Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliunov2 Structured version   Visualization version   GIF version

Theorem eliunov2 39421
Description: Membership in the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the element is a member of that operator value. Generalized from dfrtrclrec2 14276. (Contributed by RP, 1-Jun-2020.)
Hypothesis
Ref Expression
mptiunov2.def 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
Assertion
Ref Expression
eliunov2 ((𝑅𝑈𝑁𝑉) → (𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁,   𝑅,𝑛,𝑟   𝑛,𝑋
Allowed substitution hints:   𝑈(𝑛,𝑟)   𝑉(𝑛,𝑟)   𝑋(𝑟)

Proof of Theorem eliunov2
StepHypRef Expression
1 elex 3428 . . . . 5 (𝑅𝑈𝑅 ∈ V)
21adantr 473 . . . 4 ((𝑅𝑈𝑁𝑉) → 𝑅 ∈ V)
3 simpr 477 . . . . 5 ((𝑅𝑈𝑁𝑉) → 𝑁𝑉)
4 ovex 7007 . . . . . 6 (𝑅 𝑛) ∈ V
54rgenw 3095 . . . . 5 𝑛𝑁 (𝑅 𝑛) ∈ V
6 iunexg 7475 . . . . 5 ((𝑁𝑉 ∧ ∀𝑛𝑁 (𝑅 𝑛) ∈ V) → 𝑛𝑁 (𝑅 𝑛) ∈ V)
73, 5, 6sylancl 578 . . . 4 ((𝑅𝑈𝑁𝑉) → 𝑛𝑁 (𝑅 𝑛) ∈ V)
8 oveq1 6982 . . . . . 6 (𝑟 = 𝑅 → (𝑟 𝑛) = (𝑅 𝑛))
98iuneq2d 4817 . . . . 5 (𝑟 = 𝑅 𝑛𝑁 (𝑟 𝑛) = 𝑛𝑁 (𝑅 𝑛))
10 eqid 2773 . . . . 5 (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛)) = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
119, 10fvmptg 6592 . . . 4 ((𝑅 ∈ V ∧ 𝑛𝑁 (𝑅 𝑛) ∈ V) → ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) = 𝑛𝑁 (𝑅 𝑛))
122, 7, 11syl2anc 576 . . 3 ((𝑅𝑈𝑁𝑉) → ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) = 𝑛𝑁 (𝑅 𝑛))
13 eleq2 2849 . . . 4 (((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) = 𝑛𝑁 (𝑅 𝑛) → (𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) ↔ 𝑋 𝑛𝑁 (𝑅 𝑛)))
14 eliun 4793 . . . . 5 (𝑋 𝑛𝑁 (𝑅 𝑛) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛))
1514a1i 11 . . . 4 ((𝑅𝑈𝑁𝑉) → (𝑋 𝑛𝑁 (𝑅 𝑛) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))
1613, 15sylan9bb 502 . . 3 ((((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) = 𝑛𝑁 (𝑅 𝑛) ∧ (𝑅𝑈𝑁𝑉)) → (𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))
1712, 16mpancom 676 . 2 ((𝑅𝑈𝑁𝑉) → (𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))
18 mptiunov2.def . . 3 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
19 fveq1 6496 . . . . . 6 (𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛)) → (𝐶𝑅) = ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅))
2019eleq2d 2846 . . . . 5 (𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛)) → (𝑋 ∈ (𝐶𝑅) ↔ 𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅)))
2120bibi1d 336 . . . 4 (𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛)) → ((𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)) ↔ (𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛))))
2221imbi2d 333 . . 3 (𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛)) → (((𝑅𝑈𝑁𝑉) → (𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛))) ↔ ((𝑅𝑈𝑁𝑉) → (𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))))
2318, 22ax-mp 5 . 2 (((𝑅𝑈𝑁𝑉) → (𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛))) ↔ ((𝑅𝑈𝑁𝑉) → (𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛))))
2417, 23mpbir 223 1 ((𝑅𝑈𝑁𝑉) → (𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1508  wcel 2051  wral 3083  wrex 3084  Vcvv 3410   ciun 4789  cmpt 5005  cfv 6186  (class class class)co 6975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pr 5183  ax-un 7278
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-ral 3088  df-rex 3089  df-reu 3090  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-nul 4174  df-if 4346  df-sn 4437  df-pr 4439  df-op 4443  df-uni 4710  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-id 5309  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-ov 6978
This theorem is referenced by:  eltrclrec  39422  elrtrclrec  39423  briunov2  39424  eliunov2uz  39441  ov2ssiunov2  39442
  Copyright terms: Public domain W3C validator