MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brcnvtrclfv Structured version   Visualization version   GIF version

Theorem brcnvtrclfv 15048
Description: Two ways of expressing the transitive closure of the converse of a binary relation. (Contributed by RP, 9-May-2020.)
Assertion
Ref Expression
brcnvtrclfv ((𝑅𝑈𝐴𝑉𝐵𝑊) → (𝐴(t+‘𝑅)𝐵 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐵𝑟𝐴)))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝑅,𝑟
Allowed substitution hints:   𝑈(𝑟)   𝑉(𝑟)   𝑊(𝑟)

Proof of Theorem brcnvtrclfv
StepHypRef Expression
1 brcnvg 5897 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴(t+‘𝑅)𝐵𝐵(t+‘𝑅)𝐴))
213adant1 1131 . 2 ((𝑅𝑈𝐴𝑉𝐵𝑊) → (𝐴(t+‘𝑅)𝐵𝐵(t+‘𝑅)𝐴))
3 brtrclfv 15047 . . 3 (𝑅𝑈 → (𝐵(t+‘𝑅)𝐴 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐵𝑟𝐴)))
433ad2ant1 1134 . 2 ((𝑅𝑈𝐴𝑉𝐵𝑊) → (𝐵(t+‘𝑅)𝐴 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐵𝑟𝐴)))
52, 4bitrd 279 1 ((𝑅𝑈𝐴𝑉𝐵𝑊) → (𝐴(t+‘𝑅)𝐵 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐵𝑟𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wal 1537  wcel 2108  wss 3966   class class class wbr 5151  ccnv 5692  ccom 5697  cfv 6569  t+ctcl 15030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-int 4955  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-iota 6522  df-fun 6571  df-fv 6577  df-trcl 15032
This theorem is referenced by:  brcnvtrclfvcnv  15050
  Copyright terms: Public domain W3C validator