MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmucnd Structured version   Visualization version   GIF version

Theorem fmucnd 23628
Description: The image of a Cauchy filter base by an uniformly continuous function is a Cauchy filter base. Deduction form. Proposition 3 of [BourbakiTop1] p. II.13. (Contributed by Thierry Arnoux, 18-Nov-2017.)
Hypotheses
Ref Expression
fmucnd.1 (𝜑𝑈 ∈ (UnifOn‘𝑋))
fmucnd.2 (𝜑𝑉 ∈ (UnifOn‘𝑌))
fmucnd.3 (𝜑𝐹 ∈ (𝑈 Cnu𝑉))
fmucnd.4 (𝜑𝐶 ∈ (CauFilu𝑈))
fmucnd.5 𝐷 = ran (𝑎𝐶 ↦ (𝐹𝑎))
Assertion
Ref Expression
fmucnd (𝜑𝐷 ∈ (CauFilu𝑉))
Distinct variable groups:   𝐶,𝑎   𝐷,𝑎   𝐹,𝑎   𝑉,𝑎   𝑋,𝑎   𝑌,𝑎   𝜑,𝑎
Allowed substitution hint:   𝑈(𝑎)

Proof of Theorem fmucnd
Dummy variables 𝑐 𝑏 𝑣 𝑟 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmucnd.1 . . . 4 (𝜑𝑈 ∈ (UnifOn‘𝑋))
2 fmucnd.4 . . . 4 (𝜑𝐶 ∈ (CauFilu𝑈))
3 cfilufbas 23625 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐶 ∈ (CauFilu𝑈)) → 𝐶 ∈ (fBas‘𝑋))
41, 2, 3syl2anc 584 . . 3 (𝜑𝐶 ∈ (fBas‘𝑋))
5 fmucnd.2 . . . 4 (𝜑𝑉 ∈ (UnifOn‘𝑌))
6 fmucnd.3 . . . 4 (𝜑𝐹 ∈ (𝑈 Cnu𝑉))
7 isucn 23614 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑣𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)))))
87simprbda 499 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) ∧ 𝐹 ∈ (𝑈 Cnu𝑉)) → 𝐹:𝑋𝑌)
91, 5, 6, 8syl21anc 836 . . 3 (𝜑𝐹:𝑋𝑌)
105elfvexd 6878 . . 3 (𝜑𝑌 ∈ V)
11 fmucnd.5 . . . 4 𝐷 = ran (𝑎𝐶 ↦ (𝐹𝑎))
1211fbasrn 23219 . . 3 ((𝐶 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋𝑌𝑌 ∈ V) → 𝐷 ∈ (fBas‘𝑌))
134, 9, 10, 12syl3anc 1371 . 2 (𝜑𝐷 ∈ (fBas‘𝑌))
14 simplr 767 . . . . . . . 8 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → 𝑎𝐶)
15 eqid 2736 . . . . . . . 8 (𝐹𝑎) = (𝐹𝑎)
16 imaeq2 6007 . . . . . . . . 9 (𝑐 = 𝑎 → (𝐹𝑐) = (𝐹𝑎))
1716rspceeqv 3593 . . . . . . . 8 ((𝑎𝐶 ∧ (𝐹𝑎) = (𝐹𝑎)) → ∃𝑐𝐶 (𝐹𝑎) = (𝐹𝑐))
1814, 15, 17sylancl 586 . . . . . . 7 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ∃𝑐𝐶 (𝐹𝑎) = (𝐹𝑐))
19 imaexg 7848 . . . . . . . . 9 (𝐹 ∈ (𝑈 Cnu𝑉) → (𝐹𝑎) ∈ V)
20 eqid 2736 . . . . . . . . . 10 (𝑐𝐶 ↦ (𝐹𝑐)) = (𝑐𝐶 ↦ (𝐹𝑐))
2120elrnmpt 5909 . . . . . . . . 9 ((𝐹𝑎) ∈ V → ((𝐹𝑎) ∈ ran (𝑐𝐶 ↦ (𝐹𝑐)) ↔ ∃𝑐𝐶 (𝐹𝑎) = (𝐹𝑐)))
226, 19, 213syl 18 . . . . . . . 8 (𝜑 → ((𝐹𝑎) ∈ ran (𝑐𝐶 ↦ (𝐹𝑐)) ↔ ∃𝑐𝐶 (𝐹𝑎) = (𝐹𝑐)))
2322ad3antrrr 728 . . . . . . 7 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ((𝐹𝑎) ∈ ran (𝑐𝐶 ↦ (𝐹𝑐)) ↔ ∃𝑐𝐶 (𝐹𝑎) = (𝐹𝑐)))
2418, 23mpbird 256 . . . . . 6 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → (𝐹𝑎) ∈ ran (𝑐𝐶 ↦ (𝐹𝑐)))
25 imaeq2 6007 . . . . . . . . 9 (𝑎 = 𝑐 → (𝐹𝑎) = (𝐹𝑐))
2625cbvmptv 5216 . . . . . . . 8 (𝑎𝐶 ↦ (𝐹𝑎)) = (𝑐𝐶 ↦ (𝐹𝑐))
2726rneqi 5890 . . . . . . 7 ran (𝑎𝐶 ↦ (𝐹𝑎)) = ran (𝑐𝐶 ↦ (𝐹𝑐))
2811, 27eqtri 2764 . . . . . 6 𝐷 = ran (𝑐𝐶 ↦ (𝐹𝑐))
2924, 28eleqtrrdi 2849 . . . . 5 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → (𝐹𝑎) ∈ 𝐷)
309ffnd 6666 . . . . . . . 8 (𝜑𝐹 Fn 𝑋)
3130ad3antrrr 728 . . . . . . 7 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → 𝐹 Fn 𝑋)
32 fbelss 23168 . . . . . . . . 9 ((𝐶 ∈ (fBas‘𝑋) ∧ 𝑎𝐶) → 𝑎𝑋)
334, 32sylan 580 . . . . . . . 8 ((𝜑𝑎𝐶) → 𝑎𝑋)
3433ad4ant13 749 . . . . . . 7 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → 𝑎𝑋)
35 fmucndlem 23627 . . . . . . 7 ((𝐹 Fn 𝑋𝑎𝑋) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝑎 × 𝑎)) = ((𝐹𝑎) × (𝐹𝑎)))
3631, 34, 35syl2anc 584 . . . . . 6 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝑎 × 𝑎)) = ((𝐹𝑎) × (𝐹𝑎)))
37 eqid 2736 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
3837mpofun 7476 . . . . . . . 8 Fun (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
39 funimass2 6581 . . . . . . . 8 ((Fun (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝑎 × 𝑎)) ⊆ 𝑣)
4038, 39mpan 688 . . . . . . 7 ((𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝑎 × 𝑎)) ⊆ 𝑣)
4140adantl 482 . . . . . 6 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝑎 × 𝑎)) ⊆ 𝑣)
4236, 41eqsstrrd 3981 . . . . 5 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ((𝐹𝑎) × (𝐹𝑎)) ⊆ 𝑣)
43 id 22 . . . . . . . 8 (𝑏 = (𝐹𝑎) → 𝑏 = (𝐹𝑎))
4443sqxpeqd 5663 . . . . . . 7 (𝑏 = (𝐹𝑎) → (𝑏 × 𝑏) = ((𝐹𝑎) × (𝐹𝑎)))
4544sseq1d 3973 . . . . . 6 (𝑏 = (𝐹𝑎) → ((𝑏 × 𝑏) ⊆ 𝑣 ↔ ((𝐹𝑎) × (𝐹𝑎)) ⊆ 𝑣))
4645rspcev 3579 . . . . 5 (((𝐹𝑎) ∈ 𝐷 ∧ ((𝐹𝑎) × (𝐹𝑎)) ⊆ 𝑣) → ∃𝑏𝐷 (𝑏 × 𝑏) ⊆ 𝑣)
4729, 42, 46syl2anc 584 . . . 4 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ∃𝑏𝐷 (𝑏 × 𝑏) ⊆ 𝑣)
481adantr 481 . . . . 5 ((𝜑𝑣𝑉) → 𝑈 ∈ (UnifOn‘𝑋))
492adantr 481 . . . . 5 ((𝜑𝑣𝑉) → 𝐶 ∈ (CauFilu𝑈))
505adantr 481 . . . . . 6 ((𝜑𝑣𝑉) → 𝑉 ∈ (UnifOn‘𝑌))
516adantr 481 . . . . . 6 ((𝜑𝑣𝑉) → 𝐹 ∈ (𝑈 Cnu𝑉))
52 simpr 485 . . . . . 6 ((𝜑𝑣𝑉) → 𝑣𝑉)
53 nfcv 2905 . . . . . . 7 𝑠⟨(𝐹𝑥), (𝐹𝑦)⟩
54 nfcv 2905 . . . . . . 7 𝑡⟨(𝐹𝑥), (𝐹𝑦)⟩
55 nfcv 2905 . . . . . . 7 𝑥⟨(𝐹𝑠), (𝐹𝑡)⟩
56 nfcv 2905 . . . . . . 7 𝑦⟨(𝐹𝑠), (𝐹𝑡)⟩
57 simpl 483 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 𝑡) → 𝑥 = 𝑠)
5857fveq2d 6843 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 𝑡) → (𝐹𝑥) = (𝐹𝑠))
59 simpr 485 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 𝑡) → 𝑦 = 𝑡)
6059fveq2d 6843 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 𝑡) → (𝐹𝑦) = (𝐹𝑡))
6158, 60opeq12d 4836 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 𝑡) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ = ⟨(𝐹𝑠), (𝐹𝑡)⟩)
6253, 54, 55, 56, 61cbvmpo 7447 . . . . . 6 (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) = (𝑠𝑋, 𝑡𝑋 ↦ ⟨(𝐹𝑠), (𝐹𝑡)⟩)
6348, 50, 51, 52, 62ucnprima 23618 . . . . 5 ((𝜑𝑣𝑉) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣) ∈ 𝑈)
64 cfiluexsm 23626 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐶 ∈ (CauFilu𝑈) ∧ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣) ∈ 𝑈) → ∃𝑎𝐶 (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣))
6548, 49, 63, 64syl3anc 1371 . . . 4 ((𝜑𝑣𝑉) → ∃𝑎𝐶 (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣))
6647, 65r19.29a 3157 . . 3 ((𝜑𝑣𝑉) → ∃𝑏𝐷 (𝑏 × 𝑏) ⊆ 𝑣)
6766ralrimiva 3141 . 2 (𝜑 → ∀𝑣𝑉𝑏𝐷 (𝑏 × 𝑏) ⊆ 𝑣)
68 iscfilu 23624 . . 3 (𝑉 ∈ (UnifOn‘𝑌) → (𝐷 ∈ (CauFilu𝑉) ↔ (𝐷 ∈ (fBas‘𝑌) ∧ ∀𝑣𝑉𝑏𝐷 (𝑏 × 𝑏) ⊆ 𝑣)))
695, 68syl 17 . 2 (𝜑 → (𝐷 ∈ (CauFilu𝑉) ↔ (𝐷 ∈ (fBas‘𝑌) ∧ ∀𝑣𝑉𝑏𝐷 (𝑏 × 𝑏) ⊆ 𝑣)))
7013, 67, 69mpbir2and 711 1 (𝜑𝐷 ∈ (CauFilu𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3062  wrex 3071  Vcvv 3443  wss 3908  cop 4590   class class class wbr 5103  cmpt 5186   × cxp 5629  ccnv 5630  ran crn 5632  cima 5634  Fun wfun 6487   Fn wfn 6488  wf 6489  cfv 6493  (class class class)co 7353  cmpo 7355  fBascfbas 20769  UnifOncust 23535   Cnucucn 23611  CauFiluccfilu 23622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7668
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5529  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-fv 6501  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7917  df-2nd 7918  df-map 8763  df-fbas 20778  df-ust 23536  df-ucn 23612  df-cfilu 23623
This theorem is referenced by:  ucnextcn  23640
  Copyright terms: Public domain W3C validator