MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsum2cn Structured version   Visualization version   GIF version

Theorem fsum2cn 24792
Description: Version of fsumcn 24791 for two-argument mappings. (Contributed by Mario Carneiro, 6-May-2014.)
Hypotheses
Ref Expression
fsumcn.3 𝐾 = (TopOpen‘ℂfld)
fsumcn.4 (𝜑𝐽 ∈ (TopOn‘𝑋))
fsumcn.5 (𝜑𝐴 ∈ Fin)
fsum2cn.7 (𝜑𝐿 ∈ (TopOn‘𝑌))
fsum2cn.8 ((𝜑𝑘𝐴) → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾))
Assertion
Ref Expression
fsum2cn (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ Σ𝑘𝐴 𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐴   𝑘,𝐽,𝑥,𝑦   𝑘,𝐿   𝜑,𝑘,𝑥,𝑦   𝑘,𝐾,𝑥,𝑦   𝑘,𝑋,𝑥,𝑦   𝑘,𝑌,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑘)   𝐿(𝑥,𝑦)

Proof of Theorem fsum2cn
Dummy variables 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2895 . . . 4 𝑢Σ𝑘𝐴 𝐵
2 nfcv 2895 . . . 4 𝑣Σ𝑘𝐴 𝐵
3 nfcv 2895 . . . . 5 𝑥𝐴
4 nfcv 2895 . . . . . 6 𝑥𝑣
5 nfcsb1v 3870 . . . . . 6 𝑥𝑢 / 𝑥𝐵
64, 5nfcsbw 3872 . . . . 5 𝑥𝑣 / 𝑦𝑢 / 𝑥𝐵
73, 6nfsum 15602 . . . 4 𝑥Σ𝑘𝐴 𝑣 / 𝑦𝑢 / 𝑥𝐵
8 nfcv 2895 . . . . 5 𝑦𝐴
9 nfcsb1v 3870 . . . . 5 𝑦𝑣 / 𝑦𝑢 / 𝑥𝐵
108, 9nfsum 15602 . . . 4 𝑦Σ𝑘𝐴 𝑣 / 𝑦𝑢 / 𝑥𝐵
11 csbeq1a 3860 . . . . . 6 (𝑥 = 𝑢𝐵 = 𝑢 / 𝑥𝐵)
12 csbeq1a 3860 . . . . . 6 (𝑦 = 𝑣𝑢 / 𝑥𝐵 = 𝑣 / 𝑦𝑢 / 𝑥𝐵)
1311, 12sylan9eq 2788 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝐵 = 𝑣 / 𝑦𝑢 / 𝑥𝐵)
1413sumeq2sdv 15614 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑣) → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝑣 / 𝑦𝑢 / 𝑥𝐵)
151, 2, 7, 10, 14cbvmpo 7448 . . 3 (𝑥𝑋, 𝑦𝑌 ↦ Σ𝑘𝐴 𝐵) = (𝑢𝑋, 𝑣𝑌 ↦ Σ𝑘𝐴 𝑣 / 𝑦𝑢 / 𝑥𝐵)
16 vex 3441 . . . . . . . 8 𝑢 ∈ V
17 vex 3441 . . . . . . . 8 𝑣 ∈ V
1816, 17op2ndd 7940 . . . . . . 7 (𝑧 = ⟨𝑢, 𝑣⟩ → (2nd𝑧) = 𝑣)
1918csbeq1d 3850 . . . . . 6 (𝑧 = ⟨𝑢, 𝑣⟩ → (2nd𝑧) / 𝑦(1st𝑧) / 𝑥𝐵 = 𝑣 / 𝑦(1st𝑧) / 𝑥𝐵)
2016, 17op1std 7939 . . . . . . . 8 (𝑧 = ⟨𝑢, 𝑣⟩ → (1st𝑧) = 𝑢)
2120csbeq1d 3850 . . . . . . 7 (𝑧 = ⟨𝑢, 𝑣⟩ → (1st𝑧) / 𝑥𝐵 = 𝑢 / 𝑥𝐵)
2221csbeq2dv 3853 . . . . . 6 (𝑧 = ⟨𝑢, 𝑣⟩ → 𝑣 / 𝑦(1st𝑧) / 𝑥𝐵 = 𝑣 / 𝑦𝑢 / 𝑥𝐵)
2319, 22eqtrd 2768 . . . . 5 (𝑧 = ⟨𝑢, 𝑣⟩ → (2nd𝑧) / 𝑦(1st𝑧) / 𝑥𝐵 = 𝑣 / 𝑦𝑢 / 𝑥𝐵)
2423sumeq2sdv 15614 . . . 4 (𝑧 = ⟨𝑢, 𝑣⟩ → Σ𝑘𝐴 (2nd𝑧) / 𝑦(1st𝑧) / 𝑥𝐵 = Σ𝑘𝐴 𝑣 / 𝑦𝑢 / 𝑥𝐵)
2524mpompt 7468 . . 3 (𝑧 ∈ (𝑋 × 𝑌) ↦ Σ𝑘𝐴 (2nd𝑧) / 𝑦(1st𝑧) / 𝑥𝐵) = (𝑢𝑋, 𝑣𝑌 ↦ Σ𝑘𝐴 𝑣 / 𝑦𝑢 / 𝑥𝐵)
2615, 25eqtr4i 2759 . 2 (𝑥𝑋, 𝑦𝑌 ↦ Σ𝑘𝐴 𝐵) = (𝑧 ∈ (𝑋 × 𝑌) ↦ Σ𝑘𝐴 (2nd𝑧) / 𝑦(1st𝑧) / 𝑥𝐵)
27 fsumcn.3 . . 3 𝐾 = (TopOpen‘ℂfld)
28 fsumcn.4 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
29 fsum2cn.7 . . . 4 (𝜑𝐿 ∈ (TopOn‘𝑌))
30 txtopon 23509 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)))
3128, 29, 30syl2anc 584 . . 3 (𝜑 → (𝐽 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)))
32 fsumcn.5 . . 3 (𝜑𝐴 ∈ Fin)
33 nfcv 2895 . . . . . 6 𝑢𝐵
34 nfcv 2895 . . . . . 6 𝑣𝐵
3533, 34, 6, 9, 13cbvmpo 7448 . . . . 5 (𝑥𝑋, 𝑦𝑌𝐵) = (𝑢𝑋, 𝑣𝑌𝑣 / 𝑦𝑢 / 𝑥𝐵)
3623mpompt 7468 . . . . 5 (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd𝑧) / 𝑦(1st𝑧) / 𝑥𝐵) = (𝑢𝑋, 𝑣𝑌𝑣 / 𝑦𝑢 / 𝑥𝐵)
3735, 36eqtr4i 2759 . . . 4 (𝑥𝑋, 𝑦𝑌𝐵) = (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd𝑧) / 𝑦(1st𝑧) / 𝑥𝐵)
38 fsum2cn.8 . . . 4 ((𝜑𝑘𝐴) → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾))
3937, 38eqeltrrid 2838 . . 3 ((𝜑𝑘𝐴) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd𝑧) / 𝑦(1st𝑧) / 𝑥𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾))
4027, 31, 32, 39fsumcn 24791 . 2 (𝜑 → (𝑧 ∈ (𝑋 × 𝑌) ↦ Σ𝑘𝐴 (2nd𝑧) / 𝑦(1st𝑧) / 𝑥𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾))
4126, 40eqeltrid 2837 1 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ Σ𝑘𝐴 𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  csb 3846  cop 4583  cmpt 5176   × cxp 5619  cfv 6488  (class class class)co 7354  cmpo 7356  1st c1st 7927  2nd c2nd 7928  Fincfn 8877  Σcsu 15597  TopOpenctopn 17329  fldccnfld 21295  TopOnctopon 22828   Cn ccn 23142   ×t ctx 23478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093  ax-addf 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-map 8760  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-fi 9304  df-sup 9335  df-inf 9336  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-q 12851  df-rp 12895  df-xneg 13015  df-xadd 13016  df-xmul 13017  df-icc 13256  df-fz 13412  df-fzo 13559  df-seq 13913  df-exp 13973  df-hash 14242  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-clim 15399  df-sum 15598  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-starv 17180  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-unif 17188  df-hom 17189  df-cco 17190  df-rest 17330  df-topn 17331  df-0g 17349  df-gsum 17350  df-topgen 17351  df-pt 17352  df-prds 17355  df-xrs 17410  df-qtop 17415  df-imas 17416  df-xps 17418  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-submnd 18696  df-mulg 18985  df-cntz 19233  df-cmn 19698  df-psmet 21287  df-xmet 21288  df-met 21289  df-bl 21290  df-mopn 21291  df-cnfld 21296  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22864  df-cn 23145  df-cnp 23146  df-tx 23480  df-hmeo 23673  df-xms 24238  df-ms 24239  df-tms 24240
This theorem is referenced by:  dipcn  30704
  Copyright terms: Public domain W3C validator