| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsum2cn | Structured version Visualization version GIF version | ||
| Description: Version of fsumcn 24761 for two-argument mappings. (Contributed by Mario Carneiro, 6-May-2014.) |
| Ref | Expression |
|---|---|
| fsumcn.3 | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| fsumcn.4 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| fsumcn.5 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fsum2cn.7 | ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) |
| fsum2cn.8 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) |
| Ref | Expression |
|---|---|
| fsum2cn | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑢Σ𝑘 ∈ 𝐴 𝐵 | |
| 2 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑣Σ𝑘 ∈ 𝐴 𝐵 | |
| 3 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑥𝑣 | |
| 5 | nfcsb1v 3886 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑢 / 𝑥⦌𝐵 | |
| 6 | 4, 5 | nfcsbw 3888 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵 |
| 7 | 3, 6 | nfsum 15657 | . . . 4 ⊢ Ⅎ𝑥Σ𝑘 ∈ 𝐴 ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵 |
| 8 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 9 | nfcsb1v 3886 | . . . . 5 ⊢ Ⅎ𝑦⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵 | |
| 10 | 8, 9 | nfsum 15657 | . . . 4 ⊢ Ⅎ𝑦Σ𝑘 ∈ 𝐴 ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵 |
| 11 | csbeq1a 3876 | . . . . . 6 ⊢ (𝑥 = 𝑢 → 𝐵 = ⦋𝑢 / 𝑥⦌𝐵) | |
| 12 | csbeq1a 3876 | . . . . . 6 ⊢ (𝑦 = 𝑣 → ⦋𝑢 / 𝑥⦌𝐵 = ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) | |
| 13 | 11, 12 | sylan9eq 2784 | . . . . 5 ⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝐵 = ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
| 14 | 13 | sumeq2sdv 15669 | . . . 4 ⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
| 15 | 1, 2, 7, 10, 14 | cbvmpo 7483 | . . 3 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 𝐵) = (𝑢 ∈ 𝑋, 𝑣 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
| 16 | vex 3451 | . . . . . . . 8 ⊢ 𝑢 ∈ V | |
| 17 | vex 3451 | . . . . . . . 8 ⊢ 𝑣 ∈ V | |
| 18 | 16, 17 | op2ndd 7979 | . . . . . . 7 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → (2nd ‘𝑧) = 𝑣) |
| 19 | 18 | csbeq1d 3866 | . . . . . 6 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵 = ⦋𝑣 / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) |
| 20 | 16, 17 | op1std 7978 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → (1st ‘𝑧) = 𝑢) |
| 21 | 20 | csbeq1d 3866 | . . . . . . 7 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → ⦋(1st ‘𝑧) / 𝑥⦌𝐵 = ⦋𝑢 / 𝑥⦌𝐵) |
| 22 | 21 | csbeq2dv 3869 | . . . . . 6 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → ⦋𝑣 / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵 = ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
| 23 | 19, 22 | eqtrd 2764 | . . . . 5 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵 = ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
| 24 | 23 | sumeq2sdv 15669 | . . . 4 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → Σ𝑘 ∈ 𝐴 ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵 = Σ𝑘 ∈ 𝐴 ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
| 25 | 24 | mpompt 7503 | . . 3 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ Σ𝑘 ∈ 𝐴 ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) = (𝑢 ∈ 𝑋, 𝑣 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
| 26 | 15, 25 | eqtr4i 2755 | . 2 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 𝐵) = (𝑧 ∈ (𝑋 × 𝑌) ↦ Σ𝑘 ∈ 𝐴 ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) |
| 27 | fsumcn.3 | . . 3 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 28 | fsumcn.4 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 29 | fsum2cn.7 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) | |
| 30 | txtopon 23478 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌))) | |
| 31 | 28, 29, 30 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐽 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 32 | fsumcn.5 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 33 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑢𝐵 | |
| 34 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑣𝐵 | |
| 35 | 33, 34, 6, 9, 13 | cbvmpo 7483 | . . . . 5 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) = (𝑢 ∈ 𝑋, 𝑣 ∈ 𝑌 ↦ ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
| 36 | 23 | mpompt 7503 | . . . . 5 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) = (𝑢 ∈ 𝑋, 𝑣 ∈ 𝑌 ↦ ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
| 37 | 35, 36 | eqtr4i 2755 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) |
| 38 | fsum2cn.8 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) | |
| 39 | 37, 38 | eqeltrrid 2833 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑧 ∈ (𝑋 × 𝑌) ↦ ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) |
| 40 | 27, 31, 32, 39 | fsumcn 24761 | . 2 ⊢ (𝜑 → (𝑧 ∈ (𝑋 × 𝑌) ↦ Σ𝑘 ∈ 𝐴 ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) |
| 41 | 26, 40 | eqeltrid 2832 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⦋csb 3862 〈cop 4595 ↦ cmpt 5188 × cxp 5636 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 1st c1st 7966 2nd c2nd 7967 Fincfn 8918 Σcsu 15652 TopOpenctopn 17384 ℂfldccnfld 21264 TopOnctopon 22797 Cn ccn 23111 ×t ctx 23447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-icc 13313 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cn 23114 df-cnp 23115 df-tx 23449 df-hmeo 23642 df-xms 24208 df-ms 24209 df-tms 24210 |
| This theorem is referenced by: dipcn 30649 |
| Copyright terms: Public domain | W3C validator |