| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > briunov2 | Structured version Visualization version GIF version | ||
| Description: Two classes related by the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the two classes are related by that operator value. (Contributed by RP, 1-Jun-2020.) |
| Ref | Expression |
|---|---|
| briunov2.def | ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) |
| Ref | Expression |
|---|---|
| briunov2 | ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ 𝑁 𝑋(𝑅 ↑ 𝑛)𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | briunov2.def | . . 3 ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) | |
| 2 | 1 | eliunov2 43670 | . 2 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (〈𝑋, 𝑌〉 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 〈𝑋, 𝑌〉 ∈ (𝑅 ↑ 𝑛))) |
| 3 | df-br 5125 | . 2 ⊢ (𝑋(𝐶‘𝑅)𝑌 ↔ 〈𝑋, 𝑌〉 ∈ (𝐶‘𝑅)) | |
| 4 | df-br 5125 | . . 3 ⊢ (𝑋(𝑅 ↑ 𝑛)𝑌 ↔ 〈𝑋, 𝑌〉 ∈ (𝑅 ↑ 𝑛)) | |
| 5 | 4 | rexbii 3084 | . 2 ⊢ (∃𝑛 ∈ 𝑁 𝑋(𝑅 ↑ 𝑛)𝑌 ↔ ∃𝑛 ∈ 𝑁 〈𝑋, 𝑌〉 ∈ (𝑅 ↑ 𝑛)) |
| 6 | 2, 3, 5 | 3bitr4g 314 | 1 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ 𝑁 𝑋(𝑅 ↑ 𝑛)𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 Vcvv 3464 〈cop 4612 ∪ ciun 4972 class class class wbr 5124 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 |
| This theorem is referenced by: brmptiunrelexpd 43674 brtrclrec 43687 brrtrclrec 43688 briunov2uz 43689 |
| Copyright terms: Public domain | W3C validator |