Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brrtrclrec Structured version   Visualization version   GIF version

Theorem brrtrclrec 40771
 Description: Two classes related by the indexed union of relation exponentiation over the natural numbers (including zero) is equivalent to the existence of at least one number such that the two classes are related by that relationship power. (Contributed by RP, 2-Jun-2020.)
Hypothesis
Ref Expression
brrtrclrec.def 𝐶 = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
Assertion
Ref Expression
brrtrclrec (𝑅𝑉 → (𝑋(𝐶𝑅)𝑌 ↔ ∃𝑛 ∈ ℕ0 𝑋(𝑅𝑟𝑛)𝑌))
Distinct variable groups:   𝑛,𝑟,𝐶   𝑅,𝑛,𝑟   𝑛,𝑋   𝑛,𝑌
Allowed substitution hints:   𝑉(𝑛,𝑟)   𝑋(𝑟)   𝑌(𝑟)

Proof of Theorem brrtrclrec
StepHypRef Expression
1 nn0ex 11940 . 2 0 ∈ V
2 brrtrclrec.def . . 3 𝐶 = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
32briunov2 40756 . 2 ((𝑅𝑉 ∧ ℕ0 ∈ V) → (𝑋(𝐶𝑅)𝑌 ↔ ∃𝑛 ∈ ℕ0 𝑋(𝑅𝑟𝑛)𝑌))
41, 3mpan2 690 1 (𝑅𝑉 → (𝑋(𝐶𝑅)𝑌 ↔ ∃𝑛 ∈ ℕ0 𝑋(𝑅𝑟𝑛)𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   = wceq 1538   ∈ wcel 2111  ∃wrex 3071  Vcvv 3409  ∪ ciun 4883   class class class wbr 5032   ↦ cmpt 5112  ‘cfv 6335  (class class class)co 7150  ℕ0cn0 11934  ↑𝑟crelexp 14426 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-1cn 10633  ax-addcl 10635 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-om 7580  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-nn 11675  df-n0 11935 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator