Proof of Theorem eliunov2
| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. . . 4
⊢ (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) |
| 2 | | oveq1 7438 |
. . . . 5
⊢ (𝑟 = 𝑅 → (𝑟 ↑ 𝑛) = (𝑅 ↑ 𝑛)) |
| 3 | 2 | iuneq2d 5022 |
. . . 4
⊢ (𝑟 = 𝑅 → ∪
𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛) = ∪ 𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛)) |
| 4 | | elex 3501 |
. . . . 5
⊢ (𝑅 ∈ 𝑈 → 𝑅 ∈ V) |
| 5 | 4 | adantr 480 |
. . . 4
⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → 𝑅 ∈ V) |
| 6 | | simpr 484 |
. . . . 5
⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → 𝑁 ∈ 𝑉) |
| 7 | | ovex 7464 |
. . . . . 6
⊢ (𝑅 ↑ 𝑛) ∈ V |
| 8 | 7 | rgenw 3065 |
. . . . 5
⊢
∀𝑛 ∈
𝑁 (𝑅 ↑ 𝑛) ∈ V |
| 9 | | iunexg 7988 |
. . . . 5
⊢ ((𝑁 ∈ 𝑉 ∧ ∀𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛) ∈ V) → ∪ 𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛) ∈ V) |
| 10 | 6, 8, 9 | sylancl 586 |
. . . 4
⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → ∪
𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛) ∈ V) |
| 11 | 1, 3, 5, 10 | fvmptd3 7039 |
. . 3
⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) = ∪
𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛)) |
| 12 | | eleq2 2830 |
. . . 4
⊢ (((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) = ∪
𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛) → (𝑋 ∈ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) ↔ 𝑋 ∈ ∪
𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛))) |
| 13 | | eliun 4995 |
. . . . 5
⊢ (𝑋 ∈ ∪ 𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛)) |
| 14 | 13 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ ∪
𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) |
| 15 | 12, 14 | sylan9bb 509 |
. . 3
⊢ ((((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) = ∪
𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛) ∧ (𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉)) → (𝑋 ∈ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) |
| 16 | 11, 15 | mpancom 688 |
. 2
⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) |
| 17 | | mptiunov2.def |
. . 3
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) |
| 18 | | fveq1 6905 |
. . . . . 6
⊢ (𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) → (𝐶‘𝑅) = ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅)) |
| 19 | 18 | eleq2d 2827 |
. . . . 5
⊢ (𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) → (𝑋 ∈ (𝐶‘𝑅) ↔ 𝑋 ∈ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅))) |
| 20 | 19 | bibi1d 343 |
. . . 4
⊢ (𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) → ((𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛)) ↔ (𝑋 ∈ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛)))) |
| 21 | 20 | imbi2d 340 |
. . 3
⊢ (𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) → (((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) ↔ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))))) |
| 22 | 17, 21 | ax-mp 5 |
. 2
⊢ (((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) ↔ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛)))) |
| 23 | 16, 22 | mpbir 231 |
1
⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) |