Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brmptiunrelexpd | Structured version Visualization version GIF version |
Description: If two elements are connected by an indexed union of relational powers, then they are connected via 𝑛 instances the relation, for some 𝑛. Generalization of dfrtrclrec2 14869. (Contributed by RP, 21-Jul-2020.) |
Ref | Expression |
---|---|
brmptiunrelexpd.c | ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) |
brmptiunrelexpd.r | ⊢ (𝜑 → 𝑅 ∈ V) |
brmptiunrelexpd.n | ⊢ (𝜑 → 𝑁 ⊆ ℕ0) |
Ref | Expression |
---|---|
brmptiunrelexpd | ⊢ (𝜑 → (𝐴(𝐶‘𝑅)𝐵 ↔ ∃𝑛 ∈ 𝑁 𝐴(𝑅↑𝑟𝑛)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brmptiunrelexpd.r | . 2 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | brmptiunrelexpd.n | . . 3 ⊢ (𝜑 → 𝑁 ⊆ ℕ0) | |
3 | nn0ex 12345 | . . . 4 ⊢ ℕ0 ∈ V | |
4 | 3 | ssex 5270 | . . 3 ⊢ (𝑁 ⊆ ℕ0 → 𝑁 ∈ V) |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑁 ∈ V) |
6 | brmptiunrelexpd.c | . . 3 ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) | |
7 | 6 | briunov2 41661 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝑁 ∈ V) → (𝐴(𝐶‘𝑅)𝐵 ↔ ∃𝑛 ∈ 𝑁 𝐴(𝑅↑𝑟𝑛)𝐵)) |
8 | 1, 5, 7 | syl2anc 585 | 1 ⊢ (𝜑 → (𝐴(𝐶‘𝑅)𝐵 ↔ ∃𝑛 ∈ 𝑁 𝐴(𝑅↑𝑟𝑛)𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∃wrex 3071 Vcvv 3442 ⊆ wss 3902 ∪ ciun 4946 class class class wbr 5097 ↦ cmpt 5180 ‘cfv 6484 (class class class)co 7342 ℕ0cn0 12339 ↑𝑟crelexp 14830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-1cn 11035 ax-addcl 11037 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-ov 7345 df-om 7786 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-nn 12080 df-n0 12340 |
This theorem is referenced by: brfvidRP 41667 brfvrcld 41670 brfvtrcld 41700 brfvrtrcld 41713 |
Copyright terms: Public domain | W3C validator |