![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brtrclfvcnv | Structured version Visualization version GIF version |
Description: Two ways of expressing the transitive closure of the converse of a binary relation. (Contributed by RP, 10-May-2020.) |
Ref | Expression |
---|---|
brtrclfvcnv | ⊢ (𝑅 ∈ 𝑉 → (𝐴(t+‘◡𝑅)𝐵 ↔ ∀𝑟((◡𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvexg 7954 | . 2 ⊢ (𝑅 ∈ 𝑉 → ◡𝑅 ∈ V) | |
2 | brtrclfv 15047 | . 2 ⊢ (◡𝑅 ∈ V → (𝐴(t+‘◡𝑅)𝐵 ↔ ∀𝑟((◡𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵))) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝐴(t+‘◡𝑅)𝐵 ↔ ∀𝑟((◡𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 ∈ wcel 2108 Vcvv 3481 ⊆ wss 3966 class class class wbr 5151 ◡ccnv 5692 ∘ ccom 5697 ‘cfv 6569 t+ctcl 15030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-iota 6522 df-fun 6571 df-fv 6577 df-trcl 15032 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |