Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  briunov2 Structured version   Visualization version   GIF version

Theorem briunov2 43673
Description: Two classes related by the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the two classes are related by that operator value. (Contributed by RP, 1-Jun-2020.)
Hypothesis
Ref Expression
briunov2.def 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
Assertion
Ref Expression
briunov2 ((𝑅𝑈𝑁𝑉) → (𝑋(𝐶𝑅)𝑌 ↔ ∃𝑛𝑁 𝑋(𝑅 𝑛)𝑌))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁,   𝑅,𝑛,𝑟   𝑛,𝑋   𝑛,𝑌
Allowed substitution hints:   𝑈(𝑛,𝑟)   𝑉(𝑛,𝑟)   𝑋(𝑟)   𝑌(𝑟)

Proof of Theorem briunov2
StepHypRef Expression
1 briunov2.def . . 3 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
21eliunov2 43670 . 2 ((𝑅𝑈𝑁𝑉) → (⟨𝑋, 𝑌⟩ ∈ (𝐶𝑅) ↔ ∃𝑛𝑁𝑋, 𝑌⟩ ∈ (𝑅 𝑛)))
3 df-br 5125 . 2 (𝑋(𝐶𝑅)𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ (𝐶𝑅))
4 df-br 5125 . . 3 (𝑋(𝑅 𝑛)𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ (𝑅 𝑛))
54rexbii 3084 . 2 (∃𝑛𝑁 𝑋(𝑅 𝑛)𝑌 ↔ ∃𝑛𝑁𝑋, 𝑌⟩ ∈ (𝑅 𝑛))
62, 3, 53bitr4g 314 1 ((𝑅𝑈𝑁𝑉) → (𝑋(𝐶𝑅)𝑌 ↔ ∃𝑛𝑁 𝑋(𝑅 𝑛)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3061  Vcvv 3464  cop 4612   ciun 4972   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413
This theorem is referenced by:  brmptiunrelexpd  43674  brtrclrec  43687  brrtrclrec  43688  briunov2uz  43689
  Copyright terms: Public domain W3C validator