MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmpoovd Structured version   Visualization version   GIF version

Theorem fnmpoovd 8128
Description: A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019.) (Revised by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
fnmpoovd.m (𝜑𝑀 Fn (𝐴 × 𝐵))
fnmpoovd.s ((𝑖 = 𝑎𝑗 = 𝑏) → 𝐷 = 𝐶)
fnmpoovd.d ((𝜑𝑖𝐴𝑗𝐵) → 𝐷𝑈)
fnmpoovd.c ((𝜑𝑎𝐴𝑏𝐵) → 𝐶𝑉)
Assertion
Ref Expression
fnmpoovd (𝜑 → (𝑀 = (𝑎𝐴, 𝑏𝐵𝐶) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = 𝐷))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑖,𝑗   𝐵,𝑎,𝑏,𝑖,𝑗   𝐶,𝑖,𝑗   𝐷,𝑎,𝑏   𝑖,𝑀,𝑗   𝜑,𝑎,𝑏,𝑖,𝑗
Allowed substitution hints:   𝐶(𝑎,𝑏)   𝐷(𝑖,𝑗)   𝑈(𝑖,𝑗,𝑎,𝑏)   𝑀(𝑎,𝑏)   𝑉(𝑖,𝑗,𝑎,𝑏)

Proof of Theorem fnmpoovd
StepHypRef Expression
1 fnmpoovd.m . . 3 (𝜑𝑀 Fn (𝐴 × 𝐵))
2 fnmpoovd.c . . . . . 6 ((𝜑𝑎𝐴𝑏𝐵) → 𝐶𝑉)
323expb 1120 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 𝐶𝑉)
43ralrimivva 3208 . . . 4 (𝜑 → ∀𝑎𝐴𝑏𝐵 𝐶𝑉)
5 eqid 2740 . . . . 5 (𝑎𝐴, 𝑏𝐵𝐶) = (𝑎𝐴, 𝑏𝐵𝐶)
65fnmpo 8110 . . . 4 (∀𝑎𝐴𝑏𝐵 𝐶𝑉 → (𝑎𝐴, 𝑏𝐵𝐶) Fn (𝐴 × 𝐵))
74, 6syl 17 . . 3 (𝜑 → (𝑎𝐴, 𝑏𝐵𝐶) Fn (𝐴 × 𝐵))
8 eqfnov2 7580 . . 3 ((𝑀 Fn (𝐴 × 𝐵) ∧ (𝑎𝐴, 𝑏𝐵𝐶) Fn (𝐴 × 𝐵)) → (𝑀 = (𝑎𝐴, 𝑏𝐵𝐶) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = (𝑖(𝑎𝐴, 𝑏𝐵𝐶)𝑗)))
91, 7, 8syl2anc 583 . 2 (𝜑 → (𝑀 = (𝑎𝐴, 𝑏𝐵𝐶) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = (𝑖(𝑎𝐴, 𝑏𝐵𝐶)𝑗)))
10 nfcv 2908 . . . . . . . 8 𝑎𝐷
11 nfcv 2908 . . . . . . . 8 𝑏𝐷
12 nfcv 2908 . . . . . . . 8 𝑖𝐶
13 nfcv 2908 . . . . . . . 8 𝑗𝐶
14 fnmpoovd.s . . . . . . . 8 ((𝑖 = 𝑎𝑗 = 𝑏) → 𝐷 = 𝐶)
1510, 11, 12, 13, 14cbvmpo 7544 . . . . . . 7 (𝑖𝐴, 𝑗𝐵𝐷) = (𝑎𝐴, 𝑏𝐵𝐶)
1615eqcomi 2749 . . . . . 6 (𝑎𝐴, 𝑏𝐵𝐶) = (𝑖𝐴, 𝑗𝐵𝐷)
1716a1i 11 . . . . 5 (𝜑 → (𝑎𝐴, 𝑏𝐵𝐶) = (𝑖𝐴, 𝑗𝐵𝐷))
1817oveqd 7465 . . . 4 (𝜑 → (𝑖(𝑎𝐴, 𝑏𝐵𝐶)𝑗) = (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗))
1918eqeq2d 2751 . . 3 (𝜑 → ((𝑖𝑀𝑗) = (𝑖(𝑎𝐴, 𝑏𝐵𝐶)𝑗) ↔ (𝑖𝑀𝑗) = (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗)))
20192ralbidv 3227 . 2 (𝜑 → (∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = (𝑖(𝑎𝐴, 𝑏𝐵𝐶)𝑗) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗)))
21 simprl 770 . . . . 5 ((𝜑 ∧ (𝑖𝐴𝑗𝐵)) → 𝑖𝐴)
22 simprr 772 . . . . 5 ((𝜑 ∧ (𝑖𝐴𝑗𝐵)) → 𝑗𝐵)
23 fnmpoovd.d . . . . . 6 ((𝜑𝑖𝐴𝑗𝐵) → 𝐷𝑈)
24233expb 1120 . . . . 5 ((𝜑 ∧ (𝑖𝐴𝑗𝐵)) → 𝐷𝑈)
25 eqid 2740 . . . . . 6 (𝑖𝐴, 𝑗𝐵𝐷) = (𝑖𝐴, 𝑗𝐵𝐷)
2625ovmpt4g 7597 . . . . 5 ((𝑖𝐴𝑗𝐵𝐷𝑈) → (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗) = 𝐷)
2721, 22, 24, 26syl3anc 1371 . . . 4 ((𝜑 ∧ (𝑖𝐴𝑗𝐵)) → (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗) = 𝐷)
2827eqeq2d 2751 . . 3 ((𝜑 ∧ (𝑖𝐴𝑗𝐵)) → ((𝑖𝑀𝑗) = (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗) ↔ (𝑖𝑀𝑗) = 𝐷))
29282ralbidva 3225 . 2 (𝜑 → (∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = 𝐷))
309, 20, 293bitrd 305 1 (𝜑 → (𝑀 = (𝑎𝐴, 𝑏𝐵𝐶) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067   × cxp 5698   Fn wfn 6568  (class class class)co 7448  cmpo 7450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031
This theorem is referenced by:  mpofrlmd  21820  fedgmullem2  33643
  Copyright terms: Public domain W3C validator