| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6876 |
. . . . . 6
⊢ (𝑦 = 𝐶 → (𝐺‘𝑦) = (𝐺‘𝐶)) |
| 2 | | f1eq1 6769 |
. . . . . 6
⊢ ((𝐺‘𝑦) = (𝐺‘𝐶) → ((𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘𝐶):(𝐴 ↑m 𝑦)–1-1→𝐴)) |
| 3 | 1, 2 | syl 17 |
. . . . 5
⊢ (𝑦 = 𝐶 → ((𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘𝐶):(𝐴 ↑m 𝑦)–1-1→𝐴)) |
| 4 | | oveq2 7413 |
. . . . . 6
⊢ (𝑦 = 𝐶 → (𝐴 ↑m 𝑦) = (𝐴 ↑m 𝐶)) |
| 5 | | f1eq2 6770 |
. . . . . 6
⊢ ((𝐴 ↑m 𝑦) = (𝐴 ↑m 𝐶) → ((𝐺‘𝐶):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘𝐶):(𝐴 ↑m 𝐶)–1-1→𝐴)) |
| 6 | 4, 5 | syl 17 |
. . . . 5
⊢ (𝑦 = 𝐶 → ((𝐺‘𝐶):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘𝐶):(𝐴 ↑m 𝐶)–1-1→𝐴)) |
| 7 | 3, 6 | bitrd 279 |
. . . 4
⊢ (𝑦 = 𝐶 → ((𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘𝐶):(𝐴 ↑m 𝐶)–1-1→𝐴)) |
| 8 | 7 | imbi2d 340 |
. . 3
⊢ (𝑦 = 𝐶 → ((𝜑 → (𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴) ↔ (𝜑 → (𝐺‘𝐶):(𝐴 ↑m 𝐶)–1-1→𝐴))) |
| 9 | | fveq2 6876 |
. . . . . . 7
⊢ (𝑦 = ∅ → (𝐺‘𝑦) = (𝐺‘∅)) |
| 10 | | snex 5406 |
. . . . . . . 8
⊢
{〈∅, 𝐵〉} ∈ V |
| 11 | | fseqenlem.g |
. . . . . . . . 9
⊢ 𝐺 = seqω((𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴 ↑m suc 𝑛) ↦ ((𝑓‘(𝑥 ↾ 𝑛))𝐹(𝑥‘𝑛)))), {〈∅, 𝐵〉}) |
| 12 | 11 | seqom0g 8470 |
. . . . . . . 8
⊢
({〈∅, 𝐵〉} ∈ V → (𝐺‘∅) = {〈∅, 𝐵〉}) |
| 13 | 10, 12 | ax-mp 5 |
. . . . . . 7
⊢ (𝐺‘∅) =
{〈∅, 𝐵〉} |
| 14 | 9, 13 | eqtrdi 2786 |
. . . . . 6
⊢ (𝑦 = ∅ → (𝐺‘𝑦) = {〈∅, 𝐵〉}) |
| 15 | | f1eq1 6769 |
. . . . . 6
⊢ ((𝐺‘𝑦) = {〈∅, 𝐵〉} → ((𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ {〈∅, 𝐵〉}:(𝐴 ↑m 𝑦)–1-1→𝐴)) |
| 16 | 14, 15 | syl 17 |
. . . . 5
⊢ (𝑦 = ∅ → ((𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ {〈∅, 𝐵〉}:(𝐴 ↑m 𝑦)–1-1→𝐴)) |
| 17 | | oveq2 7413 |
. . . . . 6
⊢ (𝑦 = ∅ → (𝐴 ↑m 𝑦) = (𝐴 ↑m
∅)) |
| 18 | | f1eq2 6770 |
. . . . . 6
⊢ ((𝐴 ↑m 𝑦) = (𝐴 ↑m ∅) →
({〈∅, 𝐵〉}:(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ {〈∅, 𝐵〉}:(𝐴 ↑m ∅)–1-1→𝐴)) |
| 19 | 17, 18 | syl 17 |
. . . . 5
⊢ (𝑦 = ∅ →
({〈∅, 𝐵〉}:(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ {〈∅, 𝐵〉}:(𝐴 ↑m ∅)–1-1→𝐴)) |
| 20 | 16, 19 | bitrd 279 |
. . . 4
⊢ (𝑦 = ∅ → ((𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ {〈∅, 𝐵〉}:(𝐴 ↑m ∅)–1-1→𝐴)) |
| 21 | | fveq2 6876 |
. . . . . 6
⊢ (𝑦 = 𝑚 → (𝐺‘𝑦) = (𝐺‘𝑚)) |
| 22 | | f1eq1 6769 |
. . . . . 6
⊢ ((𝐺‘𝑦) = (𝐺‘𝑚) → ((𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘𝑚):(𝐴 ↑m 𝑦)–1-1→𝐴)) |
| 23 | 21, 22 | syl 17 |
. . . . 5
⊢ (𝑦 = 𝑚 → ((𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘𝑚):(𝐴 ↑m 𝑦)–1-1→𝐴)) |
| 24 | | oveq2 7413 |
. . . . . 6
⊢ (𝑦 = 𝑚 → (𝐴 ↑m 𝑦) = (𝐴 ↑m 𝑚)) |
| 25 | | f1eq2 6770 |
. . . . . 6
⊢ ((𝐴 ↑m 𝑦) = (𝐴 ↑m 𝑚) → ((𝐺‘𝑚):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) |
| 26 | 24, 25 | syl 17 |
. . . . 5
⊢ (𝑦 = 𝑚 → ((𝐺‘𝑚):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) |
| 27 | 23, 26 | bitrd 279 |
. . . 4
⊢ (𝑦 = 𝑚 → ((𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) |
| 28 | | fveq2 6876 |
. . . . . 6
⊢ (𝑦 = suc 𝑚 → (𝐺‘𝑦) = (𝐺‘suc 𝑚)) |
| 29 | | f1eq1 6769 |
. . . . . 6
⊢ ((𝐺‘𝑦) = (𝐺‘suc 𝑚) → ((𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘suc 𝑚):(𝐴 ↑m 𝑦)–1-1→𝐴)) |
| 30 | 28, 29 | syl 17 |
. . . . 5
⊢ (𝑦 = suc 𝑚 → ((𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘suc 𝑚):(𝐴 ↑m 𝑦)–1-1→𝐴)) |
| 31 | | oveq2 7413 |
. . . . . 6
⊢ (𝑦 = suc 𝑚 → (𝐴 ↑m 𝑦) = (𝐴 ↑m suc 𝑚)) |
| 32 | | f1eq2 6770 |
. . . . . 6
⊢ ((𝐴 ↑m 𝑦) = (𝐴 ↑m suc 𝑚) → ((𝐺‘suc 𝑚):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘suc 𝑚):(𝐴 ↑m suc 𝑚)–1-1→𝐴)) |
| 33 | 31, 32 | syl 17 |
. . . . 5
⊢ (𝑦 = suc 𝑚 → ((𝐺‘suc 𝑚):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘suc 𝑚):(𝐴 ↑m suc 𝑚)–1-1→𝐴)) |
| 34 | 30, 33 | bitrd 279 |
. . . 4
⊢ (𝑦 = suc 𝑚 → ((𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴 ↔ (𝐺‘suc 𝑚):(𝐴 ↑m suc 𝑚)–1-1→𝐴)) |
| 35 | | 0ex 5277 |
. . . . . . . 8
⊢ ∅
∈ V |
| 36 | | fseqenlem.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| 37 | | f1osng 6859 |
. . . . . . . 8
⊢ ((∅
∈ V ∧ 𝐵 ∈
𝐴) → {〈∅,
𝐵〉}:{∅}–1-1-onto→{𝐵}) |
| 38 | 35, 36, 37 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → {〈∅, 𝐵〉}:{∅}–1-1-onto→{𝐵}) |
| 39 | | f1of1 6817 |
. . . . . . 7
⊢
({〈∅, 𝐵〉}:{∅}–1-1-onto→{𝐵} → {〈∅, 𝐵〉}:{∅}–1-1→{𝐵}) |
| 40 | 38, 39 | syl 17 |
. . . . . 6
⊢ (𝜑 → {〈∅, 𝐵〉}:{∅}–1-1→{𝐵}) |
| 41 | 36 | snssd 4785 |
. . . . . 6
⊢ (𝜑 → {𝐵} ⊆ 𝐴) |
| 42 | | f1ss 6779 |
. . . . . 6
⊢
(({〈∅, 𝐵〉}:{∅}–1-1→{𝐵} ∧ {𝐵} ⊆ 𝐴) → {〈∅, 𝐵〉}:{∅}–1-1→𝐴) |
| 43 | 40, 41, 42 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → {〈∅, 𝐵〉}:{∅}–1-1→𝐴) |
| 44 | | fseqenlem.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 45 | | map0e 8896 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m ∅) =
1o) |
| 46 | 44, 45 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ↑m ∅) =
1o) |
| 47 | | df1o2 8487 |
. . . . . . 7
⊢
1o = {∅} |
| 48 | 46, 47 | eqtrdi 2786 |
. . . . . 6
⊢ (𝜑 → (𝐴 ↑m ∅) =
{∅}) |
| 49 | | f1eq2 6770 |
. . . . . 6
⊢ ((𝐴 ↑m ∅) =
{∅} → ({〈∅, 𝐵〉}:(𝐴 ↑m ∅)–1-1→𝐴 ↔ {〈∅, 𝐵〉}:{∅}–1-1→𝐴)) |
| 50 | 48, 49 | syl 17 |
. . . . 5
⊢ (𝜑 → ({〈∅, 𝐵〉}:(𝐴 ↑m ∅)–1-1→𝐴 ↔ {〈∅, 𝐵〉}:{∅}–1-1→𝐴)) |
| 51 | 43, 50 | mpbird 257 |
. . . 4
⊢ (𝜑 → {〈∅, 𝐵〉}:(𝐴 ↑m ∅)–1-1→𝐴) |
| 52 | 11 | seqomsuc 8471 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ω → (𝐺‘suc 𝑚) = (𝑚(𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴 ↑m suc 𝑛) ↦ ((𝑓‘(𝑥 ↾ 𝑛))𝐹(𝑥‘𝑛))))(𝐺‘𝑚))) |
| 53 | 52 | ad2antrl 728 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) → (𝐺‘suc 𝑚) = (𝑚(𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴 ↑m suc 𝑛) ↦ ((𝑓‘(𝑥 ↾ 𝑛))𝐹(𝑥‘𝑛))))(𝐺‘𝑚))) |
| 54 | | vex 3463 |
. . . . . . . . . 10
⊢ 𝑚 ∈ V |
| 55 | | fvex 6889 |
. . . . . . . . . 10
⊢ (𝐺‘𝑚) ∈ V |
| 56 | | reseq1 5960 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → (𝑥 ↾ 𝑎) = (𝑧 ↾ 𝑎)) |
| 57 | 56 | fveq2d 6880 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (𝑏‘(𝑥 ↾ 𝑎)) = (𝑏‘(𝑧 ↾ 𝑎))) |
| 58 | | fveq1 6875 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (𝑥‘𝑎) = (𝑧‘𝑎)) |
| 59 | 57, 58 | oveq12d 7423 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → ((𝑏‘(𝑥 ↾ 𝑎))𝐹(𝑥‘𝑎)) = ((𝑏‘(𝑧 ↾ 𝑎))𝐹(𝑧‘𝑎))) |
| 60 | 59 | cbvmptv 5225 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝐴 ↑m suc 𝑎) ↦ ((𝑏‘(𝑥 ↾ 𝑎))𝐹(𝑥‘𝑎))) = (𝑧 ∈ (𝐴 ↑m suc 𝑎) ↦ ((𝑏‘(𝑧 ↾ 𝑎))𝐹(𝑧‘𝑎))) |
| 61 | | suceq 6419 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑚 → suc 𝑎 = suc 𝑚) |
| 62 | 61 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 = 𝑚 ∧ 𝑏 = (𝐺‘𝑚)) → suc 𝑎 = suc 𝑚) |
| 63 | 62 | oveq2d 7421 |
. . . . . . . . . . . . 13
⊢ ((𝑎 = 𝑚 ∧ 𝑏 = (𝐺‘𝑚)) → (𝐴 ↑m suc 𝑎) = (𝐴 ↑m suc 𝑚)) |
| 64 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 = 𝑚 ∧ 𝑏 = (𝐺‘𝑚)) → 𝑏 = (𝐺‘𝑚)) |
| 65 | | reseq2 5961 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑚 → (𝑧 ↾ 𝑎) = (𝑧 ↾ 𝑚)) |
| 66 | 65 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 = 𝑚 ∧ 𝑏 = (𝐺‘𝑚)) → (𝑧 ↾ 𝑎) = (𝑧 ↾ 𝑚)) |
| 67 | 64, 66 | fveq12d 6883 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 = 𝑚 ∧ 𝑏 = (𝐺‘𝑚)) → (𝑏‘(𝑧 ↾ 𝑎)) = ((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))) |
| 68 | | simpl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 = 𝑚 ∧ 𝑏 = (𝐺‘𝑚)) → 𝑎 = 𝑚) |
| 69 | 68 | fveq2d 6880 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 = 𝑚 ∧ 𝑏 = (𝐺‘𝑚)) → (𝑧‘𝑎) = (𝑧‘𝑚)) |
| 70 | 67, 69 | oveq12d 7423 |
. . . . . . . . . . . . 13
⊢ ((𝑎 = 𝑚 ∧ 𝑏 = (𝐺‘𝑚)) → ((𝑏‘(𝑧 ↾ 𝑎))𝐹(𝑧‘𝑎)) = (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚))) |
| 71 | 63, 70 | mpteq12dv 5207 |
. . . . . . . . . . . 12
⊢ ((𝑎 = 𝑚 ∧ 𝑏 = (𝐺‘𝑚)) → (𝑧 ∈ (𝐴 ↑m suc 𝑎) ↦ ((𝑏‘(𝑧 ↾ 𝑎))𝐹(𝑧‘𝑎))) = (𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)))) |
| 72 | 60, 71 | eqtrid 2782 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝑚 ∧ 𝑏 = (𝐺‘𝑚)) → (𝑥 ∈ (𝐴 ↑m suc 𝑎) ↦ ((𝑏‘(𝑥 ↾ 𝑎))𝐹(𝑥‘𝑎))) = (𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)))) |
| 73 | | nfcv 2898 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑎(𝑥 ∈ (𝐴 ↑m suc 𝑛) ↦ ((𝑓‘(𝑥 ↾ 𝑛))𝐹(𝑥‘𝑛))) |
| 74 | | nfcv 2898 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑏(𝑥 ∈ (𝐴 ↑m suc 𝑛) ↦ ((𝑓‘(𝑥 ↾ 𝑛))𝐹(𝑥‘𝑛))) |
| 75 | | nfcv 2898 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛(𝑥 ∈ (𝐴 ↑m suc 𝑎) ↦ ((𝑏‘(𝑥 ↾ 𝑎))𝐹(𝑥‘𝑎))) |
| 76 | | nfcv 2898 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑓(𝑥 ∈ (𝐴 ↑m suc 𝑎) ↦ ((𝑏‘(𝑥 ↾ 𝑎))𝐹(𝑥‘𝑎))) |
| 77 | | suceq 6419 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑎 → suc 𝑛 = suc 𝑎) |
| 78 | 77 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 = 𝑎 ∧ 𝑓 = 𝑏) → suc 𝑛 = suc 𝑎) |
| 79 | 78 | oveq2d 7421 |
. . . . . . . . . . . . 13
⊢ ((𝑛 = 𝑎 ∧ 𝑓 = 𝑏) → (𝐴 ↑m suc 𝑛) = (𝐴 ↑m suc 𝑎)) |
| 80 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 = 𝑎 ∧ 𝑓 = 𝑏) → 𝑓 = 𝑏) |
| 81 | | reseq2 5961 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑎 → (𝑥 ↾ 𝑛) = (𝑥 ↾ 𝑎)) |
| 82 | 81 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 = 𝑎 ∧ 𝑓 = 𝑏) → (𝑥 ↾ 𝑛) = (𝑥 ↾ 𝑎)) |
| 83 | 80, 82 | fveq12d 6883 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 = 𝑎 ∧ 𝑓 = 𝑏) → (𝑓‘(𝑥 ↾ 𝑛)) = (𝑏‘(𝑥 ↾ 𝑎))) |
| 84 | | simpl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 = 𝑎 ∧ 𝑓 = 𝑏) → 𝑛 = 𝑎) |
| 85 | 84 | fveq2d 6880 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 = 𝑎 ∧ 𝑓 = 𝑏) → (𝑥‘𝑛) = (𝑥‘𝑎)) |
| 86 | 83, 85 | oveq12d 7423 |
. . . . . . . . . . . . 13
⊢ ((𝑛 = 𝑎 ∧ 𝑓 = 𝑏) → ((𝑓‘(𝑥 ↾ 𝑛))𝐹(𝑥‘𝑛)) = ((𝑏‘(𝑥 ↾ 𝑎))𝐹(𝑥‘𝑎))) |
| 87 | 79, 86 | mpteq12dv 5207 |
. . . . . . . . . . . 12
⊢ ((𝑛 = 𝑎 ∧ 𝑓 = 𝑏) → (𝑥 ∈ (𝐴 ↑m suc 𝑛) ↦ ((𝑓‘(𝑥 ↾ 𝑛))𝐹(𝑥‘𝑛))) = (𝑥 ∈ (𝐴 ↑m suc 𝑎) ↦ ((𝑏‘(𝑥 ↾ 𝑎))𝐹(𝑥‘𝑎)))) |
| 88 | 73, 74, 75, 76, 87 | cbvmpo 7501 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴 ↑m suc 𝑛) ↦ ((𝑓‘(𝑥 ↾ 𝑛))𝐹(𝑥‘𝑛)))) = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑥 ∈ (𝐴 ↑m suc 𝑎) ↦ ((𝑏‘(𝑥 ↾ 𝑎))𝐹(𝑥‘𝑎)))) |
| 89 | | ovex 7438 |
. . . . . . . . . . . 12
⊢ (𝐴 ↑m suc 𝑚) ∈ V |
| 90 | 89 | mptex 7215 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚))) ∈ V |
| 91 | 72, 88, 90 | ovmpoa 7562 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ V ∧ (𝐺‘𝑚) ∈ V) → (𝑚(𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴 ↑m suc 𝑛) ↦ ((𝑓‘(𝑥 ↾ 𝑛))𝐹(𝑥‘𝑛))))(𝐺‘𝑚)) = (𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)))) |
| 92 | 54, 55, 91 | mp2an 692 |
. . . . . . . . 9
⊢ (𝑚(𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴 ↑m suc 𝑛) ↦ ((𝑓‘(𝑥 ↾ 𝑛))𝐹(𝑥‘𝑛))))(𝐺‘𝑚)) = (𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚))) |
| 93 | 53, 92 | eqtrdi 2786 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) → (𝐺‘suc 𝑚) = (𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)))) |
| 94 | | fseqenlem.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:(𝐴 × 𝐴)–1-1-onto→𝐴) |
| 95 | 94 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ 𝑧 ∈ (𝐴 ↑m suc 𝑚)) → 𝐹:(𝐴 × 𝐴)–1-1-onto→𝐴) |
| 96 | | f1of 6818 |
. . . . . . . . . 10
⊢ (𝐹:(𝐴 × 𝐴)–1-1-onto→𝐴 → 𝐹:(𝐴 × 𝐴)⟶𝐴) |
| 97 | 95, 96 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ 𝑧 ∈ (𝐴 ↑m suc 𝑚)) → 𝐹:(𝐴 × 𝐴)⟶𝐴) |
| 98 | | f1f 6774 |
. . . . . . . . . . . 12
⊢ ((𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴 → (𝐺‘𝑚):(𝐴 ↑m 𝑚)⟶𝐴) |
| 99 | 98 | ad2antll 729 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) → (𝐺‘𝑚):(𝐴 ↑m 𝑚)⟶𝐴) |
| 100 | 99 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ 𝑧 ∈ (𝐴 ↑m suc 𝑚)) → (𝐺‘𝑚):(𝐴 ↑m 𝑚)⟶𝐴) |
| 101 | | elmapi 8863 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝐴 ↑m suc 𝑚) → 𝑧:suc 𝑚⟶𝐴) |
| 102 | 101 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ 𝑧 ∈ (𝐴 ↑m suc 𝑚)) → 𝑧:suc 𝑚⟶𝐴) |
| 103 | | sssucid 6434 |
. . . . . . . . . . . 12
⊢ 𝑚 ⊆ suc 𝑚 |
| 104 | | fssres 6744 |
. . . . . . . . . . . 12
⊢ ((𝑧:suc 𝑚⟶𝐴 ∧ 𝑚 ⊆ suc 𝑚) → (𝑧 ↾ 𝑚):𝑚⟶𝐴) |
| 105 | 102, 103,
104 | sylancl 586 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ 𝑧 ∈ (𝐴 ↑m suc 𝑚)) → (𝑧 ↾ 𝑚):𝑚⟶𝐴) |
| 106 | 44 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ 𝑧 ∈ (𝐴 ↑m suc 𝑚)) → 𝐴 ∈ 𝑉) |
| 107 | | elmapg 8853 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑚 ∈ V) → ((𝑧 ↾ 𝑚) ∈ (𝐴 ↑m 𝑚) ↔ (𝑧 ↾ 𝑚):𝑚⟶𝐴)) |
| 108 | 106, 54, 107 | sylancl 586 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ 𝑧 ∈ (𝐴 ↑m suc 𝑚)) → ((𝑧 ↾ 𝑚) ∈ (𝐴 ↑m 𝑚) ↔ (𝑧 ↾ 𝑚):𝑚⟶𝐴)) |
| 109 | 105, 108 | mpbird 257 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ 𝑧 ∈ (𝐴 ↑m suc 𝑚)) → (𝑧 ↾ 𝑚) ∈ (𝐴 ↑m 𝑚)) |
| 110 | 100, 109 | ffvelcdmd 7075 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ 𝑧 ∈ (𝐴 ↑m suc 𝑚)) → ((𝐺‘𝑚)‘(𝑧 ↾ 𝑚)) ∈ 𝐴) |
| 111 | 54 | sucid 6436 |
. . . . . . . . . 10
⊢ 𝑚 ∈ suc 𝑚 |
| 112 | | ffvelcdm 7071 |
. . . . . . . . . 10
⊢ ((𝑧:suc 𝑚⟶𝐴 ∧ 𝑚 ∈ suc 𝑚) → (𝑧‘𝑚) ∈ 𝐴) |
| 113 | 102, 111,
112 | sylancl 586 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ 𝑧 ∈ (𝐴 ↑m suc 𝑚)) → (𝑧‘𝑚) ∈ 𝐴) |
| 114 | 97, 110, 113 | fovcdmd 7579 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ 𝑧 ∈ (𝐴 ↑m suc 𝑚)) → (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)) ∈ 𝐴) |
| 115 | 93, 114 | fmpt3d 7106 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) → (𝐺‘suc 𝑚):(𝐴 ↑m suc 𝑚)⟶𝐴) |
| 116 | | elmapi 8863 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ (𝐴 ↑m suc 𝑚) → 𝑎:suc 𝑚⟶𝐴) |
| 117 | 116 | ad2antrl 728 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → 𝑎:suc 𝑚⟶𝐴) |
| 118 | 117 | ffnd 6707 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → 𝑎 Fn suc 𝑚) |
| 119 | | elmapi 8863 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ (𝐴 ↑m suc 𝑚) → 𝑏:suc 𝑚⟶𝐴) |
| 120 | 119 | ad2antll 729 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → 𝑏:suc 𝑚⟶𝐴) |
| 121 | 120 | ffnd 6707 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → 𝑏 Fn suc 𝑚) |
| 122 | 103 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → 𝑚 ⊆ suc 𝑚) |
| 123 | | fvreseq 7030 |
. . . . . . . . . . . 12
⊢ (((𝑎 Fn suc 𝑚 ∧ 𝑏 Fn suc 𝑚) ∧ 𝑚 ⊆ suc 𝑚) → ((𝑎 ↾ 𝑚) = (𝑏 ↾ 𝑚) ↔ ∀𝑥 ∈ 𝑚 (𝑎‘𝑥) = (𝑏‘𝑥))) |
| 124 | 118, 121,
122, 123 | syl21anc 837 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝑎 ↾ 𝑚) = (𝑏 ↾ 𝑚) ↔ ∀𝑥 ∈ 𝑚 (𝑎‘𝑥) = (𝑏‘𝑥))) |
| 125 | | fveq2 6876 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑚 → (𝑎‘𝑥) = (𝑎‘𝑚)) |
| 126 | | fveq2 6876 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑚 → (𝑏‘𝑥) = (𝑏‘𝑚)) |
| 127 | 125, 126 | eqeq12d 2751 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑚 → ((𝑎‘𝑥) = (𝑏‘𝑥) ↔ (𝑎‘𝑚) = (𝑏‘𝑚))) |
| 128 | 54, 127 | ralsn 4657 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
{𝑚} (𝑎‘𝑥) = (𝑏‘𝑥) ↔ (𝑎‘𝑚) = (𝑏‘𝑚)) |
| 129 | 128 | bicomi 224 |
. . . . . . . . . . . 12
⊢ ((𝑎‘𝑚) = (𝑏‘𝑚) ↔ ∀𝑥 ∈ {𝑚} (𝑎‘𝑥) = (𝑏‘𝑥)) |
| 130 | 129 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝑎‘𝑚) = (𝑏‘𝑚) ↔ ∀𝑥 ∈ {𝑚} (𝑎‘𝑥) = (𝑏‘𝑥))) |
| 131 | 124, 130 | anbi12d 632 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (((𝑎 ↾ 𝑚) = (𝑏 ↾ 𝑚) ∧ (𝑎‘𝑚) = (𝑏‘𝑚)) ↔ (∀𝑥 ∈ 𝑚 (𝑎‘𝑥) = (𝑏‘𝑥) ∧ ∀𝑥 ∈ {𝑚} (𝑎‘𝑥) = (𝑏‘𝑥)))) |
| 132 | 93 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (𝐺‘suc 𝑚) = (𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)))) |
| 133 | 132 | fveq1d 6878 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝐺‘suc 𝑚)‘𝑎) = ((𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)))‘𝑎)) |
| 134 | | reseq1 5960 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑎 → (𝑧 ↾ 𝑚) = (𝑎 ↾ 𝑚)) |
| 135 | 134 | fveq2d 6880 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑎 → ((𝐺‘𝑚)‘(𝑧 ↾ 𝑚)) = ((𝐺‘𝑚)‘(𝑎 ↾ 𝑚))) |
| 136 | | fveq1 6875 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑎 → (𝑧‘𝑚) = (𝑎‘𝑚)) |
| 137 | 135, 136 | oveq12d 7423 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑎 → (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)) = (((𝐺‘𝑚)‘(𝑎 ↾ 𝑚))𝐹(𝑎‘𝑚))) |
| 138 | | eqid 2735 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚))) = (𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚))) |
| 139 | | ovex 7438 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺‘𝑚)‘(𝑎 ↾ 𝑚))𝐹(𝑎‘𝑚)) ∈ V |
| 140 | 137, 138,
139 | fvmpt 6986 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ (𝐴 ↑m suc 𝑚) → ((𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)))‘𝑎) = (((𝐺‘𝑚)‘(𝑎 ↾ 𝑚))𝐹(𝑎‘𝑚))) |
| 141 | 140 | ad2antrl 728 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)))‘𝑎) = (((𝐺‘𝑚)‘(𝑎 ↾ 𝑚))𝐹(𝑎‘𝑚))) |
| 142 | 133, 141 | eqtrd 2770 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝐺‘suc 𝑚)‘𝑎) = (((𝐺‘𝑚)‘(𝑎 ↾ 𝑚))𝐹(𝑎‘𝑚))) |
| 143 | | df-ov 7408 |
. . . . . . . . . . . . 13
⊢ (((𝐺‘𝑚)‘(𝑎 ↾ 𝑚))𝐹(𝑎‘𝑚)) = (𝐹‘〈((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)), (𝑎‘𝑚)〉) |
| 144 | 142, 143 | eqtrdi 2786 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝐺‘suc 𝑚)‘𝑎) = (𝐹‘〈((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)), (𝑎‘𝑚)〉)) |
| 145 | 132 | fveq1d 6878 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝐺‘suc 𝑚)‘𝑏) = ((𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)))‘𝑏)) |
| 146 | | reseq1 5960 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑏 → (𝑧 ↾ 𝑚) = (𝑏 ↾ 𝑚)) |
| 147 | 146 | fveq2d 6880 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑏 → ((𝐺‘𝑚)‘(𝑧 ↾ 𝑚)) = ((𝐺‘𝑚)‘(𝑏 ↾ 𝑚))) |
| 148 | | fveq1 6875 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑏 → (𝑧‘𝑚) = (𝑏‘𝑚)) |
| 149 | 147, 148 | oveq12d 7423 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑏 → (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)) = (((𝐺‘𝑚)‘(𝑏 ↾ 𝑚))𝐹(𝑏‘𝑚))) |
| 150 | | ovex 7438 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺‘𝑚)‘(𝑏 ↾ 𝑚))𝐹(𝑏‘𝑚)) ∈ V |
| 151 | 149, 138,
150 | fvmpt 6986 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ (𝐴 ↑m suc 𝑚) → ((𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)))‘𝑏) = (((𝐺‘𝑚)‘(𝑏 ↾ 𝑚))𝐹(𝑏‘𝑚))) |
| 152 | 151 | ad2antll 729 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝑧 ∈ (𝐴 ↑m suc 𝑚) ↦ (((𝐺‘𝑚)‘(𝑧 ↾ 𝑚))𝐹(𝑧‘𝑚)))‘𝑏) = (((𝐺‘𝑚)‘(𝑏 ↾ 𝑚))𝐹(𝑏‘𝑚))) |
| 153 | 145, 152 | eqtrd 2770 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝐺‘suc 𝑚)‘𝑏) = (((𝐺‘𝑚)‘(𝑏 ↾ 𝑚))𝐹(𝑏‘𝑚))) |
| 154 | | df-ov 7408 |
. . . . . . . . . . . . 13
⊢ (((𝐺‘𝑚)‘(𝑏 ↾ 𝑚))𝐹(𝑏‘𝑚)) = (𝐹‘〈((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)), (𝑏‘𝑚)〉) |
| 155 | 153, 154 | eqtrdi 2786 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝐺‘suc 𝑚)‘𝑏) = (𝐹‘〈((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)), (𝑏‘𝑚)〉)) |
| 156 | 144, 155 | eqeq12d 2751 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (((𝐺‘suc 𝑚)‘𝑎) = ((𝐺‘suc 𝑚)‘𝑏) ↔ (𝐹‘〈((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)), (𝑎‘𝑚)〉) = (𝐹‘〈((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)), (𝑏‘𝑚)〉))) |
| 157 | 94 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → 𝐹:(𝐴 × 𝐴)–1-1-onto→𝐴) |
| 158 | | f1of1 6817 |
. . . . . . . . . . . . . 14
⊢ (𝐹:(𝐴 × 𝐴)–1-1-onto→𝐴 → 𝐹:(𝐴 × 𝐴)–1-1→𝐴) |
| 159 | 157, 158 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → 𝐹:(𝐴 × 𝐴)–1-1→𝐴) |
| 160 | 99 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (𝐺‘𝑚):(𝐴 ↑m 𝑚)⟶𝐴) |
| 161 | | fssres 6744 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎:suc 𝑚⟶𝐴 ∧ 𝑚 ⊆ suc 𝑚) → (𝑎 ↾ 𝑚):𝑚⟶𝐴) |
| 162 | 117, 103,
161 | sylancl 586 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (𝑎 ↾ 𝑚):𝑚⟶𝐴) |
| 163 | 44 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → 𝐴 ∈ 𝑉) |
| 164 | | elmapg 8853 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑚 ∈ V) → ((𝑎 ↾ 𝑚) ∈ (𝐴 ↑m 𝑚) ↔ (𝑎 ↾ 𝑚):𝑚⟶𝐴)) |
| 165 | 163, 54, 164 | sylancl 586 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝑎 ↾ 𝑚) ∈ (𝐴 ↑m 𝑚) ↔ (𝑎 ↾ 𝑚):𝑚⟶𝐴)) |
| 166 | 162, 165 | mpbird 257 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (𝑎 ↾ 𝑚) ∈ (𝐴 ↑m 𝑚)) |
| 167 | 160, 166 | ffvelcdmd 7075 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)) ∈ 𝐴) |
| 168 | | ffvelcdm 7071 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎:suc 𝑚⟶𝐴 ∧ 𝑚 ∈ suc 𝑚) → (𝑎‘𝑚) ∈ 𝐴) |
| 169 | 117, 111,
168 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (𝑎‘𝑚) ∈ 𝐴) |
| 170 | 167, 169 | opelxpd 5693 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → 〈((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)), (𝑎‘𝑚)〉 ∈ (𝐴 × 𝐴)) |
| 171 | | fssres 6744 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑏:suc 𝑚⟶𝐴 ∧ 𝑚 ⊆ suc 𝑚) → (𝑏 ↾ 𝑚):𝑚⟶𝐴) |
| 172 | 120, 103,
171 | sylancl 586 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (𝑏 ↾ 𝑚):𝑚⟶𝐴) |
| 173 | | elmapg 8853 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑚 ∈ V) → ((𝑏 ↾ 𝑚) ∈ (𝐴 ↑m 𝑚) ↔ (𝑏 ↾ 𝑚):𝑚⟶𝐴)) |
| 174 | 163, 54, 173 | sylancl 586 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝑏 ↾ 𝑚) ∈ (𝐴 ↑m 𝑚) ↔ (𝑏 ↾ 𝑚):𝑚⟶𝐴)) |
| 175 | 172, 174 | mpbird 257 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (𝑏 ↾ 𝑚) ∈ (𝐴 ↑m 𝑚)) |
| 176 | 160, 175 | ffvelcdmd 7075 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)) ∈ 𝐴) |
| 177 | | ffvelcdm 7071 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏:suc 𝑚⟶𝐴 ∧ 𝑚 ∈ suc 𝑚) → (𝑏‘𝑚) ∈ 𝐴) |
| 178 | 120, 111,
177 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (𝑏‘𝑚) ∈ 𝐴) |
| 179 | 176, 178 | opelxpd 5693 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → 〈((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)), (𝑏‘𝑚)〉 ∈ (𝐴 × 𝐴)) |
| 180 | | f1fveq 7255 |
. . . . . . . . . . . . 13
⊢ ((𝐹:(𝐴 × 𝐴)–1-1→𝐴 ∧ (〈((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)), (𝑎‘𝑚)〉 ∈ (𝐴 × 𝐴) ∧ 〈((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)), (𝑏‘𝑚)〉 ∈ (𝐴 × 𝐴))) → ((𝐹‘〈((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)), (𝑎‘𝑚)〉) = (𝐹‘〈((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)), (𝑏‘𝑚)〉) ↔ 〈((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)), (𝑎‘𝑚)〉 = 〈((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)), (𝑏‘𝑚)〉)) |
| 181 | 159, 170,
179, 180 | syl12anc 836 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝐹‘〈((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)), (𝑎‘𝑚)〉) = (𝐹‘〈((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)), (𝑏‘𝑚)〉) ↔ 〈((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)), (𝑎‘𝑚)〉 = 〈((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)), (𝑏‘𝑚)〉)) |
| 182 | | fvex 6889 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)) ∈ V |
| 183 | | fvex 6889 |
. . . . . . . . . . . . 13
⊢ (𝑎‘𝑚) ∈ V |
| 184 | 182, 183 | opth 5451 |
. . . . . . . . . . . 12
⊢
(〈((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)), (𝑎‘𝑚)〉 = 〈((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)), (𝑏‘𝑚)〉 ↔ (((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)) = ((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)) ∧ (𝑎‘𝑚) = (𝑏‘𝑚))) |
| 185 | 181, 184 | bitrdi 287 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((𝐹‘〈((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)), (𝑎‘𝑚)〉) = (𝐹‘〈((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)), (𝑏‘𝑚)〉) ↔ (((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)) = ((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)) ∧ (𝑎‘𝑚) = (𝑏‘𝑚)))) |
| 186 | | simplrr 777 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴) |
| 187 | | f1fveq 7255 |
. . . . . . . . . . . . 13
⊢ (((𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴 ∧ ((𝑎 ↾ 𝑚) ∈ (𝐴 ↑m 𝑚) ∧ (𝑏 ↾ 𝑚) ∈ (𝐴 ↑m 𝑚))) → (((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)) = ((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)) ↔ (𝑎 ↾ 𝑚) = (𝑏 ↾ 𝑚))) |
| 188 | 186, 166,
175, 187 | syl12anc 836 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)) = ((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)) ↔ (𝑎 ↾ 𝑚) = (𝑏 ↾ 𝑚))) |
| 189 | 188 | anbi1d 631 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → ((((𝐺‘𝑚)‘(𝑎 ↾ 𝑚)) = ((𝐺‘𝑚)‘(𝑏 ↾ 𝑚)) ∧ (𝑎‘𝑚) = (𝑏‘𝑚)) ↔ ((𝑎 ↾ 𝑚) = (𝑏 ↾ 𝑚) ∧ (𝑎‘𝑚) = (𝑏‘𝑚)))) |
| 190 | 156, 185,
189 | 3bitrd 305 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (((𝐺‘suc 𝑚)‘𝑎) = ((𝐺‘suc 𝑚)‘𝑏) ↔ ((𝑎 ↾ 𝑚) = (𝑏 ↾ 𝑚) ∧ (𝑎‘𝑚) = (𝑏‘𝑚)))) |
| 191 | | eqfnfv 7021 |
. . . . . . . . . . . 12
⊢ ((𝑎 Fn suc 𝑚 ∧ 𝑏 Fn suc 𝑚) → (𝑎 = 𝑏 ↔ ∀𝑥 ∈ suc 𝑚(𝑎‘𝑥) = (𝑏‘𝑥))) |
| 192 | 118, 121,
191 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (𝑎 = 𝑏 ↔ ∀𝑥 ∈ suc 𝑚(𝑎‘𝑥) = (𝑏‘𝑥))) |
| 193 | | df-suc 6358 |
. . . . . . . . . . . . 13
⊢ suc 𝑚 = (𝑚 ∪ {𝑚}) |
| 194 | 193 | raleqi 3303 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
suc 𝑚(𝑎‘𝑥) = (𝑏‘𝑥) ↔ ∀𝑥 ∈ (𝑚 ∪ {𝑚})(𝑎‘𝑥) = (𝑏‘𝑥)) |
| 195 | | ralunb 4172 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
(𝑚 ∪ {𝑚})(𝑎‘𝑥) = (𝑏‘𝑥) ↔ (∀𝑥 ∈ 𝑚 (𝑎‘𝑥) = (𝑏‘𝑥) ∧ ∀𝑥 ∈ {𝑚} (𝑎‘𝑥) = (𝑏‘𝑥))) |
| 196 | 194, 195 | bitri 275 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
suc 𝑚(𝑎‘𝑥) = (𝑏‘𝑥) ↔ (∀𝑥 ∈ 𝑚 (𝑎‘𝑥) = (𝑏‘𝑥) ∧ ∀𝑥 ∈ {𝑚} (𝑎‘𝑥) = (𝑏‘𝑥))) |
| 197 | 192, 196 | bitrdi 287 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (𝑎 = 𝑏 ↔ (∀𝑥 ∈ 𝑚 (𝑎‘𝑥) = (𝑏‘𝑥) ∧ ∀𝑥 ∈ {𝑚} (𝑎‘𝑥) = (𝑏‘𝑥)))) |
| 198 | 131, 190,
197 | 3bitr4d 311 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (((𝐺‘suc 𝑚)‘𝑎) = ((𝐺‘suc 𝑚)‘𝑏) ↔ 𝑎 = 𝑏)) |
| 199 | 198 | biimpd 229 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) ∧ (𝑎 ∈ (𝐴 ↑m suc 𝑚) ∧ 𝑏 ∈ (𝐴 ↑m suc 𝑚))) → (((𝐺‘suc 𝑚)‘𝑎) = ((𝐺‘suc 𝑚)‘𝑏) → 𝑎 = 𝑏)) |
| 200 | 199 | ralrimivva 3187 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) → ∀𝑎 ∈ (𝐴 ↑m suc 𝑚)∀𝑏 ∈ (𝐴 ↑m suc 𝑚)(((𝐺‘suc 𝑚)‘𝑎) = ((𝐺‘suc 𝑚)‘𝑏) → 𝑎 = 𝑏)) |
| 201 | | dff13 7247 |
. . . . . . 7
⊢ ((𝐺‘suc 𝑚):(𝐴 ↑m suc 𝑚)–1-1→𝐴 ↔ ((𝐺‘suc 𝑚):(𝐴 ↑m suc 𝑚)⟶𝐴 ∧ ∀𝑎 ∈ (𝐴 ↑m suc 𝑚)∀𝑏 ∈ (𝐴 ↑m suc 𝑚)(((𝐺‘suc 𝑚)‘𝑎) = ((𝐺‘suc 𝑚)‘𝑏) → 𝑎 = 𝑏))) |
| 202 | 115, 200,
201 | sylanbrc 583 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴)) → (𝐺‘suc 𝑚):(𝐴 ↑m suc 𝑚)–1-1→𝐴) |
| 203 | 202 | expr 456 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ω) → ((𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴 → (𝐺‘suc 𝑚):(𝐴 ↑m suc 𝑚)–1-1→𝐴)) |
| 204 | 203 | expcom 413 |
. . . 4
⊢ (𝑚 ∈ ω → (𝜑 → ((𝐺‘𝑚):(𝐴 ↑m 𝑚)–1-1→𝐴 → (𝐺‘suc 𝑚):(𝐴 ↑m suc 𝑚)–1-1→𝐴))) |
| 205 | 20, 27, 34, 51, 204 | finds2 7894 |
. . 3
⊢ (𝑦 ∈ ω → (𝜑 → (𝐺‘𝑦):(𝐴 ↑m 𝑦)–1-1→𝐴)) |
| 206 | 8, 205 | vtoclga 3556 |
. 2
⊢ (𝐶 ∈ ω → (𝜑 → (𝐺‘𝐶):(𝐴 ↑m 𝐶)–1-1→𝐴)) |
| 207 | 206 | impcom 407 |
1
⊢ ((𝜑 ∧ 𝐶 ∈ ω) → (𝐺‘𝐶):(𝐴 ↑m 𝐶)–1-1→𝐴) |