| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsum2cn | Structured version Visualization version GIF version | ||
| Description: Version of fsumcn 24768 for two-argument mappings. (Contributed by Mario Carneiro, 6-May-2014.) |
| Ref | Expression |
|---|---|
| fsumcn.3 | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| fsumcn.4 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| fsumcn.5 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fsum2cn.7 | ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) |
| fsum2cn.8 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) |
| Ref | Expression |
|---|---|
| fsum2cn | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑢Σ𝑘 ∈ 𝐴 𝐵 | |
| 2 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑣Σ𝑘 ∈ 𝐴 𝐵 | |
| 3 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑥𝑣 | |
| 5 | nfcsb1v 3889 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑢 / 𝑥⦌𝐵 | |
| 6 | 4, 5 | nfcsbw 3891 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵 |
| 7 | 3, 6 | nfsum 15664 | . . . 4 ⊢ Ⅎ𝑥Σ𝑘 ∈ 𝐴 ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵 |
| 8 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 9 | nfcsb1v 3889 | . . . . 5 ⊢ Ⅎ𝑦⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵 | |
| 10 | 8, 9 | nfsum 15664 | . . . 4 ⊢ Ⅎ𝑦Σ𝑘 ∈ 𝐴 ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵 |
| 11 | csbeq1a 3879 | . . . . . 6 ⊢ (𝑥 = 𝑢 → 𝐵 = ⦋𝑢 / 𝑥⦌𝐵) | |
| 12 | csbeq1a 3879 | . . . . . 6 ⊢ (𝑦 = 𝑣 → ⦋𝑢 / 𝑥⦌𝐵 = ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) | |
| 13 | 11, 12 | sylan9eq 2785 | . . . . 5 ⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝐵 = ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
| 14 | 13 | sumeq2sdv 15676 | . . . 4 ⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
| 15 | 1, 2, 7, 10, 14 | cbvmpo 7486 | . . 3 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 𝐵) = (𝑢 ∈ 𝑋, 𝑣 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
| 16 | vex 3454 | . . . . . . . 8 ⊢ 𝑢 ∈ V | |
| 17 | vex 3454 | . . . . . . . 8 ⊢ 𝑣 ∈ V | |
| 18 | 16, 17 | op2ndd 7982 | . . . . . . 7 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → (2nd ‘𝑧) = 𝑣) |
| 19 | 18 | csbeq1d 3869 | . . . . . 6 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵 = ⦋𝑣 / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) |
| 20 | 16, 17 | op1std 7981 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → (1st ‘𝑧) = 𝑢) |
| 21 | 20 | csbeq1d 3869 | . . . . . . 7 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → ⦋(1st ‘𝑧) / 𝑥⦌𝐵 = ⦋𝑢 / 𝑥⦌𝐵) |
| 22 | 21 | csbeq2dv 3872 | . . . . . 6 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → ⦋𝑣 / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵 = ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
| 23 | 19, 22 | eqtrd 2765 | . . . . 5 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵 = ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
| 24 | 23 | sumeq2sdv 15676 | . . . 4 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → Σ𝑘 ∈ 𝐴 ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵 = Σ𝑘 ∈ 𝐴 ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
| 25 | 24 | mpompt 7506 | . . 3 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ Σ𝑘 ∈ 𝐴 ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) = (𝑢 ∈ 𝑋, 𝑣 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
| 26 | 15, 25 | eqtr4i 2756 | . 2 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 𝐵) = (𝑧 ∈ (𝑋 × 𝑌) ↦ Σ𝑘 ∈ 𝐴 ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) |
| 27 | fsumcn.3 | . . 3 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 28 | fsumcn.4 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 29 | fsum2cn.7 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) | |
| 30 | txtopon 23485 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌))) | |
| 31 | 28, 29, 30 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐽 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 32 | fsumcn.5 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 33 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑢𝐵 | |
| 34 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑣𝐵 | |
| 35 | 33, 34, 6, 9, 13 | cbvmpo 7486 | . . . . 5 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) = (𝑢 ∈ 𝑋, 𝑣 ∈ 𝑌 ↦ ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
| 36 | 23 | mpompt 7506 | . . . . 5 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) = (𝑢 ∈ 𝑋, 𝑣 ∈ 𝑌 ↦ ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
| 37 | 35, 36 | eqtr4i 2756 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) |
| 38 | fsum2cn.8 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) | |
| 39 | 37, 38 | eqeltrrid 2834 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑧 ∈ (𝑋 × 𝑌) ↦ ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) |
| 40 | 27, 31, 32, 39 | fsumcn 24768 | . 2 ⊢ (𝜑 → (𝑧 ∈ (𝑋 × 𝑌) ↦ Σ𝑘 ∈ 𝐴 ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) |
| 41 | 26, 40 | eqeltrid 2833 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⦋csb 3865 〈cop 4598 ↦ cmpt 5191 × cxp 5639 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 1st c1st 7969 2nd c2nd 7970 Fincfn 8921 Σcsu 15659 TopOpenctopn 17391 ℂfldccnfld 21271 TopOnctopon 22804 Cn ccn 23118 ×t ctx 23454 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-icc 13320 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cn 23121 df-cnp 23122 df-tx 23456 df-hmeo 23649 df-xms 24215 df-ms 24216 df-tms 24217 |
| This theorem is referenced by: dipcn 30656 |
| Copyright terms: Public domain | W3C validator |