![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > briunov2 | Structured version Visualization version GIF version |
Description: Two classes related by the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the two classes are related by that operator value. (Contributed by RP, 1-Jun-2020.) |
Ref | Expression |
---|---|
briunov2.def | ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) |
Ref | Expression |
---|---|
briunov2 | ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ 𝑁 𝑋(𝑅 ↑ 𝑛)𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | briunov2.def | . . 3 ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) | |
2 | 1 | eliunov2 42732 | . 2 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (⟨𝑋, 𝑌⟩ ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 ⟨𝑋, 𝑌⟩ ∈ (𝑅 ↑ 𝑛))) |
3 | df-br 5148 | . 2 ⊢ (𝑋(𝐶‘𝑅)𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ (𝐶‘𝑅)) | |
4 | df-br 5148 | . . 3 ⊢ (𝑋(𝑅 ↑ 𝑛)𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ (𝑅 ↑ 𝑛)) | |
5 | 4 | rexbii 3092 | . 2 ⊢ (∃𝑛 ∈ 𝑁 𝑋(𝑅 ↑ 𝑛)𝑌 ↔ ∃𝑛 ∈ 𝑁 ⟨𝑋, 𝑌⟩ ∈ (𝑅 ↑ 𝑛)) |
6 | 2, 3, 5 | 3bitr4g 313 | 1 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ 𝑁 𝑋(𝑅 ↑ 𝑛)𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∃wrex 3068 Vcvv 3472 ⟨cop 4633 ∪ ciun 4996 class class class wbr 5147 ↦ cmpt 5230 ‘cfv 6542 (class class class)co 7411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7414 |
This theorem is referenced by: brmptiunrelexpd 42736 brtrclrec 42749 brrtrclrec 42750 briunov2uz 42751 |
Copyright terms: Public domain | W3C validator |