MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmpoco Structured version   Visualization version   GIF version

Theorem fmpoco 8077
Description: Composition of two functions. Variation of fmptco 7104 when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
fmpoco.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑅𝐶)
fmpoco.2 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝑅))
fmpoco.3 (𝜑𝐺 = (𝑧𝐶𝑆))
fmpoco.4 (𝑧 = 𝑅𝑆 = 𝑇)
Assertion
Ref Expression
fmpoco (𝜑 → (𝐺𝐹) = (𝑥𝐴, 𝑦𝐵𝑇))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑧,𝐶,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑧,𝑅   𝑧,𝑇
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧)   𝐵(𝑧)   𝑅(𝑥,𝑦)   𝑆(𝑧)   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧)

Proof of Theorem fmpoco
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmpoco.1 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑅𝐶)
21ralrimivva 3181 . . . . 5 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝑅𝐶)
3 eqid 2730 . . . . . 6 (𝑥𝐴, 𝑦𝐵𝑅) = (𝑥𝐴, 𝑦𝐵𝑅)
43fmpo 8050 . . . . 5 (∀𝑥𝐴𝑦𝐵 𝑅𝐶 ↔ (𝑥𝐴, 𝑦𝐵𝑅):(𝐴 × 𝐵)⟶𝐶)
52, 4sylib 218 . . . 4 (𝜑 → (𝑥𝐴, 𝑦𝐵𝑅):(𝐴 × 𝐵)⟶𝐶)
6 nfcv 2892 . . . . . . 7 𝑢𝑅
7 nfcv 2892 . . . . . . 7 𝑣𝑅
8 nfcv 2892 . . . . . . . 8 𝑥𝑣
9 nfcsb1v 3889 . . . . . . . 8 𝑥𝑢 / 𝑥𝑅
108, 9nfcsbw 3891 . . . . . . 7 𝑥𝑣 / 𝑦𝑢 / 𝑥𝑅
11 nfcsb1v 3889 . . . . . . 7 𝑦𝑣 / 𝑦𝑢 / 𝑥𝑅
12 csbeq1a 3879 . . . . . . . 8 (𝑥 = 𝑢𝑅 = 𝑢 / 𝑥𝑅)
13 csbeq1a 3879 . . . . . . . 8 (𝑦 = 𝑣𝑢 / 𝑥𝑅 = 𝑣 / 𝑦𝑢 / 𝑥𝑅)
1412, 13sylan9eq 2785 . . . . . . 7 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑅 = 𝑣 / 𝑦𝑢 / 𝑥𝑅)
156, 7, 10, 11, 14cbvmpo 7486 . . . . . 6 (𝑥𝐴, 𝑦𝐵𝑅) = (𝑢𝐴, 𝑣𝐵𝑣 / 𝑦𝑢 / 𝑥𝑅)
16 vex 3454 . . . . . . . . . 10 𝑢 ∈ V
17 vex 3454 . . . . . . . . . 10 𝑣 ∈ V
1816, 17op2ndd 7982 . . . . . . . . 9 (𝑤 = ⟨𝑢, 𝑣⟩ → (2nd𝑤) = 𝑣)
1918csbeq1d 3869 . . . . . . . 8 (𝑤 = ⟨𝑢, 𝑣⟩ → (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅 = 𝑣 / 𝑦(1st𝑤) / 𝑥𝑅)
2016, 17op1std 7981 . . . . . . . . . 10 (𝑤 = ⟨𝑢, 𝑣⟩ → (1st𝑤) = 𝑢)
2120csbeq1d 3869 . . . . . . . . 9 (𝑤 = ⟨𝑢, 𝑣⟩ → (1st𝑤) / 𝑥𝑅 = 𝑢 / 𝑥𝑅)
2221csbeq2dv 3872 . . . . . . . 8 (𝑤 = ⟨𝑢, 𝑣⟩ → 𝑣 / 𝑦(1st𝑤) / 𝑥𝑅 = 𝑣 / 𝑦𝑢 / 𝑥𝑅)
2319, 22eqtrd 2765 . . . . . . 7 (𝑤 = ⟨𝑢, 𝑣⟩ → (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅 = 𝑣 / 𝑦𝑢 / 𝑥𝑅)
2423mpompt 7506 . . . . . 6 (𝑤 ∈ (𝐴 × 𝐵) ↦ (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅) = (𝑢𝐴, 𝑣𝐵𝑣 / 𝑦𝑢 / 𝑥𝑅)
2515, 24eqtr4i 2756 . . . . 5 (𝑥𝐴, 𝑦𝐵𝑅) = (𝑤 ∈ (𝐴 × 𝐵) ↦ (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅)
2625fmpt 7085 . . . 4 (∀𝑤 ∈ (𝐴 × 𝐵)(2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅𝐶 ↔ (𝑥𝐴, 𝑦𝐵𝑅):(𝐴 × 𝐵)⟶𝐶)
275, 26sylibr 234 . . 3 (𝜑 → ∀𝑤 ∈ (𝐴 × 𝐵)(2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅𝐶)
28 fmpoco.2 . . . 4 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝑅))
2928, 25eqtrdi 2781 . . 3 (𝜑𝐹 = (𝑤 ∈ (𝐴 × 𝐵) ↦ (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅))
30 fmpoco.3 . . 3 (𝜑𝐺 = (𝑧𝐶𝑆))
3127, 29, 30fmptcos 7106 . 2 (𝜑 → (𝐺𝐹) = (𝑤 ∈ (𝐴 × 𝐵) ↦ (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅 / 𝑧𝑆))
3223csbeq1d 3869 . . . . 5 (𝑤 = ⟨𝑢, 𝑣⟩ → (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅 / 𝑧𝑆 = 𝑣 / 𝑦𝑢 / 𝑥𝑅 / 𝑧𝑆)
3332mpompt 7506 . . . 4 (𝑤 ∈ (𝐴 × 𝐵) ↦ (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅 / 𝑧𝑆) = (𝑢𝐴, 𝑣𝐵𝑣 / 𝑦𝑢 / 𝑥𝑅 / 𝑧𝑆)
34 nfcv 2892 . . . . 5 𝑢𝑅 / 𝑧𝑆
35 nfcv 2892 . . . . 5 𝑣𝑅 / 𝑧𝑆
36 nfcv 2892 . . . . . 6 𝑥𝑆
3710, 36nfcsbw 3891 . . . . 5 𝑥𝑣 / 𝑦𝑢 / 𝑥𝑅 / 𝑧𝑆
38 nfcv 2892 . . . . . 6 𝑦𝑆
3911, 38nfcsbw 3891 . . . . 5 𝑦𝑣 / 𝑦𝑢 / 𝑥𝑅 / 𝑧𝑆
4014csbeq1d 3869 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑅 / 𝑧𝑆 = 𝑣 / 𝑦𝑢 / 𝑥𝑅 / 𝑧𝑆)
4134, 35, 37, 39, 40cbvmpo 7486 . . . 4 (𝑥𝐴, 𝑦𝐵𝑅 / 𝑧𝑆) = (𝑢𝐴, 𝑣𝐵𝑣 / 𝑦𝑢 / 𝑥𝑅 / 𝑧𝑆)
4233, 41eqtr4i 2756 . . 3 (𝑤 ∈ (𝐴 × 𝐵) ↦ (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅 / 𝑧𝑆) = (𝑥𝐴, 𝑦𝐵𝑅 / 𝑧𝑆)
4313impb 1114 . . . . 5 ((𝜑𝑥𝐴𝑦𝐵) → 𝑅𝐶)
44 nfcvd 2893 . . . . . 6 (𝑅𝐶𝑧𝑇)
45 fmpoco.4 . . . . . 6 (𝑧 = 𝑅𝑆 = 𝑇)
4644, 45csbiegf 3898 . . . . 5 (𝑅𝐶𝑅 / 𝑧𝑆 = 𝑇)
4743, 46syl 17 . . . 4 ((𝜑𝑥𝐴𝑦𝐵) → 𝑅 / 𝑧𝑆 = 𝑇)
4847mpoeq3dva 7469 . . 3 (𝜑 → (𝑥𝐴, 𝑦𝐵𝑅 / 𝑧𝑆) = (𝑥𝐴, 𝑦𝐵𝑇))
4942, 48eqtrid 2777 . 2 (𝜑 → (𝑤 ∈ (𝐴 × 𝐵) ↦ (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅 / 𝑧𝑆) = (𝑥𝐴, 𝑦𝐵𝑇))
5031, 49eqtrd 2765 1 (𝜑 → (𝐺𝐹) = (𝑥𝐴, 𝑦𝐵𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  csb 3865  cop 4598  cmpt 5191   × cxp 5639  ccom 5645  wf 6510  cfv 6514  cmpo 7392  1st c1st 7969  2nd c2nd 7970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972
This theorem is referenced by:  oprabco  8078  evlslem2  21993  txswaphmeolem  23698  xpstopnlem1  23703  stdbdxmet  24410  rrxds  25300  cnre2csqima  33908  cvmlift2lem7  35303
  Copyright terms: Public domain W3C validator