Proof of Theorem eliunov2
Step | Hyp | Ref
| Expression |
1 | | elex 3428 |
. . . . 5
⊢ (𝑅 ∈ 𝑈 → 𝑅 ∈ V) |
2 | 1 | adantr 473 |
. . . 4
⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → 𝑅 ∈ V) |
3 | | simpr 477 |
. . . . 5
⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → 𝑁 ∈ 𝑉) |
4 | | ovex 7007 |
. . . . . 6
⊢ (𝑅 ↑ 𝑛) ∈ V |
5 | 4 | rgenw 3095 |
. . . . 5
⊢
∀𝑛 ∈
𝑁 (𝑅 ↑ 𝑛) ∈ V |
6 | | iunexg 7475 |
. . . . 5
⊢ ((𝑁 ∈ 𝑉 ∧ ∀𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛) ∈ V) → ∪ 𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛) ∈ V) |
7 | 3, 5, 6 | sylancl 578 |
. . . 4
⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → ∪
𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛) ∈ V) |
8 | | oveq1 6982 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (𝑟 ↑ 𝑛) = (𝑅 ↑ 𝑛)) |
9 | 8 | iuneq2d 4817 |
. . . . 5
⊢ (𝑟 = 𝑅 → ∪
𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛) = ∪ 𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛)) |
10 | | eqid 2773 |
. . . . 5
⊢ (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) |
11 | 9, 10 | fvmptg 6592 |
. . . 4
⊢ ((𝑅 ∈ V ∧ ∪ 𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛) ∈ V) → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) = ∪
𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛)) |
12 | 2, 7, 11 | syl2anc 576 |
. . 3
⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) = ∪
𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛)) |
13 | | eleq2 2849 |
. . . 4
⊢ (((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) = ∪
𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛) → (𝑋 ∈ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) ↔ 𝑋 ∈ ∪
𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛))) |
14 | | eliun 4793 |
. . . . 5
⊢ (𝑋 ∈ ∪ 𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛)) |
15 | 14 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ ∪
𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) |
16 | 13, 15 | sylan9bb 502 |
. . 3
⊢ ((((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) = ∪
𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛) ∧ (𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉)) → (𝑋 ∈ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) |
17 | 12, 16 | mpancom 676 |
. 2
⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) |
18 | | mptiunov2.def |
. . 3
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) |
19 | | fveq1 6496 |
. . . . . 6
⊢ (𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) → (𝐶‘𝑅) = ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅)) |
20 | 19 | eleq2d 2846 |
. . . . 5
⊢ (𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) → (𝑋 ∈ (𝐶‘𝑅) ↔ 𝑋 ∈ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅))) |
21 | 20 | bibi1d 336 |
. . . 4
⊢ (𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) → ((𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛)) ↔ (𝑋 ∈ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛)))) |
22 | 21 | imbi2d 333 |
. . 3
⊢ (𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) → (((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) ↔ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))))) |
23 | 18, 22 | ax-mp 5 |
. 2
⊢ (((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) ↔ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛)))) |
24 | 17, 23 | mpbir 223 |
1
⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) |