Proof of Theorem fnmpoovd
Step | Hyp | Ref
| Expression |
1 | | fnmpoovd.m |
. . 3
⊢ (𝜑 → 𝑀 Fn (𝐴 × 𝐵)) |
2 | | fnmpoovd.c |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → 𝐶 ∈ 𝑉) |
3 | 2 | 3expb 1119 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → 𝐶 ∈ 𝑉) |
4 | 3 | ralrimivva 3123 |
. . . 4
⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝐶 ∈ 𝑉) |
5 | | eqid 2738 |
. . . . 5
⊢ (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) |
6 | 5 | fnmpo 7909 |
. . . 4
⊢
(∀𝑎 ∈
𝐴 ∀𝑏 ∈ 𝐵 𝐶 ∈ 𝑉 → (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) Fn (𝐴 × 𝐵)) |
7 | 4, 6 | syl 17 |
. . 3
⊢ (𝜑 → (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) Fn (𝐴 × 𝐵)) |
8 | | eqfnov2 7404 |
. . 3
⊢ ((𝑀 Fn (𝐴 × 𝐵) ∧ (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) Fn (𝐴 × 𝐵)) → (𝑀 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐵 (𝑖𝑀𝑗) = (𝑖(𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶)𝑗))) |
9 | 1, 7, 8 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝑀 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐵 (𝑖𝑀𝑗) = (𝑖(𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶)𝑗))) |
10 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑎𝐷 |
11 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑏𝐷 |
12 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑖𝐶 |
13 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑗𝐶 |
14 | | fnmpoovd.s |
. . . . . . . 8
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → 𝐷 = 𝐶) |
15 | 10, 11, 12, 13, 14 | cbvmpo 7369 |
. . . . . . 7
⊢ (𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵 ↦ 𝐷) = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) |
16 | 15 | eqcomi 2747 |
. . . . . 6
⊢ (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) = (𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵 ↦ 𝐷) |
17 | 16 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) = (𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵 ↦ 𝐷)) |
18 | 17 | oveqd 7292 |
. . . 4
⊢ (𝜑 → (𝑖(𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶)𝑗) = (𝑖(𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵 ↦ 𝐷)𝑗)) |
19 | 18 | eqeq2d 2749 |
. . 3
⊢ (𝜑 → ((𝑖𝑀𝑗) = (𝑖(𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶)𝑗) ↔ (𝑖𝑀𝑗) = (𝑖(𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵 ↦ 𝐷)𝑗))) |
20 | 19 | 2ralbidv 3129 |
. 2
⊢ (𝜑 → (∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐵 (𝑖𝑀𝑗) = (𝑖(𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶)𝑗) ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐵 (𝑖𝑀𝑗) = (𝑖(𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵 ↦ 𝐷)𝑗))) |
21 | | simprl 768 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵)) → 𝑖 ∈ 𝐴) |
22 | | simprr 770 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵)) → 𝑗 ∈ 𝐵) |
23 | | fnmpoovd.d |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) → 𝐷 ∈ 𝑈) |
24 | 23 | 3expb 1119 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵)) → 𝐷 ∈ 𝑈) |
25 | | eqid 2738 |
. . . . . 6
⊢ (𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵 ↦ 𝐷) = (𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵 ↦ 𝐷) |
26 | 25 | ovmpt4g 7420 |
. . . . 5
⊢ ((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ∧ 𝐷 ∈ 𝑈) → (𝑖(𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵 ↦ 𝐷)𝑗) = 𝐷) |
27 | 21, 22, 24, 26 | syl3anc 1370 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵)) → (𝑖(𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵 ↦ 𝐷)𝑗) = 𝐷) |
28 | 27 | eqeq2d 2749 |
. . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵)) → ((𝑖𝑀𝑗) = (𝑖(𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵 ↦ 𝐷)𝑗) ↔ (𝑖𝑀𝑗) = 𝐷)) |
29 | 28 | 2ralbidva 3128 |
. 2
⊢ (𝜑 → (∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐵 (𝑖𝑀𝑗) = (𝑖(𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵 ↦ 𝐷)𝑗) ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐵 (𝑖𝑀𝑗) = 𝐷)) |
30 | 9, 20, 29 | 3bitrd 305 |
1
⊢ (𝜑 → (𝑀 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐵 (𝑖𝑀𝑗) = 𝐷)) |