Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsum2cn | Structured version Visualization version GIF version |
Description: Version of fsumcn 23571 for two-argument mappings. (Contributed by Mario Carneiro, 6-May-2014.) |
Ref | Expression |
---|---|
fsumcn.3 | ⊢ 𝐾 = (TopOpen‘ℂfld) |
fsumcn.4 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
fsumcn.5 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsum2cn.7 | ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) |
fsum2cn.8 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) |
Ref | Expression |
---|---|
fsum2cn | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2919 | . . . 4 ⊢ Ⅎ𝑢Σ𝑘 ∈ 𝐴 𝐵 | |
2 | nfcv 2919 | . . . 4 ⊢ Ⅎ𝑣Σ𝑘 ∈ 𝐴 𝐵 | |
3 | nfcv 2919 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
4 | nfcv 2919 | . . . . . 6 ⊢ Ⅎ𝑥𝑣 | |
5 | nfcsb1v 3829 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑢 / 𝑥⦌𝐵 | |
6 | 4, 5 | nfcsbw 3831 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵 |
7 | 3, 6 | nfsum 15095 | . . . 4 ⊢ Ⅎ𝑥Σ𝑘 ∈ 𝐴 ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵 |
8 | nfcv 2919 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
9 | nfcsb1v 3829 | . . . . 5 ⊢ Ⅎ𝑦⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵 | |
10 | 8, 9 | nfsum 15095 | . . . 4 ⊢ Ⅎ𝑦Σ𝑘 ∈ 𝐴 ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵 |
11 | csbeq1a 3819 | . . . . . 6 ⊢ (𝑥 = 𝑢 → 𝐵 = ⦋𝑢 / 𝑥⦌𝐵) | |
12 | csbeq1a 3819 | . . . . . 6 ⊢ (𝑦 = 𝑣 → ⦋𝑢 / 𝑥⦌𝐵 = ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) | |
13 | 11, 12 | sylan9eq 2813 | . . . . 5 ⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝐵 = ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
14 | 13 | sumeq2sdv 15109 | . . . 4 ⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
15 | 1, 2, 7, 10, 14 | cbvmpo 7242 | . . 3 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 𝐵) = (𝑢 ∈ 𝑋, 𝑣 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
16 | vex 3413 | . . . . . . . 8 ⊢ 𝑢 ∈ V | |
17 | vex 3413 | . . . . . . . 8 ⊢ 𝑣 ∈ V | |
18 | 16, 17 | op2ndd 7704 | . . . . . . 7 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → (2nd ‘𝑧) = 𝑣) |
19 | 18 | csbeq1d 3809 | . . . . . 6 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵 = ⦋𝑣 / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) |
20 | 16, 17 | op1std 7703 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → (1st ‘𝑧) = 𝑢) |
21 | 20 | csbeq1d 3809 | . . . . . . 7 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → ⦋(1st ‘𝑧) / 𝑥⦌𝐵 = ⦋𝑢 / 𝑥⦌𝐵) |
22 | 21 | csbeq2dv 3812 | . . . . . 6 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → ⦋𝑣 / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵 = ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
23 | 19, 22 | eqtrd 2793 | . . . . 5 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵 = ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
24 | 23 | sumeq2sdv 15109 | . . . 4 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → Σ𝑘 ∈ 𝐴 ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵 = Σ𝑘 ∈ 𝐴 ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
25 | 24 | mpompt 7260 | . . 3 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ Σ𝑘 ∈ 𝐴 ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) = (𝑢 ∈ 𝑋, 𝑣 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
26 | 15, 25 | eqtr4i 2784 | . 2 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 𝐵) = (𝑧 ∈ (𝑋 × 𝑌) ↦ Σ𝑘 ∈ 𝐴 ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) |
27 | fsumcn.3 | . . 3 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
28 | fsumcn.4 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
29 | fsum2cn.7 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) | |
30 | txtopon 22291 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌))) | |
31 | 28, 29, 30 | syl2anc 587 | . . 3 ⊢ (𝜑 → (𝐽 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌))) |
32 | fsumcn.5 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
33 | nfcv 2919 | . . . . . 6 ⊢ Ⅎ𝑢𝐵 | |
34 | nfcv 2919 | . . . . . 6 ⊢ Ⅎ𝑣𝐵 | |
35 | 33, 34, 6, 9, 13 | cbvmpo 7242 | . . . . 5 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) = (𝑢 ∈ 𝑋, 𝑣 ∈ 𝑌 ↦ ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
36 | 23 | mpompt 7260 | . . . . 5 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) = (𝑢 ∈ 𝑋, 𝑣 ∈ 𝑌 ↦ ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
37 | 35, 36 | eqtr4i 2784 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) |
38 | fsum2cn.8 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) | |
39 | 37, 38 | eqeltrrid 2857 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑧 ∈ (𝑋 × 𝑌) ↦ ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) |
40 | 27, 31, 32, 39 | fsumcn 23571 | . 2 ⊢ (𝜑 → (𝑧 ∈ (𝑋 × 𝑌) ↦ Σ𝑘 ∈ 𝐴 ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) |
41 | 26, 40 | eqeltrid 2856 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ⦋csb 3805 〈cop 4528 ↦ cmpt 5112 × cxp 5522 ‘cfv 6335 (class class class)co 7150 ∈ cmpo 7152 1st c1st 7691 2nd c2nd 7692 Fincfn 8527 Σcsu 15090 TopOpenctopn 16753 ℂfldccnfld 20166 TopOnctopon 21610 Cn ccn 21924 ×t ctx 22260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 ax-addf 10654 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-iin 4886 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-of 7405 df-om 7580 df-1st 7693 df-2nd 7694 df-supp 7836 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-2o 8113 df-er 8299 df-map 8418 df-ixp 8480 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-fsupp 8867 df-fi 8908 df-sup 8939 df-inf 8940 df-oi 9007 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-q 12389 df-rp 12431 df-xneg 12548 df-xadd 12549 df-xmul 12550 df-icc 12786 df-fz 12940 df-fzo 13083 df-seq 13419 df-exp 13480 df-hash 13741 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-clim 14893 df-sum 15091 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-starv 16638 df-sca 16639 df-vsca 16640 df-ip 16641 df-tset 16642 df-ple 16643 df-ds 16645 df-unif 16646 df-hom 16647 df-cco 16648 df-rest 16754 df-topn 16755 df-0g 16773 df-gsum 16774 df-topgen 16775 df-pt 16776 df-prds 16779 df-xrs 16833 df-qtop 16838 df-imas 16839 df-xps 16841 df-mre 16915 df-mrc 16916 df-acs 16918 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-submnd 18023 df-mulg 18292 df-cntz 18514 df-cmn 18975 df-psmet 20158 df-xmet 20159 df-met 20160 df-bl 20161 df-mopn 20162 df-cnfld 20167 df-top 21594 df-topon 21611 df-topsp 21633 df-bases 21646 df-cn 21927 df-cnp 21928 df-tx 22262 df-hmeo 22455 df-xms 23022 df-ms 23023 df-tms 23024 |
This theorem is referenced by: dipcn 28602 |
Copyright terms: Public domain | W3C validator |