Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliunov2 Structured version   Visualization version   GIF version

Theorem eliunov2 43668
Description: Membership in the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the element is a member of that operator value. Generalized from dfrtrclrec2 15093. (Contributed by RP, 1-Jun-2020.)
Hypothesis
Ref Expression
mptiunov2.def 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
Assertion
Ref Expression
eliunov2 ((𝑅𝑈𝑁𝑉) → (𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁,   𝑅,𝑛,𝑟   𝑛,𝑋
Allowed substitution hints:   𝑈(𝑛,𝑟)   𝑉(𝑛,𝑟)   𝑋(𝑟)

Proof of Theorem eliunov2
StepHypRef Expression
1 eqid 2734 . . . 4 (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛)) = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
2 oveq1 7437 . . . . 5 (𝑟 = 𝑅 → (𝑟 𝑛) = (𝑅 𝑛))
32iuneq2d 5026 . . . 4 (𝑟 = 𝑅 𝑛𝑁 (𝑟 𝑛) = 𝑛𝑁 (𝑅 𝑛))
4 elex 3498 . . . . 5 (𝑅𝑈𝑅 ∈ V)
54adantr 480 . . . 4 ((𝑅𝑈𝑁𝑉) → 𝑅 ∈ V)
6 simpr 484 . . . . 5 ((𝑅𝑈𝑁𝑉) → 𝑁𝑉)
7 ovex 7463 . . . . . 6 (𝑅 𝑛) ∈ V
87rgenw 3062 . . . . 5 𝑛𝑁 (𝑅 𝑛) ∈ V
9 iunexg 7986 . . . . 5 ((𝑁𝑉 ∧ ∀𝑛𝑁 (𝑅 𝑛) ∈ V) → 𝑛𝑁 (𝑅 𝑛) ∈ V)
106, 8, 9sylancl 586 . . . 4 ((𝑅𝑈𝑁𝑉) → 𝑛𝑁 (𝑅 𝑛) ∈ V)
111, 3, 5, 10fvmptd3 7038 . . 3 ((𝑅𝑈𝑁𝑉) → ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) = 𝑛𝑁 (𝑅 𝑛))
12 eleq2 2827 . . . 4 (((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) = 𝑛𝑁 (𝑅 𝑛) → (𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) ↔ 𝑋 𝑛𝑁 (𝑅 𝑛)))
13 eliun 4999 . . . . 5 (𝑋 𝑛𝑁 (𝑅 𝑛) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛))
1413a1i 11 . . . 4 ((𝑅𝑈𝑁𝑉) → (𝑋 𝑛𝑁 (𝑅 𝑛) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))
1512, 14sylan9bb 509 . . 3 ((((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) = 𝑛𝑁 (𝑅 𝑛) ∧ (𝑅𝑈𝑁𝑉)) → (𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))
1611, 15mpancom 688 . 2 ((𝑅𝑈𝑁𝑉) → (𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))
17 mptiunov2.def . . 3 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
18 fveq1 6905 . . . . . 6 (𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛)) → (𝐶𝑅) = ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅))
1918eleq2d 2824 . . . . 5 (𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛)) → (𝑋 ∈ (𝐶𝑅) ↔ 𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅)))
2019bibi1d 343 . . . 4 (𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛)) → ((𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)) ↔ (𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛))))
2120imbi2d 340 . . 3 (𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛)) → (((𝑅𝑈𝑁𝑉) → (𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛))) ↔ ((𝑅𝑈𝑁𝑉) → (𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))))
2217, 21ax-mp 5 . 2 (((𝑅𝑈𝑁𝑉) → (𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛))) ↔ ((𝑅𝑈𝑁𝑉) → (𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛))))
2316, 22mpbir 231 1 ((𝑅𝑈𝑁𝑉) → (𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wral 3058  wrex 3067  Vcvv 3477   ciun 4995  cmpt 5230  cfv 6562  (class class class)co 7430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-iota 6515  df-fun 6564  df-fv 6570  df-ov 7433
This theorem is referenced by:  eltrclrec  43669  elrtrclrec  43670  briunov2  43671  eliunov2uz  43688  ov2ssiunov2  43689
  Copyright terms: Public domain W3C validator