![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > briunov2 | Structured version Visualization version GIF version |
Description: Two classes related by the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the two classes are related by that operator value. (Contributed by RP, 1-Jun-2020.) |
Ref | Expression |
---|---|
briunov2.def | ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) |
Ref | Expression |
---|---|
briunov2 | ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ 𝑁 𝑋(𝑅 ↑ 𝑛)𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | briunov2.def | . . 3 ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) | |
2 | 1 | eliunov2 38938 | . 2 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (〈𝑋, 𝑌〉 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 〈𝑋, 𝑌〉 ∈ (𝑅 ↑ 𝑛))) |
3 | df-br 4889 | . 2 ⊢ (𝑋(𝐶‘𝑅)𝑌 ↔ 〈𝑋, 𝑌〉 ∈ (𝐶‘𝑅)) | |
4 | df-br 4889 | . . 3 ⊢ (𝑋(𝑅 ↑ 𝑛)𝑌 ↔ 〈𝑋, 𝑌〉 ∈ (𝑅 ↑ 𝑛)) | |
5 | 4 | rexbii 3224 | . 2 ⊢ (∃𝑛 ∈ 𝑁 𝑋(𝑅 ↑ 𝑛)𝑌 ↔ ∃𝑛 ∈ 𝑁 〈𝑋, 𝑌〉 ∈ (𝑅 ↑ 𝑛)) |
6 | 2, 3, 5 | 3bitr4g 306 | 1 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ 𝑁 𝑋(𝑅 ↑ 𝑛)𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∃wrex 3091 Vcvv 3398 〈cop 4404 ∪ ciun 4755 class class class wbr 4888 ↦ cmpt 4967 ‘cfv 6137 (class class class)co 6924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-ov 6927 |
This theorem is referenced by: brmptiunrelexpd 38942 brtrclrec 38955 brrtrclrec 38956 briunov2uz 38957 |
Copyright terms: Public domain | W3C validator |