Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  briunov2 Structured version   Visualization version   GIF version

Theorem briunov2 41179
Description: Two classes related by the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the two classes are related by that operator value. (Contributed by RP, 1-Jun-2020.)
Hypothesis
Ref Expression
briunov2.def 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
Assertion
Ref Expression
briunov2 ((𝑅𝑈𝑁𝑉) → (𝑋(𝐶𝑅)𝑌 ↔ ∃𝑛𝑁 𝑋(𝑅 𝑛)𝑌))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁,   𝑅,𝑛,𝑟   𝑛,𝑋   𝑛,𝑌
Allowed substitution hints:   𝑈(𝑛,𝑟)   𝑉(𝑛,𝑟)   𝑋(𝑟)   𝑌(𝑟)

Proof of Theorem briunov2
StepHypRef Expression
1 briunov2.def . . 3 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
21eliunov2 41176 . 2 ((𝑅𝑈𝑁𝑉) → (⟨𝑋, 𝑌⟩ ∈ (𝐶𝑅) ↔ ∃𝑛𝑁𝑋, 𝑌⟩ ∈ (𝑅 𝑛)))
3 df-br 5071 . 2 (𝑋(𝐶𝑅)𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ (𝐶𝑅))
4 df-br 5071 . . 3 (𝑋(𝑅 𝑛)𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ (𝑅 𝑛))
54rexbii 3177 . 2 (∃𝑛𝑁 𝑋(𝑅 𝑛)𝑌 ↔ ∃𝑛𝑁𝑋, 𝑌⟩ ∈ (𝑅 𝑛))
62, 3, 53bitr4g 313 1 ((𝑅𝑈𝑁𝑉) → (𝑋(𝐶𝑅)𝑌 ↔ ∃𝑛𝑁 𝑋(𝑅 𝑛)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  Vcvv 3422  cop 4564   ciun 4921   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258
This theorem is referenced by:  brmptiunrelexpd  41180  brtrclrec  41193  brrtrclrec  41194  briunov2uz  41195
  Copyright terms: Public domain W3C validator