MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseqenlem1 Structured version   Visualization version   GIF version

Theorem fseqenlem1 10030
Description: Lemma for fseqen 10033. (Contributed by Mario Carneiro, 17-May-2015.)
Hypotheses
Ref Expression
fseqenlem.a (𝜑𝐴𝑉)
fseqenlem.b (𝜑𝐵𝐴)
fseqenlem.f (𝜑𝐹:(𝐴 × 𝐴)–1-1-onto𝐴)
fseqenlem.g 𝐺 = seqω((𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴m suc 𝑛) ↦ ((𝑓‘(𝑥𝑛))𝐹(𝑥𝑛)))), {⟨∅, 𝐵⟩})
Assertion
Ref Expression
fseqenlem1 ((𝜑𝐶 ∈ ω) → (𝐺𝐶):(𝐴m 𝐶)–1-1𝐴)
Distinct variable groups:   𝑓,𝑛,𝑥,𝐹   𝐴,𝑓,𝑛,𝑥   𝜑,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑥,𝑓,𝑛)   𝐶(𝑥,𝑓,𝑛)   𝐺(𝑥,𝑓,𝑛)   𝑉(𝑥,𝑓,𝑛)

Proof of Theorem fseqenlem1
Dummy variables 𝑦 𝑎 𝑏 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6872 . . . . . 6 (𝑦 = 𝐶 → (𝐺𝑦) = (𝐺𝐶))
2 f1eq1 6765 . . . . . 6 ((𝐺𝑦) = (𝐺𝐶) → ((𝐺𝑦):(𝐴m 𝑦)–1-1𝐴 ↔ (𝐺𝐶):(𝐴m 𝑦)–1-1𝐴))
31, 2syl 17 . . . . 5 (𝑦 = 𝐶 → ((𝐺𝑦):(𝐴m 𝑦)–1-1𝐴 ↔ (𝐺𝐶):(𝐴m 𝑦)–1-1𝐴))
4 oveq2 7407 . . . . . 6 (𝑦 = 𝐶 → (𝐴m 𝑦) = (𝐴m 𝐶))
5 f1eq2 6766 . . . . . 6 ((𝐴m 𝑦) = (𝐴m 𝐶) → ((𝐺𝐶):(𝐴m 𝑦)–1-1𝐴 ↔ (𝐺𝐶):(𝐴m 𝐶)–1-1𝐴))
64, 5syl 17 . . . . 5 (𝑦 = 𝐶 → ((𝐺𝐶):(𝐴m 𝑦)–1-1𝐴 ↔ (𝐺𝐶):(𝐴m 𝐶)–1-1𝐴))
73, 6bitrd 279 . . . 4 (𝑦 = 𝐶 → ((𝐺𝑦):(𝐴m 𝑦)–1-1𝐴 ↔ (𝐺𝐶):(𝐴m 𝐶)–1-1𝐴))
87imbi2d 340 . . 3 (𝑦 = 𝐶 → ((𝜑 → (𝐺𝑦):(𝐴m 𝑦)–1-1𝐴) ↔ (𝜑 → (𝐺𝐶):(𝐴m 𝐶)–1-1𝐴)))
9 fveq2 6872 . . . . . . 7 (𝑦 = ∅ → (𝐺𝑦) = (𝐺‘∅))
10 snex 5403 . . . . . . . 8 {⟨∅, 𝐵⟩} ∈ V
11 fseqenlem.g . . . . . . . . 9 𝐺 = seqω((𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴m suc 𝑛) ↦ ((𝑓‘(𝑥𝑛))𝐹(𝑥𝑛)))), {⟨∅, 𝐵⟩})
1211seqom0g 8464 . . . . . . . 8 ({⟨∅, 𝐵⟩} ∈ V → (𝐺‘∅) = {⟨∅, 𝐵⟩})
1310, 12ax-mp 5 . . . . . . 7 (𝐺‘∅) = {⟨∅, 𝐵⟩}
149, 13eqtrdi 2785 . . . . . 6 (𝑦 = ∅ → (𝐺𝑦) = {⟨∅, 𝐵⟩})
15 f1eq1 6765 . . . . . 6 ((𝐺𝑦) = {⟨∅, 𝐵⟩} → ((𝐺𝑦):(𝐴m 𝑦)–1-1𝐴 ↔ {⟨∅, 𝐵⟩}:(𝐴m 𝑦)–1-1𝐴))
1614, 15syl 17 . . . . 5 (𝑦 = ∅ → ((𝐺𝑦):(𝐴m 𝑦)–1-1𝐴 ↔ {⟨∅, 𝐵⟩}:(𝐴m 𝑦)–1-1𝐴))
17 oveq2 7407 . . . . . 6 (𝑦 = ∅ → (𝐴m 𝑦) = (𝐴m ∅))
18 f1eq2 6766 . . . . . 6 ((𝐴m 𝑦) = (𝐴m ∅) → ({⟨∅, 𝐵⟩}:(𝐴m 𝑦)–1-1𝐴 ↔ {⟨∅, 𝐵⟩}:(𝐴m ∅)–1-1𝐴))
1917, 18syl 17 . . . . 5 (𝑦 = ∅ → ({⟨∅, 𝐵⟩}:(𝐴m 𝑦)–1-1𝐴 ↔ {⟨∅, 𝐵⟩}:(𝐴m ∅)–1-1𝐴))
2016, 19bitrd 279 . . . 4 (𝑦 = ∅ → ((𝐺𝑦):(𝐴m 𝑦)–1-1𝐴 ↔ {⟨∅, 𝐵⟩}:(𝐴m ∅)–1-1𝐴))
21 fveq2 6872 . . . . . 6 (𝑦 = 𝑚 → (𝐺𝑦) = (𝐺𝑚))
22 f1eq1 6765 . . . . . 6 ((𝐺𝑦) = (𝐺𝑚) → ((𝐺𝑦):(𝐴m 𝑦)–1-1𝐴 ↔ (𝐺𝑚):(𝐴m 𝑦)–1-1𝐴))
2321, 22syl 17 . . . . 5 (𝑦 = 𝑚 → ((𝐺𝑦):(𝐴m 𝑦)–1-1𝐴 ↔ (𝐺𝑚):(𝐴m 𝑦)–1-1𝐴))
24 oveq2 7407 . . . . . 6 (𝑦 = 𝑚 → (𝐴m 𝑦) = (𝐴m 𝑚))
25 f1eq2 6766 . . . . . 6 ((𝐴m 𝑦) = (𝐴m 𝑚) → ((𝐺𝑚):(𝐴m 𝑦)–1-1𝐴 ↔ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴))
2624, 25syl 17 . . . . 5 (𝑦 = 𝑚 → ((𝐺𝑚):(𝐴m 𝑦)–1-1𝐴 ↔ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴))
2723, 26bitrd 279 . . . 4 (𝑦 = 𝑚 → ((𝐺𝑦):(𝐴m 𝑦)–1-1𝐴 ↔ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴))
28 fveq2 6872 . . . . . 6 (𝑦 = suc 𝑚 → (𝐺𝑦) = (𝐺‘suc 𝑚))
29 f1eq1 6765 . . . . . 6 ((𝐺𝑦) = (𝐺‘suc 𝑚) → ((𝐺𝑦):(𝐴m 𝑦)–1-1𝐴 ↔ (𝐺‘suc 𝑚):(𝐴m 𝑦)–1-1𝐴))
3028, 29syl 17 . . . . 5 (𝑦 = suc 𝑚 → ((𝐺𝑦):(𝐴m 𝑦)–1-1𝐴 ↔ (𝐺‘suc 𝑚):(𝐴m 𝑦)–1-1𝐴))
31 oveq2 7407 . . . . . 6 (𝑦 = suc 𝑚 → (𝐴m 𝑦) = (𝐴m suc 𝑚))
32 f1eq2 6766 . . . . . 6 ((𝐴m 𝑦) = (𝐴m suc 𝑚) → ((𝐺‘suc 𝑚):(𝐴m 𝑦)–1-1𝐴 ↔ (𝐺‘suc 𝑚):(𝐴m suc 𝑚)–1-1𝐴))
3331, 32syl 17 . . . . 5 (𝑦 = suc 𝑚 → ((𝐺‘suc 𝑚):(𝐴m 𝑦)–1-1𝐴 ↔ (𝐺‘suc 𝑚):(𝐴m suc 𝑚)–1-1𝐴))
3430, 33bitrd 279 . . . 4 (𝑦 = suc 𝑚 → ((𝐺𝑦):(𝐴m 𝑦)–1-1𝐴 ↔ (𝐺‘suc 𝑚):(𝐴m suc 𝑚)–1-1𝐴))
35 0ex 5274 . . . . . . . 8 ∅ ∈ V
36 fseqenlem.b . . . . . . . 8 (𝜑𝐵𝐴)
37 f1osng 6855 . . . . . . . 8 ((∅ ∈ V ∧ 𝐵𝐴) → {⟨∅, 𝐵⟩}:{∅}–1-1-onto→{𝐵})
3835, 36, 37sylancr 587 . . . . . . 7 (𝜑 → {⟨∅, 𝐵⟩}:{∅}–1-1-onto→{𝐵})
39 f1of1 6813 . . . . . . 7 ({⟨∅, 𝐵⟩}:{∅}–1-1-onto→{𝐵} → {⟨∅, 𝐵⟩}:{∅}–1-1→{𝐵})
4038, 39syl 17 . . . . . 6 (𝜑 → {⟨∅, 𝐵⟩}:{∅}–1-1→{𝐵})
4136snssd 4782 . . . . . 6 (𝜑 → {𝐵} ⊆ 𝐴)
42 f1ss 6775 . . . . . 6 (({⟨∅, 𝐵⟩}:{∅}–1-1→{𝐵} ∧ {𝐵} ⊆ 𝐴) → {⟨∅, 𝐵⟩}:{∅}–1-1𝐴)
4340, 41, 42syl2anc 584 . . . . 5 (𝜑 → {⟨∅, 𝐵⟩}:{∅}–1-1𝐴)
44 fseqenlem.a . . . . . . . 8 (𝜑𝐴𝑉)
45 map0e 8890 . . . . . . . 8 (𝐴𝑉 → (𝐴m ∅) = 1o)
4644, 45syl 17 . . . . . . 7 (𝜑 → (𝐴m ∅) = 1o)
47 df1o2 8481 . . . . . . 7 1o = {∅}
4846, 47eqtrdi 2785 . . . . . 6 (𝜑 → (𝐴m ∅) = {∅})
49 f1eq2 6766 . . . . . 6 ((𝐴m ∅) = {∅} → ({⟨∅, 𝐵⟩}:(𝐴m ∅)–1-1𝐴 ↔ {⟨∅, 𝐵⟩}:{∅}–1-1𝐴))
5048, 49syl 17 . . . . 5 (𝜑 → ({⟨∅, 𝐵⟩}:(𝐴m ∅)–1-1𝐴 ↔ {⟨∅, 𝐵⟩}:{∅}–1-1𝐴))
5143, 50mpbird 257 . . . 4 (𝜑 → {⟨∅, 𝐵⟩}:(𝐴m ∅)–1-1𝐴)
5211seqomsuc 8465 . . . . . . . . . 10 (𝑚 ∈ ω → (𝐺‘suc 𝑚) = (𝑚(𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴m suc 𝑛) ↦ ((𝑓‘(𝑥𝑛))𝐹(𝑥𝑛))))(𝐺𝑚)))
5352ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) → (𝐺‘suc 𝑚) = (𝑚(𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴m suc 𝑛) ↦ ((𝑓‘(𝑥𝑛))𝐹(𝑥𝑛))))(𝐺𝑚)))
54 vex 3461 . . . . . . . . . 10 𝑚 ∈ V
55 fvex 6885 . . . . . . . . . 10 (𝐺𝑚) ∈ V
56 reseq1 5957 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝑥𝑎) = (𝑧𝑎))
5756fveq2d 6876 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑏‘(𝑥𝑎)) = (𝑏‘(𝑧𝑎)))
58 fveq1 6871 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑥𝑎) = (𝑧𝑎))
5957, 58oveq12d 7417 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝑏‘(𝑥𝑎))𝐹(𝑥𝑎)) = ((𝑏‘(𝑧𝑎))𝐹(𝑧𝑎)))
6059cbvmptv 5222 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴m suc 𝑎) ↦ ((𝑏‘(𝑥𝑎))𝐹(𝑥𝑎))) = (𝑧 ∈ (𝐴m suc 𝑎) ↦ ((𝑏‘(𝑧𝑎))𝐹(𝑧𝑎)))
61 suceq 6416 . . . . . . . . . . . . . . 15 (𝑎 = 𝑚 → suc 𝑎 = suc 𝑚)
6261adantr 480 . . . . . . . . . . . . . 14 ((𝑎 = 𝑚𝑏 = (𝐺𝑚)) → suc 𝑎 = suc 𝑚)
6362oveq2d 7415 . . . . . . . . . . . . 13 ((𝑎 = 𝑚𝑏 = (𝐺𝑚)) → (𝐴m suc 𝑎) = (𝐴m suc 𝑚))
64 simpr 484 . . . . . . . . . . . . . . 15 ((𝑎 = 𝑚𝑏 = (𝐺𝑚)) → 𝑏 = (𝐺𝑚))
65 reseq2 5958 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑚 → (𝑧𝑎) = (𝑧𝑚))
6665adantr 480 . . . . . . . . . . . . . . 15 ((𝑎 = 𝑚𝑏 = (𝐺𝑚)) → (𝑧𝑎) = (𝑧𝑚))
6764, 66fveq12d 6879 . . . . . . . . . . . . . 14 ((𝑎 = 𝑚𝑏 = (𝐺𝑚)) → (𝑏‘(𝑧𝑎)) = ((𝐺𝑚)‘(𝑧𝑚)))
68 simpl 482 . . . . . . . . . . . . . . 15 ((𝑎 = 𝑚𝑏 = (𝐺𝑚)) → 𝑎 = 𝑚)
6968fveq2d 6876 . . . . . . . . . . . . . 14 ((𝑎 = 𝑚𝑏 = (𝐺𝑚)) → (𝑧𝑎) = (𝑧𝑚))
7067, 69oveq12d 7417 . . . . . . . . . . . . 13 ((𝑎 = 𝑚𝑏 = (𝐺𝑚)) → ((𝑏‘(𝑧𝑎))𝐹(𝑧𝑎)) = (((𝐺𝑚)‘(𝑧𝑚))𝐹(𝑧𝑚)))
7163, 70mpteq12dv 5204 . . . . . . . . . . . 12 ((𝑎 = 𝑚𝑏 = (𝐺𝑚)) → (𝑧 ∈ (𝐴m suc 𝑎) ↦ ((𝑏‘(𝑧𝑎))𝐹(𝑧𝑎))) = (𝑧 ∈ (𝐴m suc 𝑚) ↦ (((𝐺𝑚)‘(𝑧𝑚))𝐹(𝑧𝑚))))
7260, 71eqtrid 2781 . . . . . . . . . . 11 ((𝑎 = 𝑚𝑏 = (𝐺𝑚)) → (𝑥 ∈ (𝐴m suc 𝑎) ↦ ((𝑏‘(𝑥𝑎))𝐹(𝑥𝑎))) = (𝑧 ∈ (𝐴m suc 𝑚) ↦ (((𝐺𝑚)‘(𝑧𝑚))𝐹(𝑧𝑚))))
73 nfcv 2897 . . . . . . . . . . . 12 𝑎(𝑥 ∈ (𝐴m suc 𝑛) ↦ ((𝑓‘(𝑥𝑛))𝐹(𝑥𝑛)))
74 nfcv 2897 . . . . . . . . . . . 12 𝑏(𝑥 ∈ (𝐴m suc 𝑛) ↦ ((𝑓‘(𝑥𝑛))𝐹(𝑥𝑛)))
75 nfcv 2897 . . . . . . . . . . . 12 𝑛(𝑥 ∈ (𝐴m suc 𝑎) ↦ ((𝑏‘(𝑥𝑎))𝐹(𝑥𝑎)))
76 nfcv 2897 . . . . . . . . . . . 12 𝑓(𝑥 ∈ (𝐴m suc 𝑎) ↦ ((𝑏‘(𝑥𝑎))𝐹(𝑥𝑎)))
77 suceq 6416 . . . . . . . . . . . . . . 15 (𝑛 = 𝑎 → suc 𝑛 = suc 𝑎)
7877adantr 480 . . . . . . . . . . . . . 14 ((𝑛 = 𝑎𝑓 = 𝑏) → suc 𝑛 = suc 𝑎)
7978oveq2d 7415 . . . . . . . . . . . . 13 ((𝑛 = 𝑎𝑓 = 𝑏) → (𝐴m suc 𝑛) = (𝐴m suc 𝑎))
80 simpr 484 . . . . . . . . . . . . . . 15 ((𝑛 = 𝑎𝑓 = 𝑏) → 𝑓 = 𝑏)
81 reseq2 5958 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑎 → (𝑥𝑛) = (𝑥𝑎))
8281adantr 480 . . . . . . . . . . . . . . 15 ((𝑛 = 𝑎𝑓 = 𝑏) → (𝑥𝑛) = (𝑥𝑎))
8380, 82fveq12d 6879 . . . . . . . . . . . . . 14 ((𝑛 = 𝑎𝑓 = 𝑏) → (𝑓‘(𝑥𝑛)) = (𝑏‘(𝑥𝑎)))
84 simpl 482 . . . . . . . . . . . . . . 15 ((𝑛 = 𝑎𝑓 = 𝑏) → 𝑛 = 𝑎)
8584fveq2d 6876 . . . . . . . . . . . . . 14 ((𝑛 = 𝑎𝑓 = 𝑏) → (𝑥𝑛) = (𝑥𝑎))
8683, 85oveq12d 7417 . . . . . . . . . . . . 13 ((𝑛 = 𝑎𝑓 = 𝑏) → ((𝑓‘(𝑥𝑛))𝐹(𝑥𝑛)) = ((𝑏‘(𝑥𝑎))𝐹(𝑥𝑎)))
8779, 86mpteq12dv 5204 . . . . . . . . . . . 12 ((𝑛 = 𝑎𝑓 = 𝑏) → (𝑥 ∈ (𝐴m suc 𝑛) ↦ ((𝑓‘(𝑥𝑛))𝐹(𝑥𝑛))) = (𝑥 ∈ (𝐴m suc 𝑎) ↦ ((𝑏‘(𝑥𝑎))𝐹(𝑥𝑎))))
8873, 74, 75, 76, 87cbvmpo 7495 . . . . . . . . . . 11 (𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴m suc 𝑛) ↦ ((𝑓‘(𝑥𝑛))𝐹(𝑥𝑛)))) = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑥 ∈ (𝐴m suc 𝑎) ↦ ((𝑏‘(𝑥𝑎))𝐹(𝑥𝑎))))
89 ovex 7432 . . . . . . . . . . . 12 (𝐴m suc 𝑚) ∈ V
9089mptex 7211 . . . . . . . . . . 11 (𝑧 ∈ (𝐴m suc 𝑚) ↦ (((𝐺𝑚)‘(𝑧𝑚))𝐹(𝑧𝑚))) ∈ V
9172, 88, 90ovmpoa 7556 . . . . . . . . . 10 ((𝑚 ∈ V ∧ (𝐺𝑚) ∈ V) → (𝑚(𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴m suc 𝑛) ↦ ((𝑓‘(𝑥𝑛))𝐹(𝑥𝑛))))(𝐺𝑚)) = (𝑧 ∈ (𝐴m suc 𝑚) ↦ (((𝐺𝑚)‘(𝑧𝑚))𝐹(𝑧𝑚))))
9254, 55, 91mp2an 692 . . . . . . . . 9 (𝑚(𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴m suc 𝑛) ↦ ((𝑓‘(𝑥𝑛))𝐹(𝑥𝑛))))(𝐺𝑚)) = (𝑧 ∈ (𝐴m suc 𝑚) ↦ (((𝐺𝑚)‘(𝑧𝑚))𝐹(𝑧𝑚)))
9353, 92eqtrdi 2785 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) → (𝐺‘suc 𝑚) = (𝑧 ∈ (𝐴m suc 𝑚) ↦ (((𝐺𝑚)‘(𝑧𝑚))𝐹(𝑧𝑚))))
94 fseqenlem.f . . . . . . . . . . 11 (𝜑𝐹:(𝐴 × 𝐴)–1-1-onto𝐴)
9594ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ 𝑧 ∈ (𝐴m suc 𝑚)) → 𝐹:(𝐴 × 𝐴)–1-1-onto𝐴)
96 f1of 6814 . . . . . . . . . 10 (𝐹:(𝐴 × 𝐴)–1-1-onto𝐴𝐹:(𝐴 × 𝐴)⟶𝐴)
9795, 96syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ 𝑧 ∈ (𝐴m suc 𝑚)) → 𝐹:(𝐴 × 𝐴)⟶𝐴)
98 f1f 6770 . . . . . . . . . . . 12 ((𝐺𝑚):(𝐴m 𝑚)–1-1𝐴 → (𝐺𝑚):(𝐴m 𝑚)⟶𝐴)
9998ad2antll 729 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) → (𝐺𝑚):(𝐴m 𝑚)⟶𝐴)
10099adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ 𝑧 ∈ (𝐴m suc 𝑚)) → (𝐺𝑚):(𝐴m 𝑚)⟶𝐴)
101 elmapi 8857 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐴m suc 𝑚) → 𝑧:suc 𝑚𝐴)
102101adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ 𝑧 ∈ (𝐴m suc 𝑚)) → 𝑧:suc 𝑚𝐴)
103 sssucid 6430 . . . . . . . . . . . 12 𝑚 ⊆ suc 𝑚
104 fssres 6740 . . . . . . . . . . . 12 ((𝑧:suc 𝑚𝐴𝑚 ⊆ suc 𝑚) → (𝑧𝑚):𝑚𝐴)
105102, 103, 104sylancl 586 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ 𝑧 ∈ (𝐴m suc 𝑚)) → (𝑧𝑚):𝑚𝐴)
10644ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ 𝑧 ∈ (𝐴m suc 𝑚)) → 𝐴𝑉)
107 elmapg 8847 . . . . . . . . . . . 12 ((𝐴𝑉𝑚 ∈ V) → ((𝑧𝑚) ∈ (𝐴m 𝑚) ↔ (𝑧𝑚):𝑚𝐴))
108106, 54, 107sylancl 586 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ 𝑧 ∈ (𝐴m suc 𝑚)) → ((𝑧𝑚) ∈ (𝐴m 𝑚) ↔ (𝑧𝑚):𝑚𝐴))
109105, 108mpbird 257 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ 𝑧 ∈ (𝐴m suc 𝑚)) → (𝑧𝑚) ∈ (𝐴m 𝑚))
110100, 109ffvelcdmd 7071 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ 𝑧 ∈ (𝐴m suc 𝑚)) → ((𝐺𝑚)‘(𝑧𝑚)) ∈ 𝐴)
11154sucid 6432 . . . . . . . . . 10 𝑚 ∈ suc 𝑚
112 ffvelcdm 7067 . . . . . . . . . 10 ((𝑧:suc 𝑚𝐴𝑚 ∈ suc 𝑚) → (𝑧𝑚) ∈ 𝐴)
113102, 111, 112sylancl 586 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ 𝑧 ∈ (𝐴m suc 𝑚)) → (𝑧𝑚) ∈ 𝐴)
11497, 110, 113fovcdmd 7573 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ 𝑧 ∈ (𝐴m suc 𝑚)) → (((𝐺𝑚)‘(𝑧𝑚))𝐹(𝑧𝑚)) ∈ 𝐴)
11593, 114fmpt3d 7102 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) → (𝐺‘suc 𝑚):(𝐴m suc 𝑚)⟶𝐴)
116 elmapi 8857 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝐴m suc 𝑚) → 𝑎:suc 𝑚𝐴)
117116ad2antrl 728 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → 𝑎:suc 𝑚𝐴)
118117ffnd 6703 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → 𝑎 Fn suc 𝑚)
119 elmapi 8857 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝐴m suc 𝑚) → 𝑏:suc 𝑚𝐴)
120119ad2antll 729 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → 𝑏:suc 𝑚𝐴)
121120ffnd 6703 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → 𝑏 Fn suc 𝑚)
122103a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → 𝑚 ⊆ suc 𝑚)
123 fvreseq 7026 . . . . . . . . . . . 12 (((𝑎 Fn suc 𝑚𝑏 Fn suc 𝑚) ∧ 𝑚 ⊆ suc 𝑚) → ((𝑎𝑚) = (𝑏𝑚) ↔ ∀𝑥𝑚 (𝑎𝑥) = (𝑏𝑥)))
124118, 121, 122, 123syl21anc 837 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → ((𝑎𝑚) = (𝑏𝑚) ↔ ∀𝑥𝑚 (𝑎𝑥) = (𝑏𝑥)))
125 fveq2 6872 . . . . . . . . . . . . . . 15 (𝑥 = 𝑚 → (𝑎𝑥) = (𝑎𝑚))
126 fveq2 6872 . . . . . . . . . . . . . . 15 (𝑥 = 𝑚 → (𝑏𝑥) = (𝑏𝑚))
127125, 126eqeq12d 2750 . . . . . . . . . . . . . 14 (𝑥 = 𝑚 → ((𝑎𝑥) = (𝑏𝑥) ↔ (𝑎𝑚) = (𝑏𝑚)))
12854, 127ralsn 4654 . . . . . . . . . . . . 13 (∀𝑥 ∈ {𝑚} (𝑎𝑥) = (𝑏𝑥) ↔ (𝑎𝑚) = (𝑏𝑚))
129128bicomi 224 . . . . . . . . . . . 12 ((𝑎𝑚) = (𝑏𝑚) ↔ ∀𝑥 ∈ {𝑚} (𝑎𝑥) = (𝑏𝑥))
130129a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → ((𝑎𝑚) = (𝑏𝑚) ↔ ∀𝑥 ∈ {𝑚} (𝑎𝑥) = (𝑏𝑥)))
131124, 130anbi12d 632 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → (((𝑎𝑚) = (𝑏𝑚) ∧ (𝑎𝑚) = (𝑏𝑚)) ↔ (∀𝑥𝑚 (𝑎𝑥) = (𝑏𝑥) ∧ ∀𝑥 ∈ {𝑚} (𝑎𝑥) = (𝑏𝑥))))
13293adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → (𝐺‘suc 𝑚) = (𝑧 ∈ (𝐴m suc 𝑚) ↦ (((𝐺𝑚)‘(𝑧𝑚))𝐹(𝑧𝑚))))
133132fveq1d 6874 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → ((𝐺‘suc 𝑚)‘𝑎) = ((𝑧 ∈ (𝐴m suc 𝑚) ↦ (((𝐺𝑚)‘(𝑧𝑚))𝐹(𝑧𝑚)))‘𝑎))
134 reseq1 5957 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑎 → (𝑧𝑚) = (𝑎𝑚))
135134fveq2d 6876 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑎 → ((𝐺𝑚)‘(𝑧𝑚)) = ((𝐺𝑚)‘(𝑎𝑚)))
136 fveq1 6871 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑎 → (𝑧𝑚) = (𝑎𝑚))
137135, 136oveq12d 7417 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑎 → (((𝐺𝑚)‘(𝑧𝑚))𝐹(𝑧𝑚)) = (((𝐺𝑚)‘(𝑎𝑚))𝐹(𝑎𝑚)))
138 eqid 2734 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝐴m suc 𝑚) ↦ (((𝐺𝑚)‘(𝑧𝑚))𝐹(𝑧𝑚))) = (𝑧 ∈ (𝐴m suc 𝑚) ↦ (((𝐺𝑚)‘(𝑧𝑚))𝐹(𝑧𝑚)))
139 ovex 7432 . . . . . . . . . . . . . . . 16 (((𝐺𝑚)‘(𝑎𝑚))𝐹(𝑎𝑚)) ∈ V
140137, 138, 139fvmpt 6982 . . . . . . . . . . . . . . 15 (𝑎 ∈ (𝐴m suc 𝑚) → ((𝑧 ∈ (𝐴m suc 𝑚) ↦ (((𝐺𝑚)‘(𝑧𝑚))𝐹(𝑧𝑚)))‘𝑎) = (((𝐺𝑚)‘(𝑎𝑚))𝐹(𝑎𝑚)))
141140ad2antrl 728 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → ((𝑧 ∈ (𝐴m suc 𝑚) ↦ (((𝐺𝑚)‘(𝑧𝑚))𝐹(𝑧𝑚)))‘𝑎) = (((𝐺𝑚)‘(𝑎𝑚))𝐹(𝑎𝑚)))
142133, 141eqtrd 2769 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → ((𝐺‘suc 𝑚)‘𝑎) = (((𝐺𝑚)‘(𝑎𝑚))𝐹(𝑎𝑚)))
143 df-ov 7402 . . . . . . . . . . . . 13 (((𝐺𝑚)‘(𝑎𝑚))𝐹(𝑎𝑚)) = (𝐹‘⟨((𝐺𝑚)‘(𝑎𝑚)), (𝑎𝑚)⟩)
144142, 143eqtrdi 2785 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → ((𝐺‘suc 𝑚)‘𝑎) = (𝐹‘⟨((𝐺𝑚)‘(𝑎𝑚)), (𝑎𝑚)⟩))
145132fveq1d 6874 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → ((𝐺‘suc 𝑚)‘𝑏) = ((𝑧 ∈ (𝐴m suc 𝑚) ↦ (((𝐺𝑚)‘(𝑧𝑚))𝐹(𝑧𝑚)))‘𝑏))
146 reseq1 5957 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑏 → (𝑧𝑚) = (𝑏𝑚))
147146fveq2d 6876 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑏 → ((𝐺𝑚)‘(𝑧𝑚)) = ((𝐺𝑚)‘(𝑏𝑚)))
148 fveq1 6871 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑏 → (𝑧𝑚) = (𝑏𝑚))
149147, 148oveq12d 7417 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑏 → (((𝐺𝑚)‘(𝑧𝑚))𝐹(𝑧𝑚)) = (((𝐺𝑚)‘(𝑏𝑚))𝐹(𝑏𝑚)))
150 ovex 7432 . . . . . . . . . . . . . . . 16 (((𝐺𝑚)‘(𝑏𝑚))𝐹(𝑏𝑚)) ∈ V
151149, 138, 150fvmpt 6982 . . . . . . . . . . . . . . 15 (𝑏 ∈ (𝐴m suc 𝑚) → ((𝑧 ∈ (𝐴m suc 𝑚) ↦ (((𝐺𝑚)‘(𝑧𝑚))𝐹(𝑧𝑚)))‘𝑏) = (((𝐺𝑚)‘(𝑏𝑚))𝐹(𝑏𝑚)))
152151ad2antll 729 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → ((𝑧 ∈ (𝐴m suc 𝑚) ↦ (((𝐺𝑚)‘(𝑧𝑚))𝐹(𝑧𝑚)))‘𝑏) = (((𝐺𝑚)‘(𝑏𝑚))𝐹(𝑏𝑚)))
153145, 152eqtrd 2769 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → ((𝐺‘suc 𝑚)‘𝑏) = (((𝐺𝑚)‘(𝑏𝑚))𝐹(𝑏𝑚)))
154 df-ov 7402 . . . . . . . . . . . . 13 (((𝐺𝑚)‘(𝑏𝑚))𝐹(𝑏𝑚)) = (𝐹‘⟨((𝐺𝑚)‘(𝑏𝑚)), (𝑏𝑚)⟩)
155153, 154eqtrdi 2785 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → ((𝐺‘suc 𝑚)‘𝑏) = (𝐹‘⟨((𝐺𝑚)‘(𝑏𝑚)), (𝑏𝑚)⟩))
156144, 155eqeq12d 2750 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → (((𝐺‘suc 𝑚)‘𝑎) = ((𝐺‘suc 𝑚)‘𝑏) ↔ (𝐹‘⟨((𝐺𝑚)‘(𝑎𝑚)), (𝑎𝑚)⟩) = (𝐹‘⟨((𝐺𝑚)‘(𝑏𝑚)), (𝑏𝑚)⟩)))
15794ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → 𝐹:(𝐴 × 𝐴)–1-1-onto𝐴)
158 f1of1 6813 . . . . . . . . . . . . . 14 (𝐹:(𝐴 × 𝐴)–1-1-onto𝐴𝐹:(𝐴 × 𝐴)–1-1𝐴)
159157, 158syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → 𝐹:(𝐴 × 𝐴)–1-1𝐴)
16099adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → (𝐺𝑚):(𝐴m 𝑚)⟶𝐴)
161 fssres 6740 . . . . . . . . . . . . . . . . 17 ((𝑎:suc 𝑚𝐴𝑚 ⊆ suc 𝑚) → (𝑎𝑚):𝑚𝐴)
162117, 103, 161sylancl 586 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → (𝑎𝑚):𝑚𝐴)
16344ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → 𝐴𝑉)
164 elmapg 8847 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝑚 ∈ V) → ((𝑎𝑚) ∈ (𝐴m 𝑚) ↔ (𝑎𝑚):𝑚𝐴))
165163, 54, 164sylancl 586 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → ((𝑎𝑚) ∈ (𝐴m 𝑚) ↔ (𝑎𝑚):𝑚𝐴))
166162, 165mpbird 257 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → (𝑎𝑚) ∈ (𝐴m 𝑚))
167160, 166ffvelcdmd 7071 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → ((𝐺𝑚)‘(𝑎𝑚)) ∈ 𝐴)
168 ffvelcdm 7067 . . . . . . . . . . . . . . 15 ((𝑎:suc 𝑚𝐴𝑚 ∈ suc 𝑚) → (𝑎𝑚) ∈ 𝐴)
169117, 111, 168sylancl 586 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → (𝑎𝑚) ∈ 𝐴)
170167, 169opelxpd 5690 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → ⟨((𝐺𝑚)‘(𝑎𝑚)), (𝑎𝑚)⟩ ∈ (𝐴 × 𝐴))
171 fssres 6740 . . . . . . . . . . . . . . . . 17 ((𝑏:suc 𝑚𝐴𝑚 ⊆ suc 𝑚) → (𝑏𝑚):𝑚𝐴)
172120, 103, 171sylancl 586 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → (𝑏𝑚):𝑚𝐴)
173 elmapg 8847 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝑚 ∈ V) → ((𝑏𝑚) ∈ (𝐴m 𝑚) ↔ (𝑏𝑚):𝑚𝐴))
174163, 54, 173sylancl 586 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → ((𝑏𝑚) ∈ (𝐴m 𝑚) ↔ (𝑏𝑚):𝑚𝐴))
175172, 174mpbird 257 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → (𝑏𝑚) ∈ (𝐴m 𝑚))
176160, 175ffvelcdmd 7071 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → ((𝐺𝑚)‘(𝑏𝑚)) ∈ 𝐴)
177 ffvelcdm 7067 . . . . . . . . . . . . . . 15 ((𝑏:suc 𝑚𝐴𝑚 ∈ suc 𝑚) → (𝑏𝑚) ∈ 𝐴)
178120, 111, 177sylancl 586 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → (𝑏𝑚) ∈ 𝐴)
179176, 178opelxpd 5690 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → ⟨((𝐺𝑚)‘(𝑏𝑚)), (𝑏𝑚)⟩ ∈ (𝐴 × 𝐴))
180 f1fveq 7250 . . . . . . . . . . . . 13 ((𝐹:(𝐴 × 𝐴)–1-1𝐴 ∧ (⟨((𝐺𝑚)‘(𝑎𝑚)), (𝑎𝑚)⟩ ∈ (𝐴 × 𝐴) ∧ ⟨((𝐺𝑚)‘(𝑏𝑚)), (𝑏𝑚)⟩ ∈ (𝐴 × 𝐴))) → ((𝐹‘⟨((𝐺𝑚)‘(𝑎𝑚)), (𝑎𝑚)⟩) = (𝐹‘⟨((𝐺𝑚)‘(𝑏𝑚)), (𝑏𝑚)⟩) ↔ ⟨((𝐺𝑚)‘(𝑎𝑚)), (𝑎𝑚)⟩ = ⟨((𝐺𝑚)‘(𝑏𝑚)), (𝑏𝑚)⟩))
181159, 170, 179, 180syl12anc 836 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → ((𝐹‘⟨((𝐺𝑚)‘(𝑎𝑚)), (𝑎𝑚)⟩) = (𝐹‘⟨((𝐺𝑚)‘(𝑏𝑚)), (𝑏𝑚)⟩) ↔ ⟨((𝐺𝑚)‘(𝑎𝑚)), (𝑎𝑚)⟩ = ⟨((𝐺𝑚)‘(𝑏𝑚)), (𝑏𝑚)⟩))
182 fvex 6885 . . . . . . . . . . . . 13 ((𝐺𝑚)‘(𝑎𝑚)) ∈ V
183 fvex 6885 . . . . . . . . . . . . 13 (𝑎𝑚) ∈ V
184182, 183opth 5448 . . . . . . . . . . . 12 (⟨((𝐺𝑚)‘(𝑎𝑚)), (𝑎𝑚)⟩ = ⟨((𝐺𝑚)‘(𝑏𝑚)), (𝑏𝑚)⟩ ↔ (((𝐺𝑚)‘(𝑎𝑚)) = ((𝐺𝑚)‘(𝑏𝑚)) ∧ (𝑎𝑚) = (𝑏𝑚)))
185181, 184bitrdi 287 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → ((𝐹‘⟨((𝐺𝑚)‘(𝑎𝑚)), (𝑎𝑚)⟩) = (𝐹‘⟨((𝐺𝑚)‘(𝑏𝑚)), (𝑏𝑚)⟩) ↔ (((𝐺𝑚)‘(𝑎𝑚)) = ((𝐺𝑚)‘(𝑏𝑚)) ∧ (𝑎𝑚) = (𝑏𝑚))))
186 simplrr 777 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)
187 f1fveq 7250 . . . . . . . . . . . . 13 (((𝐺𝑚):(𝐴m 𝑚)–1-1𝐴 ∧ ((𝑎𝑚) ∈ (𝐴m 𝑚) ∧ (𝑏𝑚) ∈ (𝐴m 𝑚))) → (((𝐺𝑚)‘(𝑎𝑚)) = ((𝐺𝑚)‘(𝑏𝑚)) ↔ (𝑎𝑚) = (𝑏𝑚)))
188186, 166, 175, 187syl12anc 836 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → (((𝐺𝑚)‘(𝑎𝑚)) = ((𝐺𝑚)‘(𝑏𝑚)) ↔ (𝑎𝑚) = (𝑏𝑚)))
189188anbi1d 631 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → ((((𝐺𝑚)‘(𝑎𝑚)) = ((𝐺𝑚)‘(𝑏𝑚)) ∧ (𝑎𝑚) = (𝑏𝑚)) ↔ ((𝑎𝑚) = (𝑏𝑚) ∧ (𝑎𝑚) = (𝑏𝑚))))
190156, 185, 1893bitrd 305 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → (((𝐺‘suc 𝑚)‘𝑎) = ((𝐺‘suc 𝑚)‘𝑏) ↔ ((𝑎𝑚) = (𝑏𝑚) ∧ (𝑎𝑚) = (𝑏𝑚))))
191 eqfnfv 7017 . . . . . . . . . . . 12 ((𝑎 Fn suc 𝑚𝑏 Fn suc 𝑚) → (𝑎 = 𝑏 ↔ ∀𝑥 ∈ suc 𝑚(𝑎𝑥) = (𝑏𝑥)))
192118, 121, 191syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → (𝑎 = 𝑏 ↔ ∀𝑥 ∈ suc 𝑚(𝑎𝑥) = (𝑏𝑥)))
193 df-suc 6355 . . . . . . . . . . . . 13 suc 𝑚 = (𝑚 ∪ {𝑚})
194193raleqi 3301 . . . . . . . . . . . 12 (∀𝑥 ∈ suc 𝑚(𝑎𝑥) = (𝑏𝑥) ↔ ∀𝑥 ∈ (𝑚 ∪ {𝑚})(𝑎𝑥) = (𝑏𝑥))
195 ralunb 4170 . . . . . . . . . . . 12 (∀𝑥 ∈ (𝑚 ∪ {𝑚})(𝑎𝑥) = (𝑏𝑥) ↔ (∀𝑥𝑚 (𝑎𝑥) = (𝑏𝑥) ∧ ∀𝑥 ∈ {𝑚} (𝑎𝑥) = (𝑏𝑥)))
196194, 195bitri 275 . . . . . . . . . . 11 (∀𝑥 ∈ suc 𝑚(𝑎𝑥) = (𝑏𝑥) ↔ (∀𝑥𝑚 (𝑎𝑥) = (𝑏𝑥) ∧ ∀𝑥 ∈ {𝑚} (𝑎𝑥) = (𝑏𝑥)))
197192, 196bitrdi 287 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → (𝑎 = 𝑏 ↔ (∀𝑥𝑚 (𝑎𝑥) = (𝑏𝑥) ∧ ∀𝑥 ∈ {𝑚} (𝑎𝑥) = (𝑏𝑥))))
198131, 190, 1973bitr4d 311 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → (((𝐺‘suc 𝑚)‘𝑎) = ((𝐺‘suc 𝑚)‘𝑏) ↔ 𝑎 = 𝑏))
199198biimpd 229 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) ∧ (𝑎 ∈ (𝐴m suc 𝑚) ∧ 𝑏 ∈ (𝐴m suc 𝑚))) → (((𝐺‘suc 𝑚)‘𝑎) = ((𝐺‘suc 𝑚)‘𝑏) → 𝑎 = 𝑏))
200199ralrimivva 3185 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) → ∀𝑎 ∈ (𝐴m suc 𝑚)∀𝑏 ∈ (𝐴m suc 𝑚)(((𝐺‘suc 𝑚)‘𝑎) = ((𝐺‘suc 𝑚)‘𝑏) → 𝑎 = 𝑏))
201 dff13 7243 . . . . . . 7 ((𝐺‘suc 𝑚):(𝐴m suc 𝑚)–1-1𝐴 ↔ ((𝐺‘suc 𝑚):(𝐴m suc 𝑚)⟶𝐴 ∧ ∀𝑎 ∈ (𝐴m suc 𝑚)∀𝑏 ∈ (𝐴m suc 𝑚)(((𝐺‘suc 𝑚)‘𝑎) = ((𝐺‘suc 𝑚)‘𝑏) → 𝑎 = 𝑏)))
202115, 200, 201sylanbrc 583 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ω ∧ (𝐺𝑚):(𝐴m 𝑚)–1-1𝐴)) → (𝐺‘suc 𝑚):(𝐴m suc 𝑚)–1-1𝐴)
203202expr 456 . . . . 5 ((𝜑𝑚 ∈ ω) → ((𝐺𝑚):(𝐴m 𝑚)–1-1𝐴 → (𝐺‘suc 𝑚):(𝐴m suc 𝑚)–1-1𝐴))
204203expcom 413 . . . 4 (𝑚 ∈ ω → (𝜑 → ((𝐺𝑚):(𝐴m 𝑚)–1-1𝐴 → (𝐺‘suc 𝑚):(𝐴m suc 𝑚)–1-1𝐴)))
20520, 27, 34, 51, 204finds2 7888 . . 3 (𝑦 ∈ ω → (𝜑 → (𝐺𝑦):(𝐴m 𝑦)–1-1𝐴))
2068, 205vtoclga 3554 . 2 (𝐶 ∈ ω → (𝜑 → (𝐺𝐶):(𝐴m 𝐶)–1-1𝐴))
207206impcom 407 1 ((𝜑𝐶 ∈ ω) → (𝐺𝐶):(𝐴m 𝐶)–1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  Vcvv 3457  cun 3922  wss 3924  c0 4306  {csn 4599  cop 4605  cmpt 5198   × cxp 5649  cres 5653  suc csuc 6351   Fn wfn 6522  wf 6523  1-1wf1 6524  1-1-ontowf1o 6526  cfv 6527  (class class class)co 7399  cmpo 7401  ωcom 7855  seqωcseqom 8455  1oc1o 8467  m cmap 8834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-seqom 8456  df-1o 8474  df-map 8836
This theorem is referenced by:  fseqenlem2  10031
  Copyright terms: Public domain W3C validator