| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fveq2 6906 | . . . . . 6
⊢ (𝑦 = 𝐶 → (𝐺‘𝑦) = (𝐺‘𝐶)) | 
| 2 |  | f1eq1 6799 | . . . . . 6
⊢ ((𝐺‘𝑦) = (𝐺‘𝐶) → ((𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘𝐶):(𝐴 ↑m 𝑦)–1-1→𝐴)) | 
| 3 | 1, 2 | syl 17 | . . . . 5
⊢ (𝑦 = 𝐶 → ((𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘𝐶):(𝐴 ↑m 𝑦)–1-1→𝐴)) | 
| 4 |  | oveq2 7439 | . . . . . 6
⊢ (𝑦 = 𝐶 → (𝐴 ↑m 𝑦) = (𝐴 ↑m 𝐶)) | 
| 5 |  | f1eq2 6800 | . . . . . 6
⊢ ((𝐴 ↑m 𝑦) = (𝐴 ↑m 𝐶) → ((𝐺‘𝐶):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘𝐶):(𝐴 ↑m 𝐶)–1-1→𝐴)) | 
| 6 | 4, 5 | syl 17 | . . . . 5
⊢ (𝑦 = 𝐶 → ((𝐺‘𝐶):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘𝐶):(𝐴 ↑m 𝐶)–1-1→𝐴)) | 
| 7 | 3, 6 | bitrd 279 | . . . 4
⊢ (𝑦 = 𝐶 → ((𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘𝐶):(𝐴 ↑m 𝐶)–1-1→𝐴)) | 
| 8 | 7 | imbi2d 340 | . . 3
⊢ (𝑦 = 𝐶 → ((𝜑 → (𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴) ↔ (𝜑 → (𝐺‘𝐶):(𝐴 ↑m 𝐶)–1-1→𝐴))) | 
| 9 |  | fveq2 6906 | . . . . . . 7
⊢ (𝑦 = ∅ → (𝐺‘𝑦) = (𝐺‘∅)) | 
| 10 |  | snex 5436 | . . . . . . . 8
⊢
{〈∅, 𝐵〉} ∈ V | 
| 11 |  | fseqenlem.g | . . . . . . . . 9
⊢ 𝐺 = seqω((𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴 ↑m suc 𝑛) ↦ ((𝑓‘(𝑥 ↾ 𝑛))𝐹(𝑥‘𝑛)))), {〈∅, 𝐵〉}) | 
| 12 | 11 | seqom0g 8496 | . . . . . . . 8
⊢
({〈∅, 𝐵〉} ∈ V → (𝐺‘∅) = {〈∅, 𝐵〉}) | 
| 13 | 10, 12 | ax-mp 5 | . . . . . . 7
⊢ (𝐺‘∅) =
{〈∅, 𝐵〉} | 
| 14 | 9, 13 | eqtrdi 2793 | . . . . . 6
⊢ (𝑦 = ∅ → (𝐺‘𝑦) = {〈∅, 𝐵〉}) | 
| 15 |  | f1eq1 6799 | . . . . . 6
⊢ ((𝐺‘𝑦) = {〈∅, 𝐵〉} → ((𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ {〈∅, 𝐵〉}:(𝐴 ↑m 𝑦)–1-1→𝐴)) | 
| 16 | 14, 15 | syl 17 | . . . . 5
⊢ (𝑦 = ∅ → ((𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ {〈∅, 𝐵〉}:(𝐴 ↑m 𝑦)–1-1→𝐴)) | 
| 17 |  | oveq2 7439 | . . . . . 6
⊢ (𝑦 = ∅ → (𝐴 ↑m 𝑦) = (𝐴 ↑m
∅)) | 
| 18 |  | f1eq2 6800 | . . . . . 6
⊢ ((𝐴 ↑m 𝑦) = (𝐴 ↑m ∅) →
({〈∅, 𝐵〉}:(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ {〈∅, 𝐵〉}:(𝐴 ↑m ∅)–1-1→𝐴)) | 
| 19 | 17, 18 | syl 17 | . . . . 5
⊢ (𝑦 = ∅ →
({〈∅, 𝐵〉}:(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ {〈∅, 𝐵〉}:(𝐴 ↑m ∅)–1-1→𝐴)) | 
| 20 | 16, 19 | bitrd 279 | . . . 4
⊢ (𝑦 = ∅ → ((𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ {〈∅, 𝐵〉}:(𝐴 ↑m ∅)–1-1→𝐴)) | 
| 21 |  | fveq2 6906 | . . . . . 6
⊢ (𝑦 = 𝑚 → (𝐺‘𝑦) = (𝐺‘𝑚)) | 
| 22 |  | f1eq1 6799 | . . . . . 6
⊢ ((𝐺‘𝑦) = (𝐺‘𝑚) → ((𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘𝑚):(𝐴 ↑m 𝑦)–1-1→𝐴)) | 
| 23 | 21, 22 | syl 17 | . . . . 5
⊢ (𝑦 = 𝑚 → ((𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘𝑚):(𝐴 ↑m 𝑦)–1-1→𝐴)) | 
| 24 |  | oveq2 7439 | . . . . . 6
⊢ (𝑦 = 𝑚 → (𝐴 ↑m 𝑦) = (𝐴 ↑m 𝑚)) | 
| 25 |  | f1eq2 6800 | . . . . . 6
⊢ ((𝐴 ↑m 𝑦) = (𝐴 ↑m 𝑚) → ((𝐺‘𝑚):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) | 
| 26 | 24, 25 | syl 17 | . . . . 5
⊢ (𝑦 = 𝑚 → ((𝐺‘𝑚):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) | 
| 27 | 23, 26 | bitrd 279 | . . . 4
⊢ (𝑦 = 𝑚 → ((𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) | 
| 28 |  | fveq2 6906 | . . . . . 6
⊢ (𝑦 = suc 𝑚 → (𝐺‘𝑦) = (𝐺‘suc 𝑚)) | 
| 29 |  | f1eq1 6799 | . . . . . 6
⊢ ((𝐺‘𝑦) = (𝐺‘suc 𝑚) → ((𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘suc 𝑚):(𝐴 ↑m 𝑦)–1-1→𝐴)) | 
| 30 | 28, 29 | syl 17 | . . . . 5
⊢ (𝑦 = suc 𝑚 → ((𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘suc 𝑚):(𝐴 ↑m 𝑦)–1-1→𝐴)) | 
| 31 |  | oveq2 7439 | . . . . . 6
⊢ (𝑦 = suc 𝑚 → (𝐴 ↑m 𝑦) = (𝐴 ↑m suc 𝑚)) | 
| 32 |  | f1eq2 6800 | . . . . . 6
⊢ ((𝐴 ↑m 𝑦) = (𝐴 ↑m suc 𝑚) → ((𝐺‘suc 𝑚):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘suc 𝑚):(𝐴 ↑m suc 𝑚)–1-1→𝐴)) | 
| 33 | 31, 32 | syl 17 | . . . . 5
⊢ (𝑦 = suc 𝑚 → ((𝐺‘suc 𝑚):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘suc 𝑚):(𝐴 ↑m suc 𝑚)–1-1→𝐴)) | 
| 34 | 30, 33 | bitrd 279 | . . . 4
⊢ (𝑦 = suc 𝑚 → ((𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘suc 𝑚):(𝐴 ↑m suc 𝑚)–1-1→𝐴)) | 
| 35 |  | 0ex 5307 | . . . . . . . 8
⊢ ∅
∈ V | 
| 36 |  | fseqenlem.b | . . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ 𝐴) | 
| 37 |  | f1osng 6889 | . . . . . . . 8
⊢ ((∅
∈ V ∧ 𝐵 ∈
𝐴) → {〈∅,
𝐵〉}:{∅}–1-1-onto→{𝐵}) | 
| 38 | 35, 36, 37 | sylancr 587 | . . . . . . 7
⊢ (𝜑 → {〈∅, 𝐵〉}:{∅}–1-1-onto→{𝐵}) | 
| 39 |  | f1of1 6847 | . . . . . . 7
⊢
({〈∅, 𝐵〉}:{∅}–1-1-onto→{𝐵} → {〈∅, 𝐵〉}:{∅}–1-1→{𝐵}) | 
| 40 | 38, 39 | syl 17 | . . . . . 6
⊢ (𝜑 → {〈∅, 𝐵〉}:{∅}–1-1→{𝐵}) | 
| 41 | 36 | snssd 4809 | . . . . . 6
⊢ (𝜑 → {𝐵} ⊆ 𝐴) | 
| 42 |  | f1ss 6809 | . . . . . 6
⊢
(({〈∅, 𝐵〉}:{∅}–1-1→{𝐵} ∧ {𝐵} ⊆ 𝐴) → {〈∅, 𝐵〉}:{∅}–1-1→𝐴) | 
| 43 | 40, 41, 42 | syl2anc 584 | . . . . 5
⊢ (𝜑 → {〈∅, 𝐵〉}:{∅}–1-1→𝐴) | 
| 44 |  | fseqenlem.a | . . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| 45 |  | map0e 8922 | . . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m ∅) =
1o) | 
| 46 | 44, 45 | syl 17 | . . . . . . 7
⊢ (𝜑 → (𝐴 ↑m ∅) =
1o) | 
| 47 |  | df1o2 8513 | . . . . . . 7
⊢
1o = {∅} | 
| 48 | 46, 47 | eqtrdi 2793 | . . . . . 6
⊢ (𝜑 → (𝐴 ↑m ∅) =
{∅}) | 
| 49 |  | f1eq2 6800 | . . . . . 6
⊢ ((𝐴 ↑m ∅) =
{∅} → ({〈∅, 𝐵〉}:(𝐴 ↑m ∅)–1-1→𝐴 ↔ {〈∅, 𝐵〉}:{∅}–1-1→𝐴)) | 
| 50 | 48, 49 | syl 17 | . . . . 5
⊢ (𝜑 → ({〈∅, 𝐵〉}:(𝐴 ↑m ∅)–1-1→𝐴 ↔ {〈∅, 𝐵〉}:{∅}–1-1→𝐴)) | 
| 51 | 43, 50 | mpbird 257 | . . . 4
⊢ (𝜑 → {〈∅, 𝐵〉}:(𝐴 ↑m ∅)–1-1→𝐴) | 
| 52 | 11 | seqomsuc 8497 | . . . . . . . . . 10
⊢ (𝑚 ∈ ω → (𝐺‘suc 𝑚) = (𝑚(𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴 ↑m suc 𝑛) ↦ ((𝑓‘(𝑥 ↾ 𝑛))𝐹(𝑥‘𝑛))))(𝐺‘𝑚))) | 
| 53 | 52 | ad2antrl 728 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) → (𝐺‘suc 𝑚) = (𝑚(𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴 ↑m suc 𝑛) ↦ ((𝑓‘(𝑥 ↾ 𝑛))𝐹(𝑥‘𝑛))))(𝐺‘𝑚))) | 
| 54 |  | vex 3484 | . . . . . . . . . 10
⊢ 𝑚 ∈ V | 
| 55 |  | fvex 6919 | . . . . . . . . . 10
⊢ (𝐺‘𝑚) ∈ V | 
| 56 |  | reseq1 5991 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → (𝑥 ↾ 𝑎) = (𝑧 ↾ 𝑎)) | 
| 57 | 56 | fveq2d 6910 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (𝑏‘(𝑥 ↾ 𝑎)) = (𝑏‘(𝑧 ↾ 𝑎))) | 
| 58 |  | fveq1 6905 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (𝑥‘𝑎) = (𝑧‘𝑎)) | 
| 59 | 57, 58 | oveq12d 7449 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → ((𝑏‘(𝑥 ↾ 𝑎))𝐹(𝑥‘𝑎)) = ((𝑏‘(𝑧 ↾ 𝑎))𝐹(𝑧‘𝑎))) | 
| 60 | 59 | cbvmptv 5255 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝐴 ↑m suc 𝑎) ↦ ((𝑏‘(𝑥 ↾ 𝑎))𝐹(𝑥‘𝑎))) = (𝑧 ∈ (𝐴 ↑m suc 𝑎) ↦ ((𝑏‘(𝑧 ↾ 𝑎))𝐹(𝑧‘𝑎))) | 
| 61 |  | suceq 6450 | . . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑚 → suc 𝑎 = suc 𝑚) | 
| 62 | 61 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝑎 = 𝑚 ∧ 𝑏 = (𝐺‘𝑚)) → suc 𝑎 = suc 𝑚) | 
| 63 | 62 | oveq2d 7447 | . . . . . . . . . . . . 13
⊢ ((𝑎 = 𝑚 ∧ 𝑏 = (𝐺‘𝑚)) → (𝐴 ↑m suc 𝑎) = (𝐴 ↑m suc 𝑚)) | 
| 64 |  | simpr 484 | . . . . . . . . . . . . . . 15
⊢ ((𝑎 = 𝑚 ∧ 𝑏 = (𝐺‘𝑚)) → 𝑏 = (𝐺‘𝑚)) | 
| 65 |  | reseq2 5992 | . . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑚 → (𝑧 ↾ 𝑎) = (𝑧 ↾ 𝑚)) | 
| 66 | 65 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝑎 = 𝑚 ∧ 𝑏 = (𝐺‘𝑚)) → (𝑧 ↾ 𝑎) = (𝑧 ↾ 𝑚)) | 
| 67 | 64, 66 | fveq12d 6913 | . . . . . . . . . . . . . 14
⊢ ((𝑎 = 𝑚 ∧ 𝑏 = (𝐺‘𝑚)) → (𝑏‘(𝑧 ↾ 𝑎)) = ((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))) | 
| 68 |  | simpl 482 | . . . . . . . . . . . . . . 15
⊢ ((𝑎 = 𝑚 ∧ 𝑏 = (𝐺‘𝑚)) → 𝑎 = 𝑚) | 
| 69 | 68 | fveq2d 6910 | . . . . . . . . . . . . . 14
⊢ ((𝑎 = 𝑚 ∧ 𝑏 = (𝐺‘𝑚)) → (𝑧‘𝑎) = (𝑧‘𝑚)) | 
| 70 | 67, 69 | oveq12d 7449 | . . . . . . . . . . . . 13
⊢ ((𝑎 = 𝑚 ∧ 𝑏 = (𝐺‘𝑚)) → ((𝑏‘(𝑧 ↾ 𝑎))𝐹(𝑧‘𝑎)) = (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚))) | 
| 71 | 63, 70 | mpteq12dv 5233 | . . . . . . . . . . . 12
⊢ ((𝑎 = 𝑚 ∧ 𝑏 = (𝐺‘𝑚)) → (𝑧 ∈ (𝐴 ↑m suc 𝑎) ↦ ((𝑏‘(𝑧 ↾ 𝑎))𝐹(𝑧‘𝑎))) = (𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)))) | 
| 72 | 60, 71 | eqtrid 2789 | . . . . . . . . . . 11
⊢ ((𝑎 = 𝑚 ∧ 𝑏 = (𝐺‘𝑚)) → (𝑥 ∈ (𝐴 ↑m suc 𝑎) ↦ ((𝑏‘(𝑥 ↾ 𝑎))𝐹(𝑥‘𝑎))) = (𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)))) | 
| 73 |  | nfcv 2905 | . . . . . . . . . . . 12
⊢
Ⅎ𝑎(𝑥 ∈ (𝐴 ↑m suc 𝑛) ↦ ((𝑓‘(𝑥 ↾ 𝑛))𝐹(𝑥‘𝑛))) | 
| 74 |  | nfcv 2905 | . . . . . . . . . . . 12
⊢
Ⅎ𝑏(𝑥 ∈ (𝐴 ↑m suc 𝑛) ↦ ((𝑓‘(𝑥 ↾ 𝑛))𝐹(𝑥‘𝑛))) | 
| 75 |  | nfcv 2905 | . . . . . . . . . . . 12
⊢
Ⅎ𝑛(𝑥 ∈ (𝐴 ↑m suc 𝑎) ↦ ((𝑏‘(𝑥 ↾ 𝑎))𝐹(𝑥‘𝑎))) | 
| 76 |  | nfcv 2905 | . . . . . . . . . . . 12
⊢
Ⅎ𝑓(𝑥 ∈ (𝐴 ↑m suc 𝑎) ↦ ((𝑏‘(𝑥 ↾ 𝑎))𝐹(𝑥‘𝑎))) | 
| 77 |  | suceq 6450 | . . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑎 → suc 𝑛 = suc 𝑎) | 
| 78 | 77 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝑛 = 𝑎 ∧ 𝑓 = 𝑏) → suc 𝑛 = suc 𝑎) | 
| 79 | 78 | oveq2d 7447 | . . . . . . . . . . . . 13
⊢ ((𝑛 = 𝑎 ∧ 𝑓 = 𝑏) → (𝐴 ↑m suc 𝑛) = (𝐴 ↑m suc 𝑎)) | 
| 80 |  | simpr 484 | . . . . . . . . . . . . . . 15
⊢ ((𝑛 = 𝑎 ∧ 𝑓 = 𝑏) → 𝑓 = 𝑏) | 
| 81 |  | reseq2 5992 | . . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑎 → (𝑥 ↾ 𝑛) = (𝑥 ↾ 𝑎)) | 
| 82 | 81 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝑛 = 𝑎 ∧ 𝑓 = 𝑏) → (𝑥 ↾ 𝑛) = (𝑥 ↾ 𝑎)) | 
| 83 | 80, 82 | fveq12d 6913 | . . . . . . . . . . . . . 14
⊢ ((𝑛 = 𝑎 ∧ 𝑓 = 𝑏) → (𝑓‘(𝑥 ↾ 𝑛)) = (𝑏‘(𝑥 ↾ 𝑎))) | 
| 84 |  | simpl 482 | . . . . . . . . . . . . . . 15
⊢ ((𝑛 = 𝑎 ∧ 𝑓 = 𝑏) → 𝑛 = 𝑎) | 
| 85 | 84 | fveq2d 6910 | . . . . . . . . . . . . . 14
⊢ ((𝑛 = 𝑎 ∧ 𝑓 = 𝑏) → (𝑥‘𝑛) = (𝑥‘𝑎)) | 
| 86 | 83, 85 | oveq12d 7449 | . . . . . . . . . . . . 13
⊢ ((𝑛 = 𝑎 ∧ 𝑓 = 𝑏) → ((𝑓‘(𝑥 ↾ 𝑛))𝐹(𝑥‘𝑛)) = ((𝑏‘(𝑥 ↾ 𝑎))𝐹(𝑥‘𝑎))) | 
| 87 | 79, 86 | mpteq12dv 5233 | . . . . . . . . . . . 12
⊢ ((𝑛 = 𝑎 ∧ 𝑓 = 𝑏) → (𝑥 ∈ (𝐴 ↑m suc 𝑛) ↦ ((𝑓‘(𝑥 ↾ 𝑛))𝐹(𝑥‘𝑛))) = (𝑥 ∈ (𝐴 ↑m suc 𝑎) ↦ ((𝑏‘(𝑥 ↾ 𝑎))𝐹(𝑥‘𝑎)))) | 
| 88 | 73, 74, 75, 76, 87 | cbvmpo 7527 | . . . . . . . . . . 11
⊢ (𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴 ↑m suc 𝑛) ↦ ((𝑓‘(𝑥 ↾ 𝑛))𝐹(𝑥‘𝑛)))) = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑥 ∈ (𝐴 ↑m suc 𝑎) ↦ ((𝑏‘(𝑥 ↾ 𝑎))𝐹(𝑥‘𝑎)))) | 
| 89 |  | ovex 7464 | . . . . . . . . . . . 12
⊢ (𝐴 ↑m suc 𝑚) ∈ V | 
| 90 | 89 | mptex 7243 | . . . . . . . . . . 11
⊢ (𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚))) ∈ V | 
| 91 | 72, 88, 90 | ovmpoa 7588 | . . . . . . . . . 10
⊢ ((𝑚 ∈ V ∧ (𝐺‘𝑚) ∈ V) → (𝑚(𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴 ↑m suc 𝑛) ↦ ((𝑓‘(𝑥 ↾ 𝑛))𝐹(𝑥‘𝑛))))(𝐺‘𝑚)) = (𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)))) | 
| 92 | 54, 55, 91 | mp2an 692 | . . . . . . . . 9
⊢ (𝑚(𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴 ↑m suc 𝑛) ↦ ((𝑓‘(𝑥 ↾ 𝑛))𝐹(𝑥‘𝑛))))(𝐺‘𝑚)) = (𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚))) | 
| 93 | 53, 92 | eqtrdi 2793 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) → (𝐺‘suc 𝑚) = (𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)))) | 
| 94 |  | fseqenlem.f | . . . . . . . . . . 11
⊢ (𝜑 → 𝐹:(𝐴 × 𝐴)–1-1-onto→𝐴) | 
| 95 | 94 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ 𝑧 ∈ (𝐴 ↑m suc 𝑚)) → 𝐹:(𝐴 × 𝐴)–1-1-onto→𝐴) | 
| 96 |  | f1of 6848 | . . . . . . . . . 10
⊢ (𝐹:(𝐴 × 𝐴)–1-1-onto→𝐴 → 𝐹:(𝐴 × 𝐴)⟶𝐴) | 
| 97 | 95, 96 | syl 17 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ 𝑧 ∈ (𝐴 ↑m suc 𝑚)) → 𝐹:(𝐴 × 𝐴)⟶𝐴) | 
| 98 |  | f1f 6804 | . . . . . . . . . . . 12
⊢ ((𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴 → (𝐺‘𝑚):(𝐴 ↑m 𝑚)⟶𝐴) | 
| 99 | 98 | ad2antll 729 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) → (𝐺‘𝑚):(𝐴 ↑m 𝑚)⟶𝐴) | 
| 100 | 99 | adantr 480 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ 𝑧 ∈ (𝐴 ↑m suc 𝑚)) → (𝐺‘𝑚):(𝐴 ↑m 𝑚)⟶𝐴) | 
| 101 |  | elmapi 8889 | . . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝐴 ↑m suc 𝑚) → 𝑧:suc 𝑚⟶𝐴) | 
| 102 | 101 | adantl 481 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ 𝑧 ∈ (𝐴 ↑m suc 𝑚)) → 𝑧:suc 𝑚⟶𝐴) | 
| 103 |  | sssucid 6464 | . . . . . . . . . . . 12
⊢ 𝑚 ⊆ suc 𝑚 | 
| 104 |  | fssres 6774 | . . . . . . . . . . . 12
⊢ ((𝑧:suc 𝑚⟶𝐴 ∧ 𝑚 ⊆ suc 𝑚) → (𝑧 ↾ 𝑚):𝑚⟶𝐴) | 
| 105 | 102, 103,
104 | sylancl 586 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ 𝑧 ∈ (𝐴 ↑m suc 𝑚)) → (𝑧 ↾ 𝑚):𝑚⟶𝐴) | 
| 106 | 44 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ 𝑧 ∈ (𝐴 ↑m suc 𝑚)) → 𝐴 ∈ 𝑉) | 
| 107 |  | elmapg 8879 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑚 ∈ V) → ((𝑧 ↾ 𝑚) ∈ (𝐴 ↑m 𝑚) ↔ (𝑧 ↾ 𝑚):𝑚⟶𝐴)) | 
| 108 | 106, 54, 107 | sylancl 586 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ 𝑧 ∈ (𝐴 ↑m suc 𝑚)) → ((𝑧 ↾ 𝑚) ∈ (𝐴 ↑m 𝑚) ↔ (𝑧 ↾ 𝑚):𝑚⟶𝐴)) | 
| 109 | 105, 108 | mpbird 257 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ 𝑧 ∈ (𝐴 ↑m suc 𝑚)) → (𝑧 ↾ 𝑚) ∈ (𝐴 ↑m 𝑚)) | 
| 110 | 100, 109 | ffvelcdmd 7105 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ 𝑧 ∈ (𝐴 ↑m suc 𝑚)) → ((𝐺‘𝑚)‘(𝑧 ↾ 𝑚)) ∈ 𝐴) | 
| 111 | 54 | sucid 6466 | . . . . . . . . . 10
⊢ 𝑚 ∈ suc 𝑚 | 
| 112 |  | ffvelcdm 7101 | . . . . . . . . . 10
⊢ ((𝑧:suc 𝑚⟶𝐴 ∧ 𝑚 ∈ suc 𝑚) → (𝑧‘𝑚) ∈ 𝐴) | 
| 113 | 102, 111,
112 | sylancl 586 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ 𝑧 ∈ (𝐴 ↑m suc 𝑚)) → (𝑧‘𝑚) ∈ 𝐴) | 
| 114 | 97, 110, 113 | fovcdmd 7605 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ 𝑧 ∈ (𝐴 ↑m suc 𝑚)) → (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)) ∈ 𝐴) | 
| 115 | 93, 114 | fmpt3d 7136 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) → (𝐺‘suc 𝑚):(𝐴 ↑m suc 𝑚)⟶𝐴) | 
| 116 |  | elmapi 8889 | . . . . . . . . . . . . . 14
⊢ (𝑎 ∈ (𝐴 ↑m suc 𝑚) → 𝑎:suc 𝑚⟶𝐴) | 
| 117 | 116 | ad2antrl 728 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → 𝑎:suc 𝑚⟶𝐴) | 
| 118 | 117 | ffnd 6737 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → 𝑎 Fn suc 𝑚) | 
| 119 |  | elmapi 8889 | . . . . . . . . . . . . . 14
⊢ (𝑏 ∈ (𝐴 ↑m suc 𝑚) → 𝑏:suc 𝑚⟶𝐴) | 
| 120 | 119 | ad2antll 729 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → 𝑏:suc 𝑚⟶𝐴) | 
| 121 | 120 | ffnd 6737 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → 𝑏 Fn suc 𝑚) | 
| 122 | 103 | a1i 11 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → 𝑚 ⊆ suc 𝑚) | 
| 123 |  | fvreseq 7060 | . . . . . . . . . . . 12
⊢ (((𝑎 Fn suc 𝑚 ∧ 𝑏 Fn suc 𝑚) ∧ 𝑚 ⊆ suc 𝑚) → ((𝑎 ↾ 𝑚) = (𝑏 ↾ 𝑚) ↔ ∀𝑥 ∈ 𝑚 (𝑎‘𝑥) = (𝑏‘𝑥))) | 
| 124 | 118, 121,
122, 123 | syl21anc 838 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝑎 ↾ 𝑚) = (𝑏 ↾ 𝑚) ↔ ∀𝑥 ∈ 𝑚 (𝑎‘𝑥) = (𝑏‘𝑥))) | 
| 125 |  | fveq2 6906 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑚 → (𝑎‘𝑥) = (𝑎‘𝑚)) | 
| 126 |  | fveq2 6906 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑚 → (𝑏‘𝑥) = (𝑏‘𝑚)) | 
| 127 | 125, 126 | eqeq12d 2753 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑚 → ((𝑎‘𝑥) = (𝑏‘𝑥) ↔ (𝑎‘𝑚) = (𝑏‘𝑚))) | 
| 128 | 54, 127 | ralsn 4681 | . . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
{𝑚} (𝑎‘𝑥) = (𝑏‘𝑥) ↔ (𝑎‘𝑚) = (𝑏‘𝑚)) | 
| 129 | 128 | bicomi 224 | . . . . . . . . . . . 12
⊢ ((𝑎‘𝑚) = (𝑏‘𝑚) ↔ ∀𝑥 ∈ {𝑚} (𝑎‘𝑥) = (𝑏‘𝑥)) | 
| 130 | 129 | a1i 11 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝑎‘𝑚) = (𝑏‘𝑚) ↔ ∀𝑥 ∈ {𝑚} (𝑎‘𝑥) = (𝑏‘𝑥))) | 
| 131 | 124, 130 | anbi12d 632 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (((𝑎 ↾ 𝑚) = (𝑏 ↾ 𝑚) ∧ (𝑎‘𝑚) = (𝑏‘𝑚)) ↔ (∀𝑥 ∈ 𝑚 (𝑎‘𝑥) = (𝑏‘𝑥) ∧ ∀𝑥 ∈ {𝑚} (𝑎‘𝑥) = (𝑏‘𝑥)))) | 
| 132 | 93 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (𝐺‘suc 𝑚) = (𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)))) | 
| 133 | 132 | fveq1d 6908 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝐺‘suc 𝑚)‘𝑎) = ((𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)))‘𝑎)) | 
| 134 |  | reseq1 5991 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑎 → (𝑧 ↾ 𝑚) = (𝑎 ↾ 𝑚)) | 
| 135 | 134 | fveq2d 6910 | . . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑎 → ((𝐺‘𝑚)‘(𝑧 ↾ 𝑚)) = ((𝐺‘𝑚)‘(𝑎 ↾ 𝑚))) | 
| 136 |  | fveq1 6905 | . . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑎 → (𝑧‘𝑚) = (𝑎‘𝑚)) | 
| 137 | 135, 136 | oveq12d 7449 | . . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑎 → (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)) = (((𝐺‘𝑚)‘(𝑎 ↾ 𝑚))𝐹(𝑎‘𝑚))) | 
| 138 |  | eqid 2737 | . . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚))) = (𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚))) | 
| 139 |  | ovex 7464 | . . . . . . . . . . . . . . . 16
⊢ (((𝐺‘𝑚)‘(𝑎 ↾ 𝑚))𝐹(𝑎‘𝑚)) ∈ V | 
| 140 | 137, 138,
139 | fvmpt 7016 | . . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ (𝐴 ↑m suc 𝑚) → ((𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)))‘𝑎) = (((𝐺‘𝑚)‘(𝑎 ↾ 𝑚))𝐹(𝑎‘𝑚))) | 
| 141 | 140 | ad2antrl 728 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)))‘𝑎) = (((𝐺‘𝑚)‘(𝑎 ↾ 𝑚))𝐹(𝑎‘𝑚))) | 
| 142 | 133, 141 | eqtrd 2777 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝐺‘suc 𝑚)‘𝑎) = (((𝐺‘𝑚)‘(𝑎 ↾ 𝑚))𝐹(𝑎‘𝑚))) | 
| 143 |  | df-ov 7434 | . . . . . . . . . . . . 13
⊢ (((𝐺‘𝑚)‘(𝑎 ↾ 𝑚))𝐹(𝑎‘𝑚)) = (𝐹‘〈((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)), (𝑎‘𝑚)〉) | 
| 144 | 142, 143 | eqtrdi 2793 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝐺‘suc 𝑚)‘𝑎) = (𝐹‘〈((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)), (𝑎‘𝑚)〉)) | 
| 145 | 132 | fveq1d 6908 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝐺‘suc 𝑚)‘𝑏) = ((𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)))‘𝑏)) | 
| 146 |  | reseq1 5991 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑏 → (𝑧 ↾ 𝑚) = (𝑏 ↾ 𝑚)) | 
| 147 | 146 | fveq2d 6910 | . . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑏 → ((𝐺‘𝑚)‘(𝑧 ↾ 𝑚)) = ((𝐺‘𝑚)‘(𝑏 ↾ 𝑚))) | 
| 148 |  | fveq1 6905 | . . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑏 → (𝑧‘𝑚) = (𝑏‘𝑚)) | 
| 149 | 147, 148 | oveq12d 7449 | . . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑏 → (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)) = (((𝐺‘𝑚)‘(𝑏 ↾ 𝑚))𝐹(𝑏‘𝑚))) | 
| 150 |  | ovex 7464 | . . . . . . . . . . . . . . . 16
⊢ (((𝐺‘𝑚)‘(𝑏 ↾ 𝑚))𝐹(𝑏‘𝑚)) ∈ V | 
| 151 | 149, 138,
150 | fvmpt 7016 | . . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ (𝐴 ↑m suc 𝑚) → ((𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)))‘𝑏) = (((𝐺‘𝑚)‘(𝑏 ↾ 𝑚))𝐹(𝑏‘𝑚))) | 
| 152 | 151 | ad2antll 729 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)))‘𝑏) = (((𝐺‘𝑚)‘(𝑏 ↾ 𝑚))𝐹(𝑏‘𝑚))) | 
| 153 | 145, 152 | eqtrd 2777 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝐺‘suc 𝑚)‘𝑏) = (((𝐺‘𝑚)‘(𝑏 ↾ 𝑚))𝐹(𝑏‘𝑚))) | 
| 154 |  | df-ov 7434 | . . . . . . . . . . . . 13
⊢ (((𝐺‘𝑚)‘(𝑏 ↾ 𝑚))𝐹(𝑏‘𝑚)) = (𝐹‘〈((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)), (𝑏‘𝑚)〉) | 
| 155 | 153, 154 | eqtrdi 2793 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝐺‘suc 𝑚)‘𝑏) = (𝐹‘〈((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)), (𝑏‘𝑚)〉)) | 
| 156 | 144, 155 | eqeq12d 2753 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (((𝐺‘suc 𝑚)‘𝑎) = ((𝐺‘suc 𝑚)‘𝑏) ↔ (𝐹‘〈((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)), (𝑎‘𝑚)〉) = (𝐹‘〈((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)), (𝑏‘𝑚)〉))) | 
| 157 | 94 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → 𝐹:(𝐴 × 𝐴)–1-1-onto→𝐴) | 
| 158 |  | f1of1 6847 | . . . . . . . . . . . . . 14
⊢ (𝐹:(𝐴 × 𝐴)–1-1-onto→𝐴 → 𝐹:(𝐴 × 𝐴)–1-1→𝐴) | 
| 159 | 157, 158 | syl 17 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → 𝐹:(𝐴 × 𝐴)–1-1→𝐴) | 
| 160 | 99 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (𝐺‘𝑚):(𝐴 ↑m 𝑚)⟶𝐴) | 
| 161 |  | fssres 6774 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑎:suc 𝑚⟶𝐴 ∧ 𝑚 ⊆ suc 𝑚) → (𝑎 ↾ 𝑚):𝑚⟶𝐴) | 
| 162 | 117, 103,
161 | sylancl 586 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (𝑎 ↾ 𝑚):𝑚⟶𝐴) | 
| 163 | 44 | ad2antrr 726 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → 𝐴 ∈ 𝑉) | 
| 164 |  | elmapg 8879 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑚 ∈ V) → ((𝑎 ↾ 𝑚) ∈ (𝐴 ↑m 𝑚) ↔ (𝑎 ↾ 𝑚):𝑚⟶𝐴)) | 
| 165 | 163, 54, 164 | sylancl 586 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝑎 ↾ 𝑚) ∈ (𝐴 ↑m 𝑚) ↔ (𝑎 ↾ 𝑚):𝑚⟶𝐴)) | 
| 166 | 162, 165 | mpbird 257 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (𝑎 ↾ 𝑚) ∈ (𝐴 ↑m 𝑚)) | 
| 167 | 160, 166 | ffvelcdmd 7105 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)) ∈ 𝐴) | 
| 168 |  | ffvelcdm 7101 | . . . . . . . . . . . . . . 15
⊢ ((𝑎:suc 𝑚⟶𝐴 ∧ 𝑚 ∈ suc 𝑚) → (𝑎‘𝑚) ∈ 𝐴) | 
| 169 | 117, 111,
168 | sylancl 586 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (𝑎‘𝑚) ∈ 𝐴) | 
| 170 | 167, 169 | opelxpd 5724 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → 〈((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)), (𝑎‘𝑚)〉 ∈ (𝐴 × 𝐴)) | 
| 171 |  | fssres 6774 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑏:suc 𝑚⟶𝐴 ∧ 𝑚 ⊆ suc 𝑚) → (𝑏 ↾ 𝑚):𝑚⟶𝐴) | 
| 172 | 120, 103,
171 | sylancl 586 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (𝑏 ↾ 𝑚):𝑚⟶𝐴) | 
| 173 |  | elmapg 8879 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑚 ∈ V) → ((𝑏 ↾ 𝑚) ∈ (𝐴 ↑m 𝑚) ↔ (𝑏 ↾ 𝑚):𝑚⟶𝐴)) | 
| 174 | 163, 54, 173 | sylancl 586 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝑏 ↾ 𝑚) ∈ (𝐴 ↑m 𝑚) ↔ (𝑏 ↾ 𝑚):𝑚⟶𝐴)) | 
| 175 | 172, 174 | mpbird 257 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (𝑏 ↾ 𝑚) ∈ (𝐴 ↑m 𝑚)) | 
| 176 | 160, 175 | ffvelcdmd 7105 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)) ∈ 𝐴) | 
| 177 |  | ffvelcdm 7101 | . . . . . . . . . . . . . . 15
⊢ ((𝑏:suc 𝑚⟶𝐴 ∧ 𝑚 ∈ suc 𝑚) → (𝑏‘𝑚) ∈ 𝐴) | 
| 178 | 120, 111,
177 | sylancl 586 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (𝑏‘𝑚) ∈ 𝐴) | 
| 179 | 176, 178 | opelxpd 5724 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → 〈((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)), (𝑏‘𝑚)〉 ∈ (𝐴 × 𝐴)) | 
| 180 |  | f1fveq 7282 | . . . . . . . . . . . . 13
⊢ ((𝐹:(𝐴 × 𝐴)–1-1→𝐴 ∧ (〈((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)), (𝑎‘𝑚)〉 ∈ (𝐴 × 𝐴) ∧ 〈((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)), (𝑏‘𝑚)〉 ∈ (𝐴 × 𝐴))) → ((𝐹‘〈((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)), (𝑎‘𝑚)〉) = (𝐹‘〈((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)), (𝑏‘𝑚)〉) ↔ 〈((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)), (𝑎‘𝑚)〉 = 〈((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)), (𝑏‘𝑚)〉)) | 
| 181 | 159, 170,
179, 180 | syl12anc 837 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝐹‘〈((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)), (𝑎‘𝑚)〉) = (𝐹‘〈((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)), (𝑏‘𝑚)〉) ↔ 〈((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)), (𝑎‘𝑚)〉 = 〈((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)), (𝑏‘𝑚)〉)) | 
| 182 |  | fvex 6919 | . . . . . . . . . . . . 13
⊢ ((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)) ∈ V | 
| 183 |  | fvex 6919 | . . . . . . . . . . . . 13
⊢ (𝑎‘𝑚) ∈ V | 
| 184 | 182, 183 | opth 5481 | . . . . . . . . . . . 12
⊢
(〈((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)), (𝑎‘𝑚)〉 = 〈((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)), (𝑏‘𝑚)〉 ↔ (((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)) = ((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)) ∧ (𝑎‘𝑚) = (𝑏‘𝑚))) | 
| 185 | 181, 184 | bitrdi 287 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝐹‘〈((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)), (𝑎‘𝑚)〉) = (𝐹‘〈((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)), (𝑏‘𝑚)〉) ↔ (((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)) = ((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)) ∧ (𝑎‘𝑚) = (𝑏‘𝑚)))) | 
| 186 |  | simplrr 778 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴) | 
| 187 |  | f1fveq 7282 | . . . . . . . . . . . . 13
⊢ (((𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴 ∧ ((𝑎 ↾ 𝑚) ∈ (𝐴 ↑m 𝑚) ∧ (𝑏 ↾ 𝑚) ∈ (𝐴 ↑m 𝑚))) → (((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)) = ((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)) ↔ (𝑎 ↾ 𝑚) = (𝑏 ↾ 𝑚))) | 
| 188 | 186, 166,
175, 187 | syl12anc 837 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)) = ((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)) ↔ (𝑎 ↾ 𝑚) = (𝑏 ↾ 𝑚))) | 
| 189 | 188 | anbi1d 631 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)) = ((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)) ∧ (𝑎‘𝑚) = (𝑏‘𝑚)) ↔ ((𝑎 ↾ 𝑚) = (𝑏 ↾ 𝑚) ∧ (𝑎‘𝑚) = (𝑏‘𝑚)))) | 
| 190 | 156, 185,
189 | 3bitrd 305 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (((𝐺‘suc 𝑚)‘𝑎) = ((𝐺‘suc 𝑚)‘𝑏) ↔ ((𝑎 ↾ 𝑚) = (𝑏 ↾ 𝑚) ∧ (𝑎‘𝑚) = (𝑏‘𝑚)))) | 
| 191 |  | eqfnfv 7051 | . . . . . . . . . . . 12
⊢ ((𝑎 Fn suc 𝑚 ∧ 𝑏 Fn suc 𝑚) → (𝑎 = 𝑏 ↔ ∀𝑥 ∈ suc 𝑚(𝑎‘𝑥) = (𝑏‘𝑥))) | 
| 192 | 118, 121,
191 | syl2anc 584 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (𝑎 = 𝑏 ↔ ∀𝑥 ∈ suc 𝑚(𝑎‘𝑥) = (𝑏‘𝑥))) | 
| 193 |  | df-suc 6390 | . . . . . . . . . . . . 13
⊢ suc 𝑚 = (𝑚 ∪ {𝑚}) | 
| 194 | 193 | raleqi 3324 | . . . . . . . . . . . 12
⊢
(∀𝑥 ∈
suc 𝑚(𝑎‘𝑥) = (𝑏‘𝑥) ↔ ∀𝑥 ∈ (𝑚 ∪ {𝑚})(𝑎‘𝑥) = (𝑏‘𝑥)) | 
| 195 |  | ralunb 4197 | . . . . . . . . . . . 12
⊢
(∀𝑥 ∈
(𝑚 ∪ {𝑚})(𝑎‘𝑥) = (𝑏‘𝑥) ↔ (∀𝑥 ∈ 𝑚 (𝑎‘𝑥) = (𝑏‘𝑥) ∧ ∀𝑥 ∈ {𝑚} (𝑎‘𝑥) = (𝑏‘𝑥))) | 
| 196 | 194, 195 | bitri 275 | . . . . . . . . . . 11
⊢
(∀𝑥 ∈
suc 𝑚(𝑎‘𝑥) = (𝑏‘𝑥) ↔ (∀𝑥 ∈ 𝑚 (𝑎‘𝑥) = (𝑏‘𝑥) ∧ ∀𝑥 ∈ {𝑚} (𝑎‘𝑥) = (𝑏‘𝑥))) | 
| 197 | 192, 196 | bitrdi 287 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (𝑎 = 𝑏 ↔ (∀𝑥 ∈ 𝑚 (𝑎‘𝑥) = (𝑏‘𝑥) ∧ ∀𝑥 ∈ {𝑚} (𝑎‘𝑥) = (𝑏‘𝑥)))) | 
| 198 | 131, 190,
197 | 3bitr4d 311 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (((𝐺‘suc 𝑚)‘𝑎) = ((𝐺‘suc 𝑚)‘𝑏) ↔ 𝑎 = 𝑏)) | 
| 199 | 198 | biimpd 229 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (((𝐺‘suc 𝑚)‘𝑎) = ((𝐺‘suc 𝑚)‘𝑏) → 𝑎 = 𝑏)) | 
| 200 | 199 | ralrimivva 3202 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) → ∀𝑎 ∈ (𝐴 ↑m suc 𝑚)∀𝑏 ∈ (𝐴 ↑m suc 𝑚)(((𝐺‘suc 𝑚)‘𝑎) = ((𝐺‘suc 𝑚)‘𝑏) → 𝑎 = 𝑏)) | 
| 201 |  | dff13 7275 | . . . . . . 7
⊢ ((𝐺‘suc 𝑚):(𝐴 ↑m suc 𝑚)–1-1→𝐴 ↔ ((𝐺‘suc 𝑚):(𝐴 ↑m suc 𝑚)⟶𝐴 ∧ ∀𝑎 ∈ (𝐴 ↑m suc 𝑚)∀𝑏 ∈ (𝐴 ↑m suc 𝑚)(((𝐺‘suc 𝑚)‘𝑎) = ((𝐺‘suc 𝑚)‘𝑏) → 𝑎 = 𝑏))) | 
| 202 | 115, 200,
201 | sylanbrc 583 | . . . . . 6
⊢ ((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) → (𝐺‘suc 𝑚):(𝐴 ↑m suc 𝑚)–1-1→𝐴) | 
| 203 | 202 | expr 456 | . . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ω) → ((𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴 → (𝐺‘suc 𝑚):(𝐴 ↑m suc 𝑚)–1-1→𝐴)) | 
| 204 | 203 | expcom 413 | . . . 4
⊢ (𝑚 ∈ ω → (𝜑 → ((𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴 → (𝐺‘suc 𝑚):(𝐴 ↑m suc 𝑚)–1-1→𝐴))) | 
| 205 | 20, 27, 34, 51, 204 | finds2 7920 | . . 3
⊢ (𝑦 ∈ ω → (𝜑 → (𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴)) | 
| 206 | 8, 205 | vtoclga 3577 | . 2
⊢ (𝐶 ∈ ω → (𝜑 → (𝐺‘𝐶):(𝐴 ↑m 𝐶)–1-1→𝐴)) | 
| 207 | 206 | impcom 407 | 1
⊢ ((𝜑 ∧ 𝐶 ∈ ω) → (𝐺‘𝐶):(𝐴 ↑m 𝐶)–1-1→𝐴) |