MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpopr2d Structured version   Visualization version   GIF version

Theorem fvmpopr2d 7503
Description: Value of an operation given by maps-to notation. (Contributed by Rohan Ridenour, 14-May-2024.)
Hypotheses
Ref Expression
fvmpopr2d.1 (𝜑𝐹 = (𝑎𝐴, 𝑏𝐵𝐶))
fvmpopr2d.2 (𝜑𝑃 = ⟨𝑎, 𝑏⟩)
fvmpopr2d.3 ((𝜑𝑎𝐴𝑏𝐵) → 𝐶𝑉)
Assertion
Ref Expression
fvmpopr2d ((𝜑𝑎𝐴𝑏𝐵) → (𝐹𝑃) = 𝐶)
Distinct variable groups:   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝑃(𝑎,𝑏)   𝐹(𝑎,𝑏)   𝑉(𝑎,𝑏)

Proof of Theorem fvmpopr2d
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7344 . . 3 (𝑎(𝑎𝐴, 𝑏𝐵𝐶)𝑏) = ((𝑎𝐴, 𝑏𝐵𝐶)‘⟨𝑎, 𝑏⟩)
2 fvmpopr2d.1 . . . . 5 (𝜑𝐹 = (𝑎𝐴, 𝑏𝐵𝐶))
323ad2ant1 1133 . . . 4 ((𝜑𝑎𝐴𝑏𝐵) → 𝐹 = (𝑎𝐴, 𝑏𝐵𝐶))
4 fvmpopr2d.2 . . . . 5 (𝜑𝑃 = ⟨𝑎, 𝑏⟩)
543ad2ant1 1133 . . . 4 ((𝜑𝑎𝐴𝑏𝐵) → 𝑃 = ⟨𝑎, 𝑏⟩)
63, 5fveq12d 6824 . . 3 ((𝜑𝑎𝐴𝑏𝐵) → (𝐹𝑃) = ((𝑎𝐴, 𝑏𝐵𝐶)‘⟨𝑎, 𝑏⟩))
71, 6eqtr4id 2785 . 2 ((𝜑𝑎𝐴𝑏𝐵) → (𝑎(𝑎𝐴, 𝑏𝐵𝐶)𝑏) = (𝐹𝑃))
8 nfcv 2894 . . . . 5 𝑐𝐶
9 nfcv 2894 . . . . 5 𝑑𝐶
10 nfcv 2894 . . . . . 6 𝑎𝑑
11 nfcsb1v 3869 . . . . . 6 𝑎𝑐 / 𝑎𝐶
1210, 11nfcsbw 3871 . . . . 5 𝑎𝑑 / 𝑏𝑐 / 𝑎𝐶
13 nfcsb1v 3869 . . . . 5 𝑏𝑑 / 𝑏𝑐 / 𝑎𝐶
14 csbeq1a 3859 . . . . . 6 (𝑎 = 𝑐𝐶 = 𝑐 / 𝑎𝐶)
15 csbeq1a 3859 . . . . . 6 (𝑏 = 𝑑𝑐 / 𝑎𝐶 = 𝑑 / 𝑏𝑐 / 𝑎𝐶)
1614, 15sylan9eq 2786 . . . . 5 ((𝑎 = 𝑐𝑏 = 𝑑) → 𝐶 = 𝑑 / 𝑏𝑐 / 𝑎𝐶)
178, 9, 12, 13, 16cbvmpo 7435 . . . 4 (𝑎𝐴, 𝑏𝐵𝐶) = (𝑐𝐴, 𝑑𝐵𝑑 / 𝑏𝑐 / 𝑎𝐶)
1817oveqi 7354 . . 3 (𝑎(𝑎𝐴, 𝑏𝐵𝐶)𝑏) = (𝑎(𝑐𝐴, 𝑑𝐵𝑑 / 𝑏𝑐 / 𝑎𝐶)𝑏)
19 eqidd 2732 . . . 4 ((𝜑𝑎𝐴𝑏𝐵) → (𝑐𝐴, 𝑑𝐵𝑑 / 𝑏𝑐 / 𝑎𝐶) = (𝑐𝐴, 𝑑𝐵𝑑 / 𝑏𝑐 / 𝑎𝐶))
20 equcom 2019 . . . . . . . 8 (𝑎 = 𝑐𝑐 = 𝑎)
21 equcom 2019 . . . . . . . 8 (𝑏 = 𝑑𝑑 = 𝑏)
2220, 21anbi12i 628 . . . . . . 7 ((𝑎 = 𝑐𝑏 = 𝑑) ↔ (𝑐 = 𝑎𝑑 = 𝑏))
2322, 16sylbir 235 . . . . . 6 ((𝑐 = 𝑎𝑑 = 𝑏) → 𝐶 = 𝑑 / 𝑏𝑐 / 𝑎𝐶)
2423eqcomd 2737 . . . . 5 ((𝑐 = 𝑎𝑑 = 𝑏) → 𝑑 / 𝑏𝑐 / 𝑎𝐶 = 𝐶)
2524adantl 481 . . . 4 (((𝜑𝑎𝐴𝑏𝐵) ∧ (𝑐 = 𝑎𝑑 = 𝑏)) → 𝑑 / 𝑏𝑐 / 𝑎𝐶 = 𝐶)
26 simp2 1137 . . . 4 ((𝜑𝑎𝐴𝑏𝐵) → 𝑎𝐴)
27 simp3 1138 . . . 4 ((𝜑𝑎𝐴𝑏𝐵) → 𝑏𝐵)
28 fvmpopr2d.3 . . . 4 ((𝜑𝑎𝐴𝑏𝐵) → 𝐶𝑉)
2919, 25, 26, 27, 28ovmpod 7493 . . 3 ((𝜑𝑎𝐴𝑏𝐵) → (𝑎(𝑐𝐴, 𝑑𝐵𝑑 / 𝑏𝑐 / 𝑎𝐶)𝑏) = 𝐶)
3018, 29eqtrid 2778 . 2 ((𝜑𝑎𝐴𝑏𝐵) → (𝑎(𝑎𝐴, 𝑏𝐵𝐶)𝑏) = 𝐶)
317, 30eqtr3d 2768 1 ((𝜑𝑎𝐴𝑏𝐵) → (𝐹𝑃) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  csb 3845  cop 4577  cfv 6476  (class class class)co 7341  cmpo 7343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346
This theorem is referenced by:  mpomulcn  24780  mnringmulrcld  44261
  Copyright terms: Public domain W3C validator