Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrtrclrec Structured version   Visualization version   GIF version

Theorem elrtrclrec 40755
Description: Membership in the indexed union of relation exponentiation over the natural numbers (including zero) is equivalent to the existence of at least one number such that the element is a member of that relationship power. (Contributed by RP, 2-Jun-2020.)
Hypothesis
Ref Expression
rtrclrec.def 𝐶 = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
Assertion
Ref Expression
elrtrclrec (𝑅𝑉 → (𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛 ∈ ℕ0 𝑋 ∈ (𝑅𝑟𝑛)))
Distinct variable groups:   𝑛,𝑟,𝐶   𝑅,𝑛,𝑟   𝑛,𝑋
Allowed substitution hints:   𝑉(𝑛,𝑟)   𝑋(𝑟)

Proof of Theorem elrtrclrec
StepHypRef Expression
1 nn0ex 11940 . 2 0 ∈ V
2 rtrclrec.def . . 3 𝐶 = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
32eliunov2 40753 . 2 ((𝑅𝑉 ∧ ℕ0 ∈ V) → (𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛 ∈ ℕ0 𝑋 ∈ (𝑅𝑟𝑛)))
41, 3mpan2 690 1 (𝑅𝑉 → (𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛 ∈ ℕ0 𝑋 ∈ (𝑅𝑟𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  wrex 3071  Vcvv 3409   ciun 4883  cmpt 5112  cfv 6335  (class class class)co 7150  0cn0 11934  𝑟crelexp 14426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-1cn 10633  ax-addcl 10635
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-om 7580  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-nn 11675  df-n0 11935
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator