Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliunov2 Structured version   Visualization version   GIF version

Theorem eliunov2 41617
Description: Membership in the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the element is a member of that operator value. Generalized from dfrtrclrec2 14868. (Contributed by RP, 1-Jun-2020.)
Hypothesis
Ref Expression
mptiunov2.def 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
Assertion
Ref Expression
eliunov2 ((𝑅𝑈𝑁𝑉) → (𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁,   𝑅,𝑛,𝑟   𝑛,𝑋
Allowed substitution hints:   𝑈(𝑛,𝑟)   𝑉(𝑛,𝑟)   𝑋(𝑟)

Proof of Theorem eliunov2
StepHypRef Expression
1 eqid 2736 . . . 4 (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛)) = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
2 oveq1 7344 . . . . 5 (𝑟 = 𝑅 → (𝑟 𝑛) = (𝑅 𝑛))
32iuneq2d 4970 . . . 4 (𝑟 = 𝑅 𝑛𝑁 (𝑟 𝑛) = 𝑛𝑁 (𝑅 𝑛))
4 elex 3459 . . . . 5 (𝑅𝑈𝑅 ∈ V)
54adantr 481 . . . 4 ((𝑅𝑈𝑁𝑉) → 𝑅 ∈ V)
6 simpr 485 . . . . 5 ((𝑅𝑈𝑁𝑉) → 𝑁𝑉)
7 ovex 7370 . . . . . 6 (𝑅 𝑛) ∈ V
87rgenw 3065 . . . . 5 𝑛𝑁 (𝑅 𝑛) ∈ V
9 iunexg 7874 . . . . 5 ((𝑁𝑉 ∧ ∀𝑛𝑁 (𝑅 𝑛) ∈ V) → 𝑛𝑁 (𝑅 𝑛) ∈ V)
106, 8, 9sylancl 586 . . . 4 ((𝑅𝑈𝑁𝑉) → 𝑛𝑁 (𝑅 𝑛) ∈ V)
111, 3, 5, 10fvmptd3 6954 . . 3 ((𝑅𝑈𝑁𝑉) → ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) = 𝑛𝑁 (𝑅 𝑛))
12 eleq2 2825 . . . 4 (((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) = 𝑛𝑁 (𝑅 𝑛) → (𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) ↔ 𝑋 𝑛𝑁 (𝑅 𝑛)))
13 eliun 4945 . . . . 5 (𝑋 𝑛𝑁 (𝑅 𝑛) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛))
1413a1i 11 . . . 4 ((𝑅𝑈𝑁𝑉) → (𝑋 𝑛𝑁 (𝑅 𝑛) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))
1512, 14sylan9bb 510 . . 3 ((((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) = 𝑛𝑁 (𝑅 𝑛) ∧ (𝑅𝑈𝑁𝑉)) → (𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))
1611, 15mpancom 685 . 2 ((𝑅𝑈𝑁𝑉) → (𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))
17 mptiunov2.def . . 3 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
18 fveq1 6824 . . . . . 6 (𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛)) → (𝐶𝑅) = ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅))
1918eleq2d 2822 . . . . 5 (𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛)) → (𝑋 ∈ (𝐶𝑅) ↔ 𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅)))
2019bibi1d 343 . . . 4 (𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛)) → ((𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)) ↔ (𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛))))
2120imbi2d 340 . . 3 (𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛)) → (((𝑅𝑈𝑁𝑉) → (𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛))) ↔ ((𝑅𝑈𝑁𝑉) → (𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))))
2217, 21ax-mp 5 . 2 (((𝑅𝑈𝑁𝑉) → (𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛))) ↔ ((𝑅𝑈𝑁𝑉) → (𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛))))
2316, 22mpbir 230 1 ((𝑅𝑈𝑁𝑉) → (𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wral 3061  wrex 3070  Vcvv 3441   ciun 4941  cmpt 5175  cfv 6479  (class class class)co 7337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-iota 6431  df-fun 6481  df-fv 6487  df-ov 7340
This theorem is referenced by:  eltrclrec  41618  elrtrclrec  41619  briunov2  41620  eliunov2uz  41637  ov2ssiunov2  41638
  Copyright terms: Public domain W3C validator