Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  briunov2 Structured version   Visualization version   GIF version

Theorem briunov2 43715
Description: Two classes related by the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the two classes are related by that operator value. (Contributed by RP, 1-Jun-2020.)
Hypothesis
Ref Expression
briunov2.def 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
Assertion
Ref Expression
briunov2 ((𝑅𝑈𝑁𝑉) → (𝑋(𝐶𝑅)𝑌 ↔ ∃𝑛𝑁 𝑋(𝑅 𝑛)𝑌))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁,   𝑅,𝑛,𝑟   𝑛,𝑋   𝑛,𝑌
Allowed substitution hints:   𝑈(𝑛,𝑟)   𝑉(𝑛,𝑟)   𝑋(𝑟)   𝑌(𝑟)

Proof of Theorem briunov2
StepHypRef Expression
1 briunov2.def . . 3 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
21eliunov2 43712 . 2 ((𝑅𝑈𝑁𝑉) → (⟨𝑋, 𝑌⟩ ∈ (𝐶𝑅) ↔ ∃𝑛𝑁𝑋, 𝑌⟩ ∈ (𝑅 𝑛)))
3 df-br 5087 . 2 (𝑋(𝐶𝑅)𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ (𝐶𝑅))
4 df-br 5087 . . 3 (𝑋(𝑅 𝑛)𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ (𝑅 𝑛))
54rexbii 3079 . 2 (∃𝑛𝑁 𝑋(𝑅 𝑛)𝑌 ↔ ∃𝑛𝑁𝑋, 𝑌⟩ ∈ (𝑅 𝑛))
62, 3, 53bitr4g 314 1 ((𝑅𝑈𝑁𝑉) → (𝑋(𝐶𝑅)𝑌 ↔ ∃𝑛𝑁 𝑋(𝑅 𝑛)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436  cop 4577   ciun 4936   class class class wbr 5086  cmpt 5167  cfv 6476  (class class class)co 7341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344
This theorem is referenced by:  brmptiunrelexpd  43716  brtrclrec  43729  brrtrclrec  43730  briunov2uz  43731
  Copyright terms: Public domain W3C validator