|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > briunov2uz | Structured version Visualization version GIF version | ||
| Description: Two classes related by the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the two classes are related by that operator value. The index set 𝑁 is restricted to an upper range of integers. (Contributed by RP, 2-Jun-2020.) | 
| Ref | Expression | 
|---|---|
| briunov2uz.def | ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) | 
| Ref | Expression | 
|---|---|
| briunov2uz | ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 = (ℤ≥‘𝑀)) → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ 𝑁 𝑋(𝑅 ↑ 𝑛)𝑌)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 = (ℤ≥‘𝑀)) → 𝑁 = (ℤ≥‘𝑀)) | |
| 2 | fvex 6919 | . . 3 ⊢ (ℤ≥‘𝑀) ∈ V | |
| 3 | 1, 2 | eqeltrdi 2849 | . 2 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 = (ℤ≥‘𝑀)) → 𝑁 ∈ V) | 
| 4 | briunov2uz.def | . . 3 ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) | |
| 5 | 4 | briunov2 43695 | . 2 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ V) → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ 𝑁 𝑋(𝑅 ↑ 𝑛)𝑌)) | 
| 6 | 3, 5 | syldan 591 | 1 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 = (ℤ≥‘𝑀)) → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ 𝑁 𝑋(𝑅 ↑ 𝑛)𝑌)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 Vcvv 3480 ∪ ciun 4991 class class class wbr 5143 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 ℤ≥cuz 12878 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 | 
| This theorem is referenced by: iunrelexpuztr 43732 | 
| Copyright terms: Public domain | W3C validator |