MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcomlem Structured version   Visualization version   GIF version

Theorem cnfcomlem 9600
Description: Lemma for cnfcom 9601. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
cnfcom.s 𝑆 = dom (ω CNF 𝐴)
cnfcom.a (𝜑𝐴 ∈ On)
cnfcom.b (𝜑𝐵 ∈ (ω ↑o 𝐴))
cnfcom.f 𝐹 = ((ω CNF 𝐴)‘𝐵)
cnfcom.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cnfcom.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅)
cnfcom.t 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
cnfcom.m 𝑀 = ((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘)))
cnfcom.k 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)))
cnfcom.1 (𝜑𝐼 ∈ dom 𝐺)
cnfcom.2 (𝜑𝑂 ∈ (ω ↑o (𝐺𝐼)))
cnfcom.3 (𝜑 → (𝑇𝐼):(𝐻𝐼)–1-1-onto𝑂)
Assertion
Ref Expression
cnfcomlem (𝜑 → (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))))
Distinct variable groups:   𝑥,𝑘,𝑧,𝐴   𝑘,𝐼,𝑥,𝑧   𝑥,𝑀   𝑓,𝑘,𝑥,𝑧,𝐹   𝑧,𝑇   𝑓,𝐺,𝑘,𝑥,𝑧   𝑓,𝐻,𝑥   𝑆,𝑘,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑓,𝑘)   𝐴(𝑓)   𝐵(𝑥,𝑧,𝑓,𝑘)   𝑆(𝑥,𝑓)   𝑇(𝑥,𝑓,𝑘)   𝐻(𝑧,𝑘)   𝐼(𝑓)   𝐾(𝑥,𝑧,𝑓,𝑘)   𝑀(𝑧,𝑓,𝑘)   𝑂(𝑥,𝑧,𝑓,𝑘)

Proof of Theorem cnfcomlem
Dummy variables 𝑢 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omelon 9547 . . . . . . 7 ω ∈ On
2 cnfcom.a . . . . . . . 8 (𝜑𝐴 ∈ On)
3 suppssdm 8116 . . . . . . . . . 10 (𝐹 supp ∅) ⊆ dom 𝐹
4 cnfcom.f . . . . . . . . . . . . 13 𝐹 = ((ω CNF 𝐴)‘𝐵)
5 cnfcom.s . . . . . . . . . . . . . . . 16 𝑆 = dom (ω CNF 𝐴)
61a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → ω ∈ On)
75, 6, 2cantnff1o 9597 . . . . . . . . . . . . . . 15 (𝜑 → (ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴))
8 f1ocnv 6783 . . . . . . . . . . . . . . 15 ((ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴) → (ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto𝑆)
9 f1of 6771 . . . . . . . . . . . . . . 15 ((ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto𝑆(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆)
107, 8, 93syl 18 . . . . . . . . . . . . . 14 (𝜑(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆)
11 cnfcom.b . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ (ω ↑o 𝐴))
1210, 11ffvelcdmd 7027 . . . . . . . . . . . . 13 (𝜑 → ((ω CNF 𝐴)‘𝐵) ∈ 𝑆)
134, 12eqeltrid 2837 . . . . . . . . . . . 12 (𝜑𝐹𝑆)
145, 6, 2cantnfs 9567 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅)))
1513, 14mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅))
1615simpld 494 . . . . . . . . . 10 (𝜑𝐹:𝐴⟶ω)
173, 16fssdm 6678 . . . . . . . . 9 (𝜑 → (𝐹 supp ∅) ⊆ 𝐴)
18 cnfcom.1 . . . . . . . . . 10 (𝜑𝐼 ∈ dom 𝐺)
19 cnfcom.g . . . . . . . . . . . 12 𝐺 = OrdIso( E , (𝐹 supp ∅))
2019oif 9427 . . . . . . . . . . 11 𝐺:dom 𝐺⟶(𝐹 supp ∅)
2120ffvelcdmi 7025 . . . . . . . . . 10 (𝐼 ∈ dom 𝐺 → (𝐺𝐼) ∈ (𝐹 supp ∅))
2218, 21syl 17 . . . . . . . . 9 (𝜑 → (𝐺𝐼) ∈ (𝐹 supp ∅))
2317, 22sseldd 3931 . . . . . . . 8 (𝜑 → (𝐺𝐼) ∈ 𝐴)
24 onelon 6339 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐺𝐼) ∈ 𝐴) → (𝐺𝐼) ∈ On)
252, 23, 24syl2anc 584 . . . . . . 7 (𝜑 → (𝐺𝐼) ∈ On)
26 oecl 8461 . . . . . . 7 ((ω ∈ On ∧ (𝐺𝐼) ∈ On) → (ω ↑o (𝐺𝐼)) ∈ On)
271, 25, 26sylancr 587 . . . . . 6 (𝜑 → (ω ↑o (𝐺𝐼)) ∈ On)
2816, 23ffvelcdmd 7027 . . . . . . 7 (𝜑 → (𝐹‘(𝐺𝐼)) ∈ ω)
29 nnon 7811 . . . . . . 7 ((𝐹‘(𝐺𝐼)) ∈ ω → (𝐹‘(𝐺𝐼)) ∈ On)
3028, 29syl 17 . . . . . 6 (𝜑 → (𝐹‘(𝐺𝐼)) ∈ On)
31 omcl 8460 . . . . . 6 (((ω ↑o (𝐺𝐼)) ∈ On ∧ (𝐹‘(𝐺𝐼)) ∈ On) → ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ∈ On)
3227, 30, 31syl2anc 584 . . . . 5 (𝜑 → ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ∈ On)
335, 6, 2, 19, 13cantnfcl 9568 . . . . . . . 8 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
3433simprd 495 . . . . . . 7 (𝜑 → dom 𝐺 ∈ ω)
35 elnn 7816 . . . . . . 7 ((𝐼 ∈ dom 𝐺 ∧ dom 𝐺 ∈ ω) → 𝐼 ∈ ω)
3618, 34, 35syl2anc 584 . . . . . 6 (𝜑𝐼 ∈ ω)
37 cnfcom.h . . . . . . . 8 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅)
3837cantnfvalf 9566 . . . . . . 7 𝐻:ω⟶On
3938ffvelcdmi 7025 . . . . . 6 (𝐼 ∈ ω → (𝐻𝐼) ∈ On)
4036, 39syl 17 . . . . 5 (𝜑 → (𝐻𝐼) ∈ On)
41 eqid 2733 . . . . . 6 ((𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦))) = ((𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦)))
4241oacomf1o 8489 . . . . 5 ((((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ∈ On ∧ (𝐻𝐼) ∈ On) → ((𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦))):(((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o (𝐻𝐼))–1-1-onto→((𝐻𝐼) +o ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼)))))
4332, 40, 42syl2anc 584 . . . 4 (𝜑 → ((𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦))):(((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o (𝐻𝐼))–1-1-onto→((𝐻𝐼) +o ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼)))))
44 cnfcom.t . . . . . . . 8 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
4544seqomsuc 8385 . . . . . . 7 (𝐼 ∈ ω → (𝑇‘suc 𝐼) = (𝐼(𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾)(𝑇𝐼)))
4636, 45syl 17 . . . . . 6 (𝜑 → (𝑇‘suc 𝐼) = (𝐼(𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾)(𝑇𝐼)))
47 nfcv 2895 . . . . . . . . 9 𝑢𝐾
48 nfcv 2895 . . . . . . . . 9 𝑣𝐾
49 nfcv 2895 . . . . . . . . 9 𝑘((𝑦 ∈ ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦)))
50 nfcv 2895 . . . . . . . . 9 𝑓((𝑦 ∈ ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦)))
51 cnfcom.k . . . . . . . . . 10 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)))
52 oveq2 7363 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (dom 𝑓 +o 𝑥) = (dom 𝑓 +o 𝑦))
5352cbvmptv 5199 . . . . . . . . . . . 12 (𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) = (𝑦𝑀 ↦ (dom 𝑓 +o 𝑦))
54 cnfcom.m . . . . . . . . . . . . . 14 𝑀 = ((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘)))
55 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑘 = 𝑢𝑓 = 𝑣) → 𝑘 = 𝑢)
5655fveq2d 6835 . . . . . . . . . . . . . . . 16 ((𝑘 = 𝑢𝑓 = 𝑣) → (𝐺𝑘) = (𝐺𝑢))
5756oveq2d 7371 . . . . . . . . . . . . . . 15 ((𝑘 = 𝑢𝑓 = 𝑣) → (ω ↑o (𝐺𝑘)) = (ω ↑o (𝐺𝑢)))
5856fveq2d 6835 . . . . . . . . . . . . . . 15 ((𝑘 = 𝑢𝑓 = 𝑣) → (𝐹‘(𝐺𝑘)) = (𝐹‘(𝐺𝑢)))
5957, 58oveq12d 7373 . . . . . . . . . . . . . 14 ((𝑘 = 𝑢𝑓 = 𝑣) → ((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) = ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))))
6054, 59eqtrid 2780 . . . . . . . . . . . . 13 ((𝑘 = 𝑢𝑓 = 𝑣) → 𝑀 = ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))))
61 simpr 484 . . . . . . . . . . . . . . 15 ((𝑘 = 𝑢𝑓 = 𝑣) → 𝑓 = 𝑣)
6261dmeqd 5851 . . . . . . . . . . . . . 14 ((𝑘 = 𝑢𝑓 = 𝑣) → dom 𝑓 = dom 𝑣)
6362oveq1d 7370 . . . . . . . . . . . . 13 ((𝑘 = 𝑢𝑓 = 𝑣) → (dom 𝑓 +o 𝑦) = (dom 𝑣 +o 𝑦))
6460, 63mpteq12dv 5182 . . . . . . . . . . . 12 ((𝑘 = 𝑢𝑓 = 𝑣) → (𝑦𝑀 ↦ (dom 𝑓 +o 𝑦)) = (𝑦 ∈ ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +o 𝑦)))
6553, 64eqtrid 2780 . . . . . . . . . . 11 ((𝑘 = 𝑢𝑓 = 𝑣) → (𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) = (𝑦 ∈ ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +o 𝑦)))
66 oveq2 7363 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑀 +o 𝑥) = (𝑀 +o 𝑦))
6766cbvmptv 5199 . . . . . . . . . . . . 13 (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)) = (𝑦 ∈ dom 𝑓 ↦ (𝑀 +o 𝑦))
6860oveq1d 7370 . . . . . . . . . . . . . 14 ((𝑘 = 𝑢𝑓 = 𝑣) → (𝑀 +o 𝑦) = (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦))
6962, 68mpteq12dv 5182 . . . . . . . . . . . . 13 ((𝑘 = 𝑢𝑓 = 𝑣) → (𝑦 ∈ dom 𝑓 ↦ (𝑀 +o 𝑦)) = (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦)))
7067, 69eqtrid 2780 . . . . . . . . . . . 12 ((𝑘 = 𝑢𝑓 = 𝑣) → (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)) = (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦)))
7170cnveqd 5821 . . . . . . . . . . 11 ((𝑘 = 𝑢𝑓 = 𝑣) → (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)) = (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦)))
7265, 71uneq12d 4118 . . . . . . . . . 10 ((𝑘 = 𝑢𝑓 = 𝑣) → ((𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥))) = ((𝑦 ∈ ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦))))
7351, 72eqtrid 2780 . . . . . . . . 9 ((𝑘 = 𝑢𝑓 = 𝑣) → 𝐾 = ((𝑦 ∈ ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦))))
7447, 48, 49, 50, 73cbvmpo 7449 . . . . . . . 8 (𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾) = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑦 ∈ ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦))))
7574a1i 11 . . . . . . 7 (𝜑 → (𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾) = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑦 ∈ ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦)))))
76 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → 𝑢 = 𝐼)
7776fveq2d 6835 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → (𝐺𝑢) = (𝐺𝐼))
7877oveq2d 7371 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → (ω ↑o (𝐺𝑢)) = (ω ↑o (𝐺𝐼)))
7977fveq2d 6835 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → (𝐹‘(𝐺𝑢)) = (𝐹‘(𝐺𝐼)))
8078, 79oveq12d 7373 . . . . . . . . 9 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) = ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))))
81 simpr 484 . . . . . . . . . . . 12 ((𝑢 = 𝐼𝑣 = (𝑇𝐼)) → 𝑣 = (𝑇𝐼))
8281dmeqd 5851 . . . . . . . . . . 11 ((𝑢 = 𝐼𝑣 = (𝑇𝐼)) → dom 𝑣 = dom (𝑇𝐼))
83 cnfcom.3 . . . . . . . . . . . 12 (𝜑 → (𝑇𝐼):(𝐻𝐼)–1-1-onto𝑂)
84 f1odm 6775 . . . . . . . . . . . 12 ((𝑇𝐼):(𝐻𝐼)–1-1-onto𝑂 → dom (𝑇𝐼) = (𝐻𝐼))
8583, 84syl 17 . . . . . . . . . . 11 (𝜑 → dom (𝑇𝐼) = (𝐻𝐼))
8682, 85sylan9eqr 2790 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → dom 𝑣 = (𝐻𝐼))
8786oveq1d 7370 . . . . . . . . 9 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → (dom 𝑣 +o 𝑦) = ((𝐻𝐼) +o 𝑦))
8880, 87mpteq12dv 5182 . . . . . . . 8 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → (𝑦 ∈ ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +o 𝑦)) = (𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)))
8980oveq1d 7370 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦) = (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦))
9086, 89mpteq12dv 5182 . . . . . . . . 9 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦)) = (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦)))
9190cnveqd 5821 . . . . . . . 8 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦)) = (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦)))
9288, 91uneq12d 4118 . . . . . . 7 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → ((𝑦 ∈ ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦))) = ((𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦))))
9318elexd 3461 . . . . . . 7 (𝜑𝐼 ∈ V)
94 fvexd 6846 . . . . . . 7 (𝜑 → (𝑇𝐼) ∈ V)
95 ovex 7388 . . . . . . . . . 10 ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ∈ V
9695mptex 7166 . . . . . . . . 9 (𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)) ∈ V
97 fvex 6844 . . . . . . . . . . 11 (𝐻𝐼) ∈ V
9897mptex 7166 . . . . . . . . . 10 (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦)) ∈ V
9998cnvex 7864 . . . . . . . . 9 (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦)) ∈ V
10096, 99unex 7686 . . . . . . . 8 ((𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦))) ∈ V
101100a1i 11 . . . . . . 7 (𝜑 → ((𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦))) ∈ V)
10275, 92, 93, 94, 101ovmpod 7507 . . . . . 6 (𝜑 → (𝐼(𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾)(𝑇𝐼)) = ((𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦))))
10346, 102eqtrd 2768 . . . . 5 (𝜑 → (𝑇‘suc 𝐼) = ((𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦))))
104103f1oeq1d 6766 . . . 4 (𝜑 → ((𝑇‘suc 𝐼):(((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o (𝐻𝐼))–1-1-onto→((𝐻𝐼) +o ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼)))) ↔ ((𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦))):(((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o (𝐻𝐼))–1-1-onto→((𝐻𝐼) +o ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))))))
10543, 104mpbird 257 . . 3 (𝜑 → (𝑇‘suc 𝐼):(((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o (𝐻𝐼))–1-1-onto→((𝐻𝐼) +o ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼)))))
1061a1i 11 . . . . . 6 ((𝐴 ∈ On ∧ 𝐹𝑆) → ω ∈ On)
107 simpl 482 . . . . . 6 ((𝐴 ∈ On ∧ 𝐹𝑆) → 𝐴 ∈ On)
108 simpr 484 . . . . . 6 ((𝐴 ∈ On ∧ 𝐹𝑆) → 𝐹𝑆)
10954oveq1i 7365 . . . . . . . . . 10 (𝑀 +o 𝑧) = (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)
110109a1i 11 . . . . . . . . 9 ((𝑘 ∈ V ∧ 𝑧 ∈ V) → (𝑀 +o 𝑧) = (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))
111110mpoeq3ia 7433 . . . . . . . 8 (𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))
112 eqid 2733 . . . . . . . 8 ∅ = ∅
113 seqomeq12 8382 . . . . . . . 8 (((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)) ∧ ∅ = ∅) → seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅))
114111, 112, 113mp2an 692 . . . . . . 7 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
11537, 114eqtri 2756 . . . . . 6 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
1165, 106, 107, 19, 108, 115cantnfsuc 9571 . . . . 5 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ 𝐼 ∈ ω) → (𝐻‘suc 𝐼) = (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o (𝐻𝐼)))
1172, 13, 36, 116syl21anc 837 . . . 4 (𝜑 → (𝐻‘suc 𝐼) = (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o (𝐻𝐼)))
118117f1oeq2d 6767 . . 3 (𝜑 → ((𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((𝐻𝐼) +o ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼)))) ↔ (𝑇‘suc 𝐼):(((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o (𝐻𝐼))–1-1-onto→((𝐻𝐼) +o ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))))))
119105, 118mpbird 257 . 2 (𝜑 → (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((𝐻𝐼) +o ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼)))))
120 sssucid 6396 . . . . . 6 dom 𝐺 ⊆ suc dom 𝐺
121120, 18sselid 3928 . . . . 5 (𝜑𝐼 ∈ suc dom 𝐺)
122 epelg 5522 . . . . . . . . . . 11 (𝐼 ∈ dom 𝐺 → (𝑦 E 𝐼𝑦𝐼))
12318, 122syl 17 . . . . . . . . . 10 (𝜑 → (𝑦 E 𝐼𝑦𝐼))
124123biimpar 477 . . . . . . . . 9 ((𝜑𝑦𝐼) → 𝑦 E 𝐼)
125 ovexd 7390 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp ∅) ∈ V)
12633simpld 494 . . . . . . . . . . . 12 (𝜑 → E We (𝐹 supp ∅))
12719oiiso 9434 . . . . . . . . . . . 12 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
128125, 126, 127syl2anc 584 . . . . . . . . . . 11 (𝜑𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
129128adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐼) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
13019oicl 9426 . . . . . . . . . . . 12 Ord dom 𝐺
131 ordelss 6330 . . . . . . . . . . . 12 ((Ord dom 𝐺𝐼 ∈ dom 𝐺) → 𝐼 ⊆ dom 𝐺)
132130, 18, 131sylancr 587 . . . . . . . . . . 11 (𝜑𝐼 ⊆ dom 𝐺)
133132sselda 3930 . . . . . . . . . 10 ((𝜑𝑦𝐼) → 𝑦 ∈ dom 𝐺)
13418adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐼) → 𝐼 ∈ dom 𝐺)
135 isorel 7269 . . . . . . . . . 10 ((𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) ∧ (𝑦 ∈ dom 𝐺𝐼 ∈ dom 𝐺)) → (𝑦 E 𝐼 ↔ (𝐺𝑦) E (𝐺𝐼)))
136129, 133, 134, 135syl12anc 836 . . . . . . . . 9 ((𝜑𝑦𝐼) → (𝑦 E 𝐼 ↔ (𝐺𝑦) E (𝐺𝐼)))
137124, 136mpbid 232 . . . . . . . 8 ((𝜑𝑦𝐼) → (𝐺𝑦) E (𝐺𝐼))
138 fvex 6844 . . . . . . . . 9 (𝐺𝐼) ∈ V
139138epeli 5523 . . . . . . . 8 ((𝐺𝑦) E (𝐺𝐼) ↔ (𝐺𝑦) ∈ (𝐺𝐼))
140137, 139sylib 218 . . . . . . 7 ((𝜑𝑦𝐼) → (𝐺𝑦) ∈ (𝐺𝐼))
141140ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑦𝐼 (𝐺𝑦) ∈ (𝐺𝐼))
142 ffun 6662 . . . . . . . 8 (𝐺:dom 𝐺⟶(𝐹 supp ∅) → Fun 𝐺)
14320, 142ax-mp 5 . . . . . . 7 Fun 𝐺
144 funimass4 6895 . . . . . . 7 ((Fun 𝐺𝐼 ⊆ dom 𝐺) → ((𝐺𝐼) ⊆ (𝐺𝐼) ↔ ∀𝑦𝐼 (𝐺𝑦) ∈ (𝐺𝐼)))
145143, 132, 144sylancr 587 . . . . . 6 (𝜑 → ((𝐺𝐼) ⊆ (𝐺𝐼) ↔ ∀𝑦𝐼 (𝐺𝑦) ∈ (𝐺𝐼)))
146141, 145mpbird 257 . . . . 5 (𝜑 → (𝐺𝐼) ⊆ (𝐺𝐼))
1471a1i 11 . . . . . 6 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺𝐼) ∈ On ∧ (𝐺𝐼) ⊆ (𝐺𝐼))) → ω ∈ On)
148 simpll 766 . . . . . 6 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺𝐼) ∈ On ∧ (𝐺𝐼) ⊆ (𝐺𝐼))) → 𝐴 ∈ On)
149 simplr 768 . . . . . 6 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺𝐼) ∈ On ∧ (𝐺𝐼) ⊆ (𝐺𝐼))) → 𝐹𝑆)
150 peano1 7828 . . . . . . 7 ∅ ∈ ω
151150a1i 11 . . . . . 6 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺𝐼) ∈ On ∧ (𝐺𝐼) ⊆ (𝐺𝐼))) → ∅ ∈ ω)
152 simpr1 1195 . . . . . 6 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺𝐼) ∈ On ∧ (𝐺𝐼) ⊆ (𝐺𝐼))) → 𝐼 ∈ suc dom 𝐺)
153 simpr2 1196 . . . . . 6 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺𝐼) ∈ On ∧ (𝐺𝐼) ⊆ (𝐺𝐼))) → (𝐺𝐼) ∈ On)
154 simpr3 1197 . . . . . 6 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺𝐼) ∈ On ∧ (𝐺𝐼) ⊆ (𝐺𝐼))) → (𝐺𝐼) ⊆ (𝐺𝐼))
1555, 147, 148, 19, 149, 115, 151, 152, 153, 154cantnflt 9573 . . . . 5 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺𝐼) ∈ On ∧ (𝐺𝐼) ⊆ (𝐺𝐼))) → (𝐻𝐼) ∈ (ω ↑o (𝐺𝐼)))
1562, 13, 121, 25, 146, 155syl23anc 1379 . . . 4 (𝜑 → (𝐻𝐼) ∈ (ω ↑o (𝐺𝐼)))
15716ffnd 6660 . . . . . . . . 9 (𝜑𝐹 Fn 𝐴)
158 0ex 5249 . . . . . . . . . 10 ∅ ∈ V
159158a1i 11 . . . . . . . . 9 (𝜑 → ∅ ∈ V)
160 elsuppfn 8109 . . . . . . . . 9 ((𝐹 Fn 𝐴𝐴 ∈ On ∧ ∅ ∈ V) → ((𝐺𝐼) ∈ (𝐹 supp ∅) ↔ ((𝐺𝐼) ∈ 𝐴 ∧ (𝐹‘(𝐺𝐼)) ≠ ∅)))
161157, 2, 159, 160syl3anc 1373 . . . . . . . 8 (𝜑 → ((𝐺𝐼) ∈ (𝐹 supp ∅) ↔ ((𝐺𝐼) ∈ 𝐴 ∧ (𝐹‘(𝐺𝐼)) ≠ ∅)))
162 simpr 484 . . . . . . . 8 (((𝐺𝐼) ∈ 𝐴 ∧ (𝐹‘(𝐺𝐼)) ≠ ∅) → (𝐹‘(𝐺𝐼)) ≠ ∅)
163161, 162biimtrdi 253 . . . . . . 7 (𝜑 → ((𝐺𝐼) ∈ (𝐹 supp ∅) → (𝐹‘(𝐺𝐼)) ≠ ∅))
16422, 163mpd 15 . . . . . 6 (𝜑 → (𝐹‘(𝐺𝐼)) ≠ ∅)
165 on0eln0 6371 . . . . . . 7 ((𝐹‘(𝐺𝐼)) ∈ On → (∅ ∈ (𝐹‘(𝐺𝐼)) ↔ (𝐹‘(𝐺𝐼)) ≠ ∅))
16630, 165syl 17 . . . . . 6 (𝜑 → (∅ ∈ (𝐹‘(𝐺𝐼)) ↔ (𝐹‘(𝐺𝐼)) ≠ ∅))
167164, 166mpbird 257 . . . . 5 (𝜑 → ∅ ∈ (𝐹‘(𝐺𝐼)))
168 omword1 8497 . . . . 5 ((((ω ↑o (𝐺𝐼)) ∈ On ∧ (𝐹‘(𝐺𝐼)) ∈ On) ∧ ∅ ∈ (𝐹‘(𝐺𝐼))) → (ω ↑o (𝐺𝐼)) ⊆ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))))
16927, 30, 167, 168syl21anc 837 . . . 4 (𝜑 → (ω ↑o (𝐺𝐼)) ⊆ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))))
170 oaabs2 8573 . . . 4 ((((𝐻𝐼) ∈ (ω ↑o (𝐺𝐼)) ∧ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ∈ On) ∧ (ω ↑o (𝐺𝐼)) ⊆ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼)))) → ((𝐻𝐼) +o ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼)))) = ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))))
171156, 32, 169, 170syl21anc 837 . . 3 (𝜑 → ((𝐻𝐼) +o ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼)))) = ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))))
172171f1oeq3d 6768 . 2 (𝜑 → ((𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((𝐻𝐼) +o ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼)))) ↔ (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼)))))
173119, 172mpbid 232 1 (𝜑 → (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  Vcvv 3437  cun 3896  wss 3898  c0 4282   class class class wbr 5095  cmpt 5176   E cep 5520   We wwe 5573  ccnv 5620  dom cdm 5621  cima 5624  Ord word 6313  Oncon0 6314  suc csuc 6316  Fun wfun 6483   Fn wfn 6484  wf 6485  1-1-ontowf1o 6488  cfv 6489   Isom wiso 6490  (class class class)co 7355  cmpo 7357  ωcom 7805   supp csupp 8099  seqωcseqom 8375   +o coa 8391   ·o comu 8392  o coe 8393   finSupp cfsupp 9256  OrdIsocoi 9406   CNF ccnf 9562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-seqom 8376  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399  df-oexp 8400  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-oi 9407  df-cnf 9563
This theorem is referenced by:  cnfcom  9601
  Copyright terms: Public domain W3C validator