| Step | Hyp | Ref
| Expression |
| 1 | | fmpoco.1 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑅 ∈ 𝐶) |
| 2 | 1 | ralrimivva 3187 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑅 ∈ 𝐶) |
| 3 | | eqid 2735 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑅) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑅) |
| 4 | 3 | fmpo 8067 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝑅 ∈ 𝐶 ↔ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑅):(𝐴 × 𝐵)⟶𝐶) |
| 5 | 2, 4 | sylib 218 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑅):(𝐴 × 𝐵)⟶𝐶) |
| 6 | | nfcv 2898 |
. . . . . . 7
⊢
Ⅎ𝑢𝑅 |
| 7 | | nfcv 2898 |
. . . . . . 7
⊢
Ⅎ𝑣𝑅 |
| 8 | | nfcv 2898 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑣 |
| 9 | | nfcsb1v 3898 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋𝑢 / 𝑥⦌𝑅 |
| 10 | 8, 9 | nfcsbw 3900 |
. . . . . . 7
⊢
Ⅎ𝑥⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅 |
| 11 | | nfcsb1v 3898 |
. . . . . . 7
⊢
Ⅎ𝑦⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅 |
| 12 | | csbeq1a 3888 |
. . . . . . . 8
⊢ (𝑥 = 𝑢 → 𝑅 = ⦋𝑢 / 𝑥⦌𝑅) |
| 13 | | csbeq1a 3888 |
. . . . . . . 8
⊢ (𝑦 = 𝑣 → ⦋𝑢 / 𝑥⦌𝑅 = ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅) |
| 14 | 12, 13 | sylan9eq 2790 |
. . . . . . 7
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑅 = ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅) |
| 15 | 6, 7, 10, 11, 14 | cbvmpo 7501 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑅) = (𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵 ↦ ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅) |
| 16 | | vex 3463 |
. . . . . . . . . 10
⊢ 𝑢 ∈ V |
| 17 | | vex 3463 |
. . . . . . . . . 10
⊢ 𝑣 ∈ V |
| 18 | 16, 17 | op2ndd 7999 |
. . . . . . . . 9
⊢ (𝑤 = 〈𝑢, 𝑣〉 → (2nd ‘𝑤) = 𝑣) |
| 19 | 18 | csbeq1d 3878 |
. . . . . . . 8
⊢ (𝑤 = 〈𝑢, 𝑣〉 → ⦋(2nd
‘𝑤) / 𝑦⦌⦋(1st
‘𝑤) / 𝑥⦌𝑅 = ⦋𝑣 / 𝑦⦌⦋(1st
‘𝑤) / 𝑥⦌𝑅) |
| 20 | 16, 17 | op1std 7998 |
. . . . . . . . . 10
⊢ (𝑤 = 〈𝑢, 𝑣〉 → (1st ‘𝑤) = 𝑢) |
| 21 | 20 | csbeq1d 3878 |
. . . . . . . . 9
⊢ (𝑤 = 〈𝑢, 𝑣〉 → ⦋(1st
‘𝑤) / 𝑥⦌𝑅 = ⦋𝑢 / 𝑥⦌𝑅) |
| 22 | 21 | csbeq2dv 3881 |
. . . . . . . 8
⊢ (𝑤 = 〈𝑢, 𝑣〉 → ⦋𝑣 / 𝑦⦌⦋(1st
‘𝑤) / 𝑥⦌𝑅 = ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅) |
| 23 | 19, 22 | eqtrd 2770 |
. . . . . . 7
⊢ (𝑤 = 〈𝑢, 𝑣〉 → ⦋(2nd
‘𝑤) / 𝑦⦌⦋(1st
‘𝑤) / 𝑥⦌𝑅 = ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅) |
| 24 | 23 | mpompt 7521 |
. . . . . 6
⊢ (𝑤 ∈ (𝐴 × 𝐵) ↦ ⦋(2nd
‘𝑤) / 𝑦⦌⦋(1st
‘𝑤) / 𝑥⦌𝑅) = (𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵 ↦ ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅) |
| 25 | 15, 24 | eqtr4i 2761 |
. . . . 5
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑅) = (𝑤 ∈ (𝐴 × 𝐵) ↦ ⦋(2nd
‘𝑤) / 𝑦⦌⦋(1st
‘𝑤) / 𝑥⦌𝑅) |
| 26 | 25 | fmpt 7100 |
. . . 4
⊢
(∀𝑤 ∈
(𝐴 × 𝐵)⦋(2nd
‘𝑤) / 𝑦⦌⦋(1st
‘𝑤) / 𝑥⦌𝑅 ∈ 𝐶 ↔ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑅):(𝐴 × 𝐵)⟶𝐶) |
| 27 | 5, 26 | sylibr 234 |
. . 3
⊢ (𝜑 → ∀𝑤 ∈ (𝐴 × 𝐵)⦋(2nd ‘𝑤) / 𝑦⦌⦋(1st
‘𝑤) / 𝑥⦌𝑅 ∈ 𝐶) |
| 28 | | fmpoco.2 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑅)) |
| 29 | 28, 25 | eqtrdi 2786 |
. . 3
⊢ (𝜑 → 𝐹 = (𝑤 ∈ (𝐴 × 𝐵) ↦ ⦋(2nd
‘𝑤) / 𝑦⦌⦋(1st
‘𝑤) / 𝑥⦌𝑅)) |
| 30 | | fmpoco.3 |
. . 3
⊢ (𝜑 → 𝐺 = (𝑧 ∈ 𝐶 ↦ 𝑆)) |
| 31 | 27, 29, 30 | fmptcos 7121 |
. 2
⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑤 ∈ (𝐴 × 𝐵) ↦
⦋⦋(2nd ‘𝑤) / 𝑦⦌⦋(1st
‘𝑤) / 𝑥⦌𝑅 / 𝑧⦌𝑆)) |
| 32 | 23 | csbeq1d 3878 |
. . . . 5
⊢ (𝑤 = 〈𝑢, 𝑣〉 →
⦋⦋(2nd ‘𝑤) / 𝑦⦌⦋(1st
‘𝑤) / 𝑥⦌𝑅 / 𝑧⦌𝑆 = ⦋⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅 / 𝑧⦌𝑆) |
| 33 | 32 | mpompt 7521 |
. . . 4
⊢ (𝑤 ∈ (𝐴 × 𝐵) ↦
⦋⦋(2nd ‘𝑤) / 𝑦⦌⦋(1st
‘𝑤) / 𝑥⦌𝑅 / 𝑧⦌𝑆) = (𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵 ↦ ⦋⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅 / 𝑧⦌𝑆) |
| 34 | | nfcv 2898 |
. . . . 5
⊢
Ⅎ𝑢⦋𝑅 / 𝑧⦌𝑆 |
| 35 | | nfcv 2898 |
. . . . 5
⊢
Ⅎ𝑣⦋𝑅 / 𝑧⦌𝑆 |
| 36 | | nfcv 2898 |
. . . . . 6
⊢
Ⅎ𝑥𝑆 |
| 37 | 10, 36 | nfcsbw 3900 |
. . . . 5
⊢
Ⅎ𝑥⦋⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅 / 𝑧⦌𝑆 |
| 38 | | nfcv 2898 |
. . . . . 6
⊢
Ⅎ𝑦𝑆 |
| 39 | 11, 38 | nfcsbw 3900 |
. . . . 5
⊢
Ⅎ𝑦⦋⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅 / 𝑧⦌𝑆 |
| 40 | 14 | csbeq1d 3878 |
. . . . 5
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ⦋𝑅 / 𝑧⦌𝑆 = ⦋⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅 / 𝑧⦌𝑆) |
| 41 | 34, 35, 37, 39, 40 | cbvmpo 7501 |
. . . 4
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ⦋𝑅 / 𝑧⦌𝑆) = (𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵 ↦ ⦋⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅 / 𝑧⦌𝑆) |
| 42 | 33, 41 | eqtr4i 2761 |
. . 3
⊢ (𝑤 ∈ (𝐴 × 𝐵) ↦
⦋⦋(2nd ‘𝑤) / 𝑦⦌⦋(1st
‘𝑤) / 𝑥⦌𝑅 / 𝑧⦌𝑆) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ⦋𝑅 / 𝑧⦌𝑆) |
| 43 | 1 | 3impb 1114 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑅 ∈ 𝐶) |
| 44 | | nfcvd 2899 |
. . . . . 6
⊢ (𝑅 ∈ 𝐶 → Ⅎ𝑧𝑇) |
| 45 | | fmpoco.4 |
. . . . . 6
⊢ (𝑧 = 𝑅 → 𝑆 = 𝑇) |
| 46 | 44, 45 | csbiegf 3907 |
. . . . 5
⊢ (𝑅 ∈ 𝐶 → ⦋𝑅 / 𝑧⦌𝑆 = 𝑇) |
| 47 | 43, 46 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ⦋𝑅 / 𝑧⦌𝑆 = 𝑇) |
| 48 | 47 | mpoeq3dva 7484 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ⦋𝑅 / 𝑧⦌𝑆) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑇)) |
| 49 | 42, 48 | eqtrid 2782 |
. 2
⊢ (𝜑 → (𝑤 ∈ (𝐴 × 𝐵) ↦
⦋⦋(2nd ‘𝑤) / 𝑦⦌⦋(1st
‘𝑤) / 𝑥⦌𝑅 / 𝑧⦌𝑆) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑇)) |
| 50 | 31, 49 | eqtrd 2770 |
1
⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑇)) |