Step | Hyp | Ref
| Expression |
1 | | omelon 9261 |
. . . . . . 7
⊢ ω
∈ On |
2 | | cnfcom.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ On) |
3 | | suppssdm 7919 |
. . . . . . . . . 10
⊢ (𝐹 supp ∅) ⊆ dom 𝐹 |
4 | | cnfcom.f |
. . . . . . . . . . . . 13
⊢ 𝐹 = (◡(ω CNF 𝐴)‘𝐵) |
5 | | cnfcom.s |
. . . . . . . . . . . . . . . 16
⊢ 𝑆 = dom (ω CNF 𝐴) |
6 | 1 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ω ∈
On) |
7 | 5, 6, 2 | cantnff1o 9311 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (ω CNF 𝐴):𝑆–1-1-onto→(ω ↑o 𝐴)) |
8 | | f1ocnv 6673 |
. . . . . . . . . . . . . . 15
⊢ ((ω
CNF 𝐴):𝑆–1-1-onto→(ω ↑o 𝐴) → ◡(ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto→𝑆) |
9 | | f1of 6661 |
. . . . . . . . . . . . . . 15
⊢ (◡(ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto→𝑆 → ◡(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆) |
10 | 7, 8, 9 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ◡(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆) |
11 | | cnfcom.b |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ (ω ↑o 𝐴)) |
12 | 10, 11 | ffvelrnd 6905 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (◡(ω CNF 𝐴)‘𝐵) ∈ 𝑆) |
13 | 4, 12 | eqeltrid 2842 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∈ 𝑆) |
14 | 5, 6, 2 | cantnfs 9281 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅))) |
15 | 13, 14 | mpbid 235 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅)) |
16 | 15 | simpld 498 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝐴⟶ω) |
17 | 3, 16 | fssdm 6565 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐴) |
18 | | cnfcom.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ∈ dom 𝐺) |
19 | | cnfcom.g |
. . . . . . . . . . . 12
⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) |
20 | 19 | oif 9146 |
. . . . . . . . . . 11
⊢ 𝐺:dom 𝐺⟶(𝐹 supp ∅) |
21 | 20 | ffvelrni 6903 |
. . . . . . . . . 10
⊢ (𝐼 ∈ dom 𝐺 → (𝐺‘𝐼) ∈ (𝐹 supp ∅)) |
22 | 18, 21 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺‘𝐼) ∈ (𝐹 supp ∅)) |
23 | 17, 22 | sseldd 3902 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘𝐼) ∈ 𝐴) |
24 | | onelon 6238 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ (𝐺‘𝐼) ∈ 𝐴) → (𝐺‘𝐼) ∈ On) |
25 | 2, 23, 24 | syl2anc 587 |
. . . . . . 7
⊢ (𝜑 → (𝐺‘𝐼) ∈ On) |
26 | | oecl 8264 |
. . . . . . 7
⊢ ((ω
∈ On ∧ (𝐺‘𝐼) ∈ On) → (ω
↑o (𝐺‘𝐼)) ∈ On) |
27 | 1, 25, 26 | sylancr 590 |
. . . . . 6
⊢ (𝜑 → (ω
↑o (𝐺‘𝐼)) ∈ On) |
28 | 16, 23 | ffvelrnd 6905 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘(𝐺‘𝐼)) ∈ ω) |
29 | | nnon 7650 |
. . . . . . 7
⊢ ((𝐹‘(𝐺‘𝐼)) ∈ ω → (𝐹‘(𝐺‘𝐼)) ∈ On) |
30 | 28, 29 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐹‘(𝐺‘𝐼)) ∈ On) |
31 | | omcl 8263 |
. . . . . 6
⊢
(((ω ↑o (𝐺‘𝐼)) ∈ On ∧ (𝐹‘(𝐺‘𝐼)) ∈ On) → ((ω
↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ∈ On) |
32 | 27, 30, 31 | syl2anc 587 |
. . . . 5
⊢ (𝜑 → ((ω
↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ∈ On) |
33 | 5, 6, 2, 19, 13 | cantnfcl 9282 |
. . . . . . . 8
⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω)) |
34 | 33 | simprd 499 |
. . . . . . 7
⊢ (𝜑 → dom 𝐺 ∈ ω) |
35 | | elnn 7655 |
. . . . . . 7
⊢ ((𝐼 ∈ dom 𝐺 ∧ dom 𝐺 ∈ ω) → 𝐼 ∈ ω) |
36 | 18, 34, 35 | syl2anc 587 |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ ω) |
37 | | cnfcom.h |
. . . . . . . 8
⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) |
38 | 37 | cantnfvalf 9280 |
. . . . . . 7
⊢ 𝐻:ω⟶On |
39 | 38 | ffvelrni 6903 |
. . . . . 6
⊢ (𝐼 ∈ ω → (𝐻‘𝐼) ∈ On) |
40 | 36, 39 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐻‘𝐼) ∈ On) |
41 | | eqid 2737 |
. . . . . 6
⊢ ((𝑦 ∈ ((ω
↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ↦ ((𝐻‘𝐼) +o 𝑦)) ∪ ◡(𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦))) = ((𝑦 ∈ ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ↦ ((𝐻‘𝐼) +o 𝑦)) ∪ ◡(𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦))) |
42 | 41 | oacomf1o 8293 |
. . . . 5
⊢
((((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ∈ On ∧ (𝐻‘𝐼) ∈ On) → ((𝑦 ∈ ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ↦ ((𝐻‘𝐼) +o 𝑦)) ∪ ◡(𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦))):(((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o (𝐻‘𝐼))–1-1-onto→((𝐻‘𝐼) +o ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))))) |
43 | 32, 40, 42 | syl2anc 587 |
. . . 4
⊢ (𝜑 → ((𝑦 ∈ ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ↦ ((𝐻‘𝐼) +o 𝑦)) ∪ ◡(𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦))):(((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o (𝐻‘𝐼))–1-1-onto→((𝐻‘𝐼) +o ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))))) |
44 | | cnfcom.t |
. . . . . . . 8
⊢ 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅) |
45 | 44 | seqomsuc 8193 |
. . . . . . 7
⊢ (𝐼 ∈ ω → (𝑇‘suc 𝐼) = (𝐼(𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾)(𝑇‘𝐼))) |
46 | 36, 45 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑇‘suc 𝐼) = (𝐼(𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾)(𝑇‘𝐼))) |
47 | | nfcv 2904 |
. . . . . . . . 9
⊢
Ⅎ𝑢𝐾 |
48 | | nfcv 2904 |
. . . . . . . . 9
⊢
Ⅎ𝑣𝐾 |
49 | | nfcv 2904 |
. . . . . . . . 9
⊢
Ⅎ𝑘((𝑦 ∈ ((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ ◡(𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦))) |
50 | | nfcv 2904 |
. . . . . . . . 9
⊢
Ⅎ𝑓((𝑦 ∈ ((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ ◡(𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦))) |
51 | | cnfcom.k |
. . . . . . . . . 10
⊢ 𝐾 = ((𝑥 ∈ 𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ ◡(𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥))) |
52 | | oveq2 7221 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (dom 𝑓 +o 𝑥) = (dom 𝑓 +o 𝑦)) |
53 | 52 | cbvmptv 5158 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑀 ↦ (dom 𝑓 +o 𝑥)) = (𝑦 ∈ 𝑀 ↦ (dom 𝑓 +o 𝑦)) |
54 | | cnfcom.m |
. . . . . . . . . . . . . 14
⊢ 𝑀 = ((ω ↑o
(𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) |
55 | | simpl 486 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → 𝑘 = 𝑢) |
56 | 55 | fveq2d 6721 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → (𝐺‘𝑘) = (𝐺‘𝑢)) |
57 | 56 | oveq2d 7229 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → (ω ↑o (𝐺‘𝑘)) = (ω ↑o (𝐺‘𝑢))) |
58 | 56 | fveq2d 6721 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → (𝐹‘(𝐺‘𝑘)) = (𝐹‘(𝐺‘𝑢))) |
59 | 57, 58 | oveq12d 7231 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → ((ω ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) = ((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢)))) |
60 | 54, 59 | eqtrid 2789 |
. . . . . . . . . . . . 13
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → 𝑀 = ((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢)))) |
61 | | simpr 488 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → 𝑓 = 𝑣) |
62 | 61 | dmeqd 5774 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → dom 𝑓 = dom 𝑣) |
63 | 62 | oveq1d 7228 |
. . . . . . . . . . . . 13
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → (dom 𝑓 +o 𝑦) = (dom 𝑣 +o 𝑦)) |
64 | 60, 63 | mpteq12dv 5140 |
. . . . . . . . . . . 12
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → (𝑦 ∈ 𝑀 ↦ (dom 𝑓 +o 𝑦)) = (𝑦 ∈ ((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) ↦ (dom 𝑣 +o 𝑦))) |
65 | 53, 64 | eqtrid 2789 |
. . . . . . . . . . 11
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → (𝑥 ∈ 𝑀 ↦ (dom 𝑓 +o 𝑥)) = (𝑦 ∈ ((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) ↦ (dom 𝑣 +o 𝑦))) |
66 | | oveq2 7221 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → (𝑀 +o 𝑥) = (𝑀 +o 𝑦)) |
67 | 66 | cbvmptv 5158 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)) = (𝑦 ∈ dom 𝑓 ↦ (𝑀 +o 𝑦)) |
68 | 60 | oveq1d 7228 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → (𝑀 +o 𝑦) = (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦)) |
69 | 62, 68 | mpteq12dv 5140 |
. . . . . . . . . . . . 13
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → (𝑦 ∈ dom 𝑓 ↦ (𝑀 +o 𝑦)) = (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦))) |
70 | 67, 69 | eqtrid 2789 |
. . . . . . . . . . . 12
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)) = (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦))) |
71 | 70 | cnveqd 5744 |
. . . . . . . . . . 11
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → ◡(𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)) = ◡(𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦))) |
72 | 65, 71 | uneq12d 4078 |
. . . . . . . . . 10
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → ((𝑥 ∈ 𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ ◡(𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥))) = ((𝑦 ∈ ((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ ◡(𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦)))) |
73 | 51, 72 | eqtrid 2789 |
. . . . . . . . 9
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → 𝐾 = ((𝑦 ∈ ((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ ◡(𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦)))) |
74 | 47, 48, 49, 50, 73 | cbvmpo 7305 |
. . . . . . . 8
⊢ (𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾) = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑦 ∈ ((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ ◡(𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦)))) |
75 | 74 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾) = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑦 ∈ ((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ ◡(𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦))))) |
76 | | simprl 771 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼))) → 𝑢 = 𝐼) |
77 | 76 | fveq2d 6721 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼))) → (𝐺‘𝑢) = (𝐺‘𝐼)) |
78 | 77 | oveq2d 7229 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼))) → (ω ↑o
(𝐺‘𝑢)) = (ω ↑o (𝐺‘𝐼))) |
79 | 77 | fveq2d 6721 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼))) → (𝐹‘(𝐺‘𝑢)) = (𝐹‘(𝐺‘𝐼))) |
80 | 78, 79 | oveq12d 7231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼))) → ((ω ↑o
(𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) = ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) |
81 | | simpr 488 |
. . . . . . . . . . . 12
⊢ ((𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼)) → 𝑣 = (𝑇‘𝐼)) |
82 | 81 | dmeqd 5774 |
. . . . . . . . . . 11
⊢ ((𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼)) → dom 𝑣 = dom (𝑇‘𝐼)) |
83 | | cnfcom.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑇‘𝐼):(𝐻‘𝐼)–1-1-onto→𝑂) |
84 | | f1odm 6665 |
. . . . . . . . . . . 12
⊢ ((𝑇‘𝐼):(𝐻‘𝐼)–1-1-onto→𝑂 → dom (𝑇‘𝐼) = (𝐻‘𝐼)) |
85 | 83, 84 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → dom (𝑇‘𝐼) = (𝐻‘𝐼)) |
86 | 82, 85 | sylan9eqr 2800 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼))) → dom 𝑣 = (𝐻‘𝐼)) |
87 | 86 | oveq1d 7228 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼))) → (dom 𝑣 +o 𝑦) = ((𝐻‘𝐼) +o 𝑦)) |
88 | 80, 87 | mpteq12dv 5140 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼))) → (𝑦 ∈ ((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) ↦ (dom 𝑣 +o 𝑦)) = (𝑦 ∈ ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ↦ ((𝐻‘𝐼) +o 𝑦))) |
89 | 80 | oveq1d 7228 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼))) → (((ω ↑o
(𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦) = (((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦)) |
90 | 86, 89 | mpteq12dv 5140 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼))) → (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦)) = (𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦))) |
91 | 90 | cnveqd 5744 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼))) → ◡(𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦)) = ◡(𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦))) |
92 | 88, 91 | uneq12d 4078 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼))) → ((𝑦 ∈ ((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ ◡(𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦))) = ((𝑦 ∈ ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ↦ ((𝐻‘𝐼) +o 𝑦)) ∪ ◡(𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦)))) |
93 | 18 | elexd 3428 |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ V) |
94 | | fvexd 6732 |
. . . . . . 7
⊢ (𝜑 → (𝑇‘𝐼) ∈ V) |
95 | | ovex 7246 |
. . . . . . . . . 10
⊢ ((ω
↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ∈ V |
96 | 95 | mptex 7039 |
. . . . . . . . 9
⊢ (𝑦 ∈ ((ω
↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ↦ ((𝐻‘𝐼) +o 𝑦)) ∈ V |
97 | | fvex 6730 |
. . . . . . . . . . 11
⊢ (𝐻‘𝐼) ∈ V |
98 | 97 | mptex 7039 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦)) ∈ V |
99 | 98 | cnvex 7703 |
. . . . . . . . 9
⊢ ◡(𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦)) ∈ V |
100 | 96, 99 | unex 7531 |
. . . . . . . 8
⊢ ((𝑦 ∈ ((ω
↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ↦ ((𝐻‘𝐼) +o 𝑦)) ∪ ◡(𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦))) ∈ V |
101 | 100 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ((𝑦 ∈ ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ↦ ((𝐻‘𝐼) +o 𝑦)) ∪ ◡(𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦))) ∈ V) |
102 | 75, 92, 93, 94, 101 | ovmpod 7361 |
. . . . . 6
⊢ (𝜑 → (𝐼(𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾)(𝑇‘𝐼)) = ((𝑦 ∈ ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ↦ ((𝐻‘𝐼) +o 𝑦)) ∪ ◡(𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦)))) |
103 | 46, 102 | eqtrd 2777 |
. . . . 5
⊢ (𝜑 → (𝑇‘suc 𝐼) = ((𝑦 ∈ ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ↦ ((𝐻‘𝐼) +o 𝑦)) ∪ ◡(𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦)))) |
104 | 103 | f1oeq1d 6656 |
. . . 4
⊢ (𝜑 → ((𝑇‘suc 𝐼):(((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o (𝐻‘𝐼))–1-1-onto→((𝐻‘𝐼) +o ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) ↔ ((𝑦 ∈ ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ↦ ((𝐻‘𝐼) +o 𝑦)) ∪ ◡(𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦))):(((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o (𝐻‘𝐼))–1-1-onto→((𝐻‘𝐼) +o ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))))) |
105 | 43, 104 | mpbird 260 |
. . 3
⊢ (𝜑 → (𝑇‘suc 𝐼):(((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o (𝐻‘𝐼))–1-1-onto→((𝐻‘𝐼) +o ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))))) |
106 | 1 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐹 ∈ 𝑆) → ω ∈ On) |
107 | | simpl 486 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐹 ∈ 𝑆) → 𝐴 ∈ On) |
108 | | simpr 488 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐹 ∈ 𝑆) → 𝐹 ∈ 𝑆) |
109 | 54 | oveq1i 7223 |
. . . . . . . . . 10
⊢ (𝑀 +o 𝑧) = (((ω
↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧) |
110 | 109 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑘 ∈ V ∧ 𝑧 ∈ V) → (𝑀 +o 𝑧) = (((ω
↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)) |
111 | 110 | mpoeq3ia 7289 |
. . . . . . . 8
⊢ (𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω
↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)) |
112 | | eqid 2737 |
. . . . . . . 8
⊢ ∅ =
∅ |
113 | | seqomeq12 8190 |
. . . . . . . 8
⊢ (((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω
↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)) ∧ ∅ = ∅) →
seqω((𝑘
∈ V, 𝑧 ∈ V
↦ (𝑀 +o
𝑧)), ∅) =
seqω((𝑘
∈ V, 𝑧 ∈ V
↦ (((ω ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅)) |
114 | 111, 112,
113 | mp2an 692 |
. . . . . . 7
⊢
seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω
↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅) |
115 | 37, 114 | eqtri 2765 |
. . . . . 6
⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω
↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅) |
116 | 5, 106, 107, 19, 108, 115 | cantnfsuc 9285 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐹 ∈ 𝑆) ∧ 𝐼 ∈ ω) → (𝐻‘suc 𝐼) = (((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o (𝐻‘𝐼))) |
117 | 2, 13, 36, 116 | syl21anc 838 |
. . . 4
⊢ (𝜑 → (𝐻‘suc 𝐼) = (((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o (𝐻‘𝐼))) |
118 | 117 | f1oeq2d 6657 |
. . 3
⊢ (𝜑 → ((𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((𝐻‘𝐼) +o ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) ↔ (𝑇‘suc 𝐼):(((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o (𝐻‘𝐼))–1-1-onto→((𝐻‘𝐼) +o ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))))) |
119 | 105, 118 | mpbird 260 |
. 2
⊢ (𝜑 → (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((𝐻‘𝐼) +o ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))))) |
120 | | sssucid 6290 |
. . . . . 6
⊢ dom 𝐺 ⊆ suc dom 𝐺 |
121 | 120, 18 | sselid 3898 |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ suc dom 𝐺) |
122 | | epelg 5461 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ dom 𝐺 → (𝑦 E 𝐼 ↔ 𝑦 ∈ 𝐼)) |
123 | 18, 122 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 E 𝐼 ↔ 𝑦 ∈ 𝐼)) |
124 | 123 | biimpar 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → 𝑦 E 𝐼) |
125 | | ovexd 7248 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 supp ∅) ∈ V) |
126 | 33 | simpld 498 |
. . . . . . . . . . . 12
⊢ (𝜑 → E We (𝐹 supp ∅)) |
127 | 19 | oiiso 9153 |
. . . . . . . . . . . 12
⊢ (((𝐹 supp ∅) ∈ V ∧ E
We (𝐹 supp ∅)) →
𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅))) |
128 | 125, 126,
127 | syl2anc 587 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅))) |
129 | 128 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅))) |
130 | 19 | oicl 9145 |
. . . . . . . . . . . 12
⊢ Ord dom
𝐺 |
131 | | ordelss 6229 |
. . . . . . . . . . . 12
⊢ ((Ord dom
𝐺 ∧ 𝐼 ∈ dom 𝐺) → 𝐼 ⊆ dom 𝐺) |
132 | 130, 18, 131 | sylancr 590 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐼 ⊆ dom 𝐺) |
133 | 132 | sselda 3901 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → 𝑦 ∈ dom 𝐺) |
134 | 18 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → 𝐼 ∈ dom 𝐺) |
135 | | isorel 7135 |
. . . . . . . . . 10
⊢ ((𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) ∧ (𝑦 ∈ dom 𝐺 ∧ 𝐼 ∈ dom 𝐺)) → (𝑦 E 𝐼 ↔ (𝐺‘𝑦) E (𝐺‘𝐼))) |
136 | 129, 133,
134, 135 | syl12anc 837 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝑦 E 𝐼 ↔ (𝐺‘𝑦) E (𝐺‘𝐼))) |
137 | 124, 136 | mpbid 235 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝐺‘𝑦) E (𝐺‘𝐼)) |
138 | | fvex 6730 |
. . . . . . . . 9
⊢ (𝐺‘𝐼) ∈ V |
139 | 138 | epeli 5462 |
. . . . . . . 8
⊢ ((𝐺‘𝑦) E (𝐺‘𝐼) ↔ (𝐺‘𝑦) ∈ (𝐺‘𝐼)) |
140 | 137, 139 | sylib 221 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝐺‘𝑦) ∈ (𝐺‘𝐼)) |
141 | 140 | ralrimiva 3105 |
. . . . . 6
⊢ (𝜑 → ∀𝑦 ∈ 𝐼 (𝐺‘𝑦) ∈ (𝐺‘𝐼)) |
142 | | ffun 6548 |
. . . . . . . 8
⊢ (𝐺:dom 𝐺⟶(𝐹 supp ∅) → Fun 𝐺) |
143 | 20, 142 | ax-mp 5 |
. . . . . . 7
⊢ Fun 𝐺 |
144 | | funimass4 6777 |
. . . . . . 7
⊢ ((Fun
𝐺 ∧ 𝐼 ⊆ dom 𝐺) → ((𝐺 “ 𝐼) ⊆ (𝐺‘𝐼) ↔ ∀𝑦 ∈ 𝐼 (𝐺‘𝑦) ∈ (𝐺‘𝐼))) |
145 | 143, 132,
144 | sylancr 590 |
. . . . . 6
⊢ (𝜑 → ((𝐺 “ 𝐼) ⊆ (𝐺‘𝐼) ↔ ∀𝑦 ∈ 𝐼 (𝐺‘𝑦) ∈ (𝐺‘𝐼))) |
146 | 141, 145 | mpbird 260 |
. . . . 5
⊢ (𝜑 → (𝐺 “ 𝐼) ⊆ (𝐺‘𝐼)) |
147 | 1 | a1i 11 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐹 ∈ 𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺‘𝐼) ∈ On ∧ (𝐺 “ 𝐼) ⊆ (𝐺‘𝐼))) → ω ∈
On) |
148 | | simpll 767 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐹 ∈ 𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺‘𝐼) ∈ On ∧ (𝐺 “ 𝐼) ⊆ (𝐺‘𝐼))) → 𝐴 ∈ On) |
149 | | simplr 769 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐹 ∈ 𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺‘𝐼) ∈ On ∧ (𝐺 “ 𝐼) ⊆ (𝐺‘𝐼))) → 𝐹 ∈ 𝑆) |
150 | | peano1 7667 |
. . . . . . 7
⊢ ∅
∈ ω |
151 | 150 | a1i 11 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐹 ∈ 𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺‘𝐼) ∈ On ∧ (𝐺 “ 𝐼) ⊆ (𝐺‘𝐼))) → ∅ ∈
ω) |
152 | | simpr1 1196 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐹 ∈ 𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺‘𝐼) ∈ On ∧ (𝐺 “ 𝐼) ⊆ (𝐺‘𝐼))) → 𝐼 ∈ suc dom 𝐺) |
153 | | simpr2 1197 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐹 ∈ 𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺‘𝐼) ∈ On ∧ (𝐺 “ 𝐼) ⊆ (𝐺‘𝐼))) → (𝐺‘𝐼) ∈ On) |
154 | | simpr3 1198 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐹 ∈ 𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺‘𝐼) ∈ On ∧ (𝐺 “ 𝐼) ⊆ (𝐺‘𝐼))) → (𝐺 “ 𝐼) ⊆ (𝐺‘𝐼)) |
155 | 5, 147, 148, 19, 149, 115, 151, 152, 153, 154 | cantnflt 9287 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐹 ∈ 𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺‘𝐼) ∈ On ∧ (𝐺 “ 𝐼) ⊆ (𝐺‘𝐼))) → (𝐻‘𝐼) ∈ (ω ↑o (𝐺‘𝐼))) |
156 | 2, 13, 121, 25, 146, 155 | syl23anc 1379 |
. . . 4
⊢ (𝜑 → (𝐻‘𝐼) ∈ (ω ↑o (𝐺‘𝐼))) |
157 | 16 | ffnd 6546 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 Fn 𝐴) |
158 | | 0ex 5200 |
. . . . . . . . . 10
⊢ ∅
∈ V |
159 | 158 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ∅ ∈
V) |
160 | | elsuppfn 7913 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ On ∧ ∅ ∈ V) →
((𝐺‘𝐼) ∈ (𝐹 supp ∅) ↔ ((𝐺‘𝐼) ∈ 𝐴 ∧ (𝐹‘(𝐺‘𝐼)) ≠ ∅))) |
161 | 157, 2, 159, 160 | syl3anc 1373 |
. . . . . . . 8
⊢ (𝜑 → ((𝐺‘𝐼) ∈ (𝐹 supp ∅) ↔ ((𝐺‘𝐼) ∈ 𝐴 ∧ (𝐹‘(𝐺‘𝐼)) ≠ ∅))) |
162 | | simpr 488 |
. . . . . . . 8
⊢ (((𝐺‘𝐼) ∈ 𝐴 ∧ (𝐹‘(𝐺‘𝐼)) ≠ ∅) → (𝐹‘(𝐺‘𝐼)) ≠ ∅) |
163 | 161, 162 | syl6bi 256 |
. . . . . . 7
⊢ (𝜑 → ((𝐺‘𝐼) ∈ (𝐹 supp ∅) → (𝐹‘(𝐺‘𝐼)) ≠ ∅)) |
164 | 22, 163 | mpd 15 |
. . . . . 6
⊢ (𝜑 → (𝐹‘(𝐺‘𝐼)) ≠ ∅) |
165 | | on0eln0 6268 |
. . . . . . 7
⊢ ((𝐹‘(𝐺‘𝐼)) ∈ On → (∅ ∈ (𝐹‘(𝐺‘𝐼)) ↔ (𝐹‘(𝐺‘𝐼)) ≠ ∅)) |
166 | 30, 165 | syl 17 |
. . . . . 6
⊢ (𝜑 → (∅ ∈ (𝐹‘(𝐺‘𝐼)) ↔ (𝐹‘(𝐺‘𝐼)) ≠ ∅)) |
167 | 164, 166 | mpbird 260 |
. . . . 5
⊢ (𝜑 → ∅ ∈ (𝐹‘(𝐺‘𝐼))) |
168 | | omword1 8301 |
. . . . 5
⊢
((((ω ↑o (𝐺‘𝐼)) ∈ On ∧ (𝐹‘(𝐺‘𝐼)) ∈ On) ∧ ∅ ∈ (𝐹‘(𝐺‘𝐼))) → (ω ↑o
(𝐺‘𝐼)) ⊆ ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) |
169 | 27, 30, 167, 168 | syl21anc 838 |
. . . 4
⊢ (𝜑 → (ω
↑o (𝐺‘𝐼)) ⊆ ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) |
170 | | oaabs2 8374 |
. . . 4
⊢ ((((𝐻‘𝐼) ∈ (ω ↑o (𝐺‘𝐼)) ∧ ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ∈ On) ∧ (ω
↑o (𝐺‘𝐼)) ⊆ ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) → ((𝐻‘𝐼) +o ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) = ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) |
171 | 156, 32, 169, 170 | syl21anc 838 |
. . 3
⊢ (𝜑 → ((𝐻‘𝐼) +o ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) = ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) |
172 | 171 | f1oeq3d 6658 |
. 2
⊢ (𝜑 → ((𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((𝐻‘𝐼) +o ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) ↔ (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))))) |
173 | 119, 172 | mpbid 235 |
1
⊢ (𝜑 → (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) |