| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brmptiunrelexpd | Structured version Visualization version GIF version | ||
| Description: If two elements are connected by an indexed union of relational powers, then they are connected via 𝑛 instances the relation, for some 𝑛. Generalization of dfrtrclrec2 15080. (Contributed by RP, 21-Jul-2020.) |
| Ref | Expression |
|---|---|
| brmptiunrelexpd.c | ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) |
| brmptiunrelexpd.r | ⊢ (𝜑 → 𝑅 ∈ V) |
| brmptiunrelexpd.n | ⊢ (𝜑 → 𝑁 ⊆ ℕ0) |
| Ref | Expression |
|---|---|
| brmptiunrelexpd | ⊢ (𝜑 → (𝐴(𝐶‘𝑅)𝐵 ↔ ∃𝑛 ∈ 𝑁 𝐴(𝑅↑𝑟𝑛)𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brmptiunrelexpd.r | . 2 ⊢ (𝜑 → 𝑅 ∈ V) | |
| 2 | brmptiunrelexpd.n | . . 3 ⊢ (𝜑 → 𝑁 ⊆ ℕ0) | |
| 3 | nn0ex 12516 | . . . 4 ⊢ ℕ0 ∈ V | |
| 4 | 3 | ssex 5303 | . . 3 ⊢ (𝑁 ⊆ ℕ0 → 𝑁 ∈ V) |
| 5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑁 ∈ V) |
| 6 | brmptiunrelexpd.c | . . 3 ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) | |
| 7 | 6 | briunov2 43640 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝑁 ∈ V) → (𝐴(𝐶‘𝑅)𝐵 ↔ ∃𝑛 ∈ 𝑁 𝐴(𝑅↑𝑟𝑛)𝐵)) |
| 8 | 1, 5, 7 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴(𝐶‘𝑅)𝐵 ↔ ∃𝑛 ∈ 𝑁 𝐴(𝑅↑𝑟𝑛)𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 Vcvv 3464 ⊆ wss 3933 ∪ ciun 4973 class class class wbr 5125 ↦ cmpt 5207 ‘cfv 6542 (class class class)co 7414 ℕ0cn0 12510 ↑𝑟crelexp 15041 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-1cn 11196 ax-addcl 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-om 7871 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-nn 12250 df-n0 12511 |
| This theorem is referenced by: brfvidRP 43646 brfvrcld 43649 brfvtrcld 43679 brfvrtrcld 43692 |
| Copyright terms: Public domain | W3C validator |