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ 𝐴(𝑅 ⋉ 𝑆)⟨𝐵, 𝐵⟩)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 ∩ cin 3940 ⟨cop 4627 class class class wbr 5139 ⋉ cxrn 37545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-fo 6540 df-fv 6542 df-1st 7969 df-2nd 7970 df-xrn 37744 |
This theorem is referenced by: brin3 37783 |
Copyright terms: Public domain | W3C validator |