| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > briunov2 | Structured version Visualization version GIF version | ||
| Description: Two classes related by the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the two classes are related by that operator value. (Contributed by RP, 1-Jun-2020.) |
| Ref | Expression |
|---|---|
| briunov2.def | ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) |
| Ref | Expression |
|---|---|
| briunov2 | ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ 𝑁 𝑋(𝑅 ↑ 𝑛)𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | briunov2.def | . . 3 ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) | |
| 2 | 1 | eliunov2 43641 | . 2 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (〈𝑋, 𝑌〉 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 〈𝑋, 𝑌〉 ∈ (𝑅 ↑ 𝑛))) |
| 3 | df-br 5103 | . 2 ⊢ (𝑋(𝐶‘𝑅)𝑌 ↔ 〈𝑋, 𝑌〉 ∈ (𝐶‘𝑅)) | |
| 4 | df-br 5103 | . . 3 ⊢ (𝑋(𝑅 ↑ 𝑛)𝑌 ↔ 〈𝑋, 𝑌〉 ∈ (𝑅 ↑ 𝑛)) | |
| 5 | 4 | rexbii 3076 | . 2 ⊢ (∃𝑛 ∈ 𝑁 𝑋(𝑅 ↑ 𝑛)𝑌 ↔ ∃𝑛 ∈ 𝑁 〈𝑋, 𝑌〉 ∈ (𝑅 ↑ 𝑛)) |
| 6 | 2, 3, 5 | 3bitr4g 314 | 1 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ 𝑁 𝑋(𝑅 ↑ 𝑛)𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3444 〈cop 4591 ∪ ciun 4951 class class class wbr 5102 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: brmptiunrelexpd 43645 brtrclrec 43658 brrtrclrec 43659 briunov2uz 43660 |
| Copyright terms: Public domain | W3C validator |