Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brin2 Structured version   Visualization version   GIF version

Theorem brin2 37881
Description: Binary relation on an intersection is a special case of binary relation on range Cartesian product. (Contributed by Peter Mazsa, 21-Aug-2021.)
Assertion
Ref Expression
brin2 ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵𝐴(𝑅𝑆)⟨𝐵, 𝐵⟩))

Proof of Theorem brin2
StepHypRef Expression
1 brin 5200 . 2 (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵))
2 brxrn 37846 . . 3 ((𝐴𝑉𝐵𝑊𝐵𝑊) → (𝐴(𝑅𝑆)⟨𝐵, 𝐵⟩ ↔ (𝐴𝑅𝐵𝐴𝑆𝐵)))
323anidm23 1419 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)⟨𝐵, 𝐵⟩ ↔ (𝐴𝑅𝐵𝐴𝑆𝐵)))
41, 3bitr4id 290 1 ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵𝐴(𝑅𝑆)⟨𝐵, 𝐵⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2099  cin 3946  cop 4635   class class class wbr 5148  cxrn 37647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-fo 6554  df-fv 6556  df-1st 7993  df-2nd 7994  df-xrn 37843
This theorem is referenced by:  brin3  37882
  Copyright terms: Public domain W3C validator