MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcomlem Structured version   Visualization version   GIF version

Theorem cnfcomlem 9156
Description: Lemma for cnfcom 9157. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
cnfcom.s 𝑆 = dom (ω CNF 𝐴)
cnfcom.a (𝜑𝐴 ∈ On)
cnfcom.b (𝜑𝐵 ∈ (ω ↑o 𝐴))
cnfcom.f 𝐹 = ((ω CNF 𝐴)‘𝐵)
cnfcom.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cnfcom.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅)
cnfcom.t 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
cnfcom.m 𝑀 = ((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘)))
cnfcom.k 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)))
cnfcom.1 (𝜑𝐼 ∈ dom 𝐺)
cnfcom.2 (𝜑𝑂 ∈ (ω ↑o (𝐺𝐼)))
cnfcom.3 (𝜑 → (𝑇𝐼):(𝐻𝐼)–1-1-onto𝑂)
Assertion
Ref Expression
cnfcomlem (𝜑 → (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))))
Distinct variable groups:   𝑥,𝑘,𝑧,𝐴   𝑘,𝐼,𝑥,𝑧   𝑥,𝑀   𝑓,𝑘,𝑥,𝑧,𝐹   𝑧,𝑇   𝑓,𝐺,𝑘,𝑥,𝑧   𝑓,𝐻,𝑥   𝑆,𝑘,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑓,𝑘)   𝐴(𝑓)   𝐵(𝑥,𝑧,𝑓,𝑘)   𝑆(𝑥,𝑓)   𝑇(𝑥,𝑓,𝑘)   𝐻(𝑧,𝑘)   𝐼(𝑓)   𝐾(𝑥,𝑧,𝑓,𝑘)   𝑀(𝑧,𝑓,𝑘)   𝑂(𝑥,𝑧,𝑓,𝑘)

Proof of Theorem cnfcomlem
Dummy variables 𝑢 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omelon 9103 . . . . . . 7 ω ∈ On
2 cnfcom.a . . . . . . . 8 (𝜑𝐴 ∈ On)
3 suppssdm 7837 . . . . . . . . . 10 (𝐹 supp ∅) ⊆ dom 𝐹
4 cnfcom.f . . . . . . . . . . . . 13 𝐹 = ((ω CNF 𝐴)‘𝐵)
5 cnfcom.s . . . . . . . . . . . . . . . 16 𝑆 = dom (ω CNF 𝐴)
61a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → ω ∈ On)
75, 6, 2cantnff1o 9153 . . . . . . . . . . . . . . 15 (𝜑 → (ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴))
8 f1ocnv 6621 . . . . . . . . . . . . . . 15 ((ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴) → (ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto𝑆)
9 f1of 6609 . . . . . . . . . . . . . . 15 ((ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto𝑆(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆)
107, 8, 93syl 18 . . . . . . . . . . . . . 14 (𝜑(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆)
11 cnfcom.b . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ (ω ↑o 𝐴))
1210, 11ffvelrnd 6846 . . . . . . . . . . . . 13 (𝜑 → ((ω CNF 𝐴)‘𝐵) ∈ 𝑆)
134, 12eqeltrid 2917 . . . . . . . . . . . 12 (𝜑𝐹𝑆)
145, 6, 2cantnfs 9123 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅)))
1513, 14mpbid 234 . . . . . . . . . . 11 (𝜑 → (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅))
1615simpld 497 . . . . . . . . . 10 (𝜑𝐹:𝐴⟶ω)
173, 16fssdm 6524 . . . . . . . . 9 (𝜑 → (𝐹 supp ∅) ⊆ 𝐴)
18 cnfcom.1 . . . . . . . . . 10 (𝜑𝐼 ∈ dom 𝐺)
19 cnfcom.g . . . . . . . . . . . 12 𝐺 = OrdIso( E , (𝐹 supp ∅))
2019oif 8988 . . . . . . . . . . 11 𝐺:dom 𝐺⟶(𝐹 supp ∅)
2120ffvelrni 6844 . . . . . . . . . 10 (𝐼 ∈ dom 𝐺 → (𝐺𝐼) ∈ (𝐹 supp ∅))
2218, 21syl 17 . . . . . . . . 9 (𝜑 → (𝐺𝐼) ∈ (𝐹 supp ∅))
2317, 22sseldd 3967 . . . . . . . 8 (𝜑 → (𝐺𝐼) ∈ 𝐴)
24 onelon 6210 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐺𝐼) ∈ 𝐴) → (𝐺𝐼) ∈ On)
252, 23, 24syl2anc 586 . . . . . . 7 (𝜑 → (𝐺𝐼) ∈ On)
26 oecl 8156 . . . . . . 7 ((ω ∈ On ∧ (𝐺𝐼) ∈ On) → (ω ↑o (𝐺𝐼)) ∈ On)
271, 25, 26sylancr 589 . . . . . 6 (𝜑 → (ω ↑o (𝐺𝐼)) ∈ On)
2816, 23ffvelrnd 6846 . . . . . . 7 (𝜑 → (𝐹‘(𝐺𝐼)) ∈ ω)
29 nnon 7580 . . . . . . 7 ((𝐹‘(𝐺𝐼)) ∈ ω → (𝐹‘(𝐺𝐼)) ∈ On)
3028, 29syl 17 . . . . . 6 (𝜑 → (𝐹‘(𝐺𝐼)) ∈ On)
31 omcl 8155 . . . . . 6 (((ω ↑o (𝐺𝐼)) ∈ On ∧ (𝐹‘(𝐺𝐼)) ∈ On) → ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ∈ On)
3227, 30, 31syl2anc 586 . . . . 5 (𝜑 → ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ∈ On)
335, 6, 2, 19, 13cantnfcl 9124 . . . . . . . 8 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
3433simprd 498 . . . . . . 7 (𝜑 → dom 𝐺 ∈ ω)
35 elnn 7584 . . . . . . 7 ((𝐼 ∈ dom 𝐺 ∧ dom 𝐺 ∈ ω) → 𝐼 ∈ ω)
3618, 34, 35syl2anc 586 . . . . . 6 (𝜑𝐼 ∈ ω)
37 cnfcom.h . . . . . . . 8 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅)
3837cantnfvalf 9122 . . . . . . 7 𝐻:ω⟶On
3938ffvelrni 6844 . . . . . 6 (𝐼 ∈ ω → (𝐻𝐼) ∈ On)
4036, 39syl 17 . . . . 5 (𝜑 → (𝐻𝐼) ∈ On)
41 eqid 2821 . . . . . 6 ((𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦))) = ((𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦)))
4241oacomf1o 8185 . . . . 5 ((((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ∈ On ∧ (𝐻𝐼) ∈ On) → ((𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦))):(((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o (𝐻𝐼))–1-1-onto→((𝐻𝐼) +o ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼)))))
4332, 40, 42syl2anc 586 . . . 4 (𝜑 → ((𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦))):(((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o (𝐻𝐼))–1-1-onto→((𝐻𝐼) +o ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼)))))
44 cnfcom.t . . . . . . . 8 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
4544seqomsuc 8087 . . . . . . 7 (𝐼 ∈ ω → (𝑇‘suc 𝐼) = (𝐼(𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾)(𝑇𝐼)))
4636, 45syl 17 . . . . . 6 (𝜑 → (𝑇‘suc 𝐼) = (𝐼(𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾)(𝑇𝐼)))
47 nfcv 2977 . . . . . . . . 9 𝑢𝐾
48 nfcv 2977 . . . . . . . . 9 𝑣𝐾
49 nfcv 2977 . . . . . . . . 9 𝑘((𝑦 ∈ ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦)))
50 nfcv 2977 . . . . . . . . 9 𝑓((𝑦 ∈ ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦)))
51 cnfcom.k . . . . . . . . . 10 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)))
52 oveq2 7158 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (dom 𝑓 +o 𝑥) = (dom 𝑓 +o 𝑦))
5352cbvmptv 5161 . . . . . . . . . . . 12 (𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) = (𝑦𝑀 ↦ (dom 𝑓 +o 𝑦))
54 cnfcom.m . . . . . . . . . . . . . 14 𝑀 = ((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘)))
55 simpl 485 . . . . . . . . . . . . . . . . 17 ((𝑘 = 𝑢𝑓 = 𝑣) → 𝑘 = 𝑢)
5655fveq2d 6668 . . . . . . . . . . . . . . . 16 ((𝑘 = 𝑢𝑓 = 𝑣) → (𝐺𝑘) = (𝐺𝑢))
5756oveq2d 7166 . . . . . . . . . . . . . . 15 ((𝑘 = 𝑢𝑓 = 𝑣) → (ω ↑o (𝐺𝑘)) = (ω ↑o (𝐺𝑢)))
5856fveq2d 6668 . . . . . . . . . . . . . . 15 ((𝑘 = 𝑢𝑓 = 𝑣) → (𝐹‘(𝐺𝑘)) = (𝐹‘(𝐺𝑢)))
5957, 58oveq12d 7168 . . . . . . . . . . . . . 14 ((𝑘 = 𝑢𝑓 = 𝑣) → ((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) = ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))))
6054, 59syl5eq 2868 . . . . . . . . . . . . 13 ((𝑘 = 𝑢𝑓 = 𝑣) → 𝑀 = ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))))
61 simpr 487 . . . . . . . . . . . . . . 15 ((𝑘 = 𝑢𝑓 = 𝑣) → 𝑓 = 𝑣)
6261dmeqd 5768 . . . . . . . . . . . . . 14 ((𝑘 = 𝑢𝑓 = 𝑣) → dom 𝑓 = dom 𝑣)
6362oveq1d 7165 . . . . . . . . . . . . 13 ((𝑘 = 𝑢𝑓 = 𝑣) → (dom 𝑓 +o 𝑦) = (dom 𝑣 +o 𝑦))
6460, 63mpteq12dv 5143 . . . . . . . . . . . 12 ((𝑘 = 𝑢𝑓 = 𝑣) → (𝑦𝑀 ↦ (dom 𝑓 +o 𝑦)) = (𝑦 ∈ ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +o 𝑦)))
6553, 64syl5eq 2868 . . . . . . . . . . 11 ((𝑘 = 𝑢𝑓 = 𝑣) → (𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) = (𝑦 ∈ ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +o 𝑦)))
66 oveq2 7158 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑀 +o 𝑥) = (𝑀 +o 𝑦))
6766cbvmptv 5161 . . . . . . . . . . . . 13 (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)) = (𝑦 ∈ dom 𝑓 ↦ (𝑀 +o 𝑦))
6860oveq1d 7165 . . . . . . . . . . . . . 14 ((𝑘 = 𝑢𝑓 = 𝑣) → (𝑀 +o 𝑦) = (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦))
6962, 68mpteq12dv 5143 . . . . . . . . . . . . 13 ((𝑘 = 𝑢𝑓 = 𝑣) → (𝑦 ∈ dom 𝑓 ↦ (𝑀 +o 𝑦)) = (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦)))
7067, 69syl5eq 2868 . . . . . . . . . . . 12 ((𝑘 = 𝑢𝑓 = 𝑣) → (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)) = (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦)))
7170cnveqd 5740 . . . . . . . . . . 11 ((𝑘 = 𝑢𝑓 = 𝑣) → (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)) = (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦)))
7265, 71uneq12d 4139 . . . . . . . . . 10 ((𝑘 = 𝑢𝑓 = 𝑣) → ((𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥))) = ((𝑦 ∈ ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦))))
7351, 72syl5eq 2868 . . . . . . . . 9 ((𝑘 = 𝑢𝑓 = 𝑣) → 𝐾 = ((𝑦 ∈ ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦))))
7447, 48, 49, 50, 73cbvmpo 7242 . . . . . . . 8 (𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾) = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑦 ∈ ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦))))
7574a1i 11 . . . . . . 7 (𝜑 → (𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾) = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑦 ∈ ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦)))))
76 simprl 769 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → 𝑢 = 𝐼)
7776fveq2d 6668 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → (𝐺𝑢) = (𝐺𝐼))
7877oveq2d 7166 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → (ω ↑o (𝐺𝑢)) = (ω ↑o (𝐺𝐼)))
7977fveq2d 6668 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → (𝐹‘(𝐺𝑢)) = (𝐹‘(𝐺𝐼)))
8078, 79oveq12d 7168 . . . . . . . . 9 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) = ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))))
81 simpr 487 . . . . . . . . . . . 12 ((𝑢 = 𝐼𝑣 = (𝑇𝐼)) → 𝑣 = (𝑇𝐼))
8281dmeqd 5768 . . . . . . . . . . 11 ((𝑢 = 𝐼𝑣 = (𝑇𝐼)) → dom 𝑣 = dom (𝑇𝐼))
83 cnfcom.3 . . . . . . . . . . . 12 (𝜑 → (𝑇𝐼):(𝐻𝐼)–1-1-onto𝑂)
84 f1odm 6613 . . . . . . . . . . . 12 ((𝑇𝐼):(𝐻𝐼)–1-1-onto𝑂 → dom (𝑇𝐼) = (𝐻𝐼))
8583, 84syl 17 . . . . . . . . . . 11 (𝜑 → dom (𝑇𝐼) = (𝐻𝐼))
8682, 85sylan9eqr 2878 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → dom 𝑣 = (𝐻𝐼))
8786oveq1d 7165 . . . . . . . . 9 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → (dom 𝑣 +o 𝑦) = ((𝐻𝐼) +o 𝑦))
8880, 87mpteq12dv 5143 . . . . . . . 8 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → (𝑦 ∈ ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +o 𝑦)) = (𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)))
8980oveq1d 7165 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦) = (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦))
9086, 89mpteq12dv 5143 . . . . . . . . 9 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦)) = (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦)))
9190cnveqd 5740 . . . . . . . 8 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦)) = (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦)))
9288, 91uneq12d 4139 . . . . . . 7 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → ((𝑦 ∈ ((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑦))) = ((𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦))))
9318elexd 3514 . . . . . . 7 (𝜑𝐼 ∈ V)
94 fvexd 6679 . . . . . . 7 (𝜑 → (𝑇𝐼) ∈ V)
95 ovex 7183 . . . . . . . . . 10 ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ∈ V
9695mptex 6980 . . . . . . . . 9 (𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)) ∈ V
97 fvex 6677 . . . . . . . . . . 11 (𝐻𝐼) ∈ V
9897mptex 6980 . . . . . . . . . 10 (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦)) ∈ V
9998cnvex 7624 . . . . . . . . 9 (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦)) ∈ V
10096, 99unex 7463 . . . . . . . 8 ((𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦))) ∈ V
101100a1i 11 . . . . . . 7 (𝜑 → ((𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦))) ∈ V)
10275, 92, 93, 94, 101ovmpod 7296 . . . . . 6 (𝜑 → (𝐼(𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾)(𝑇𝐼)) = ((𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦))))
10346, 102eqtrd 2856 . . . . 5 (𝜑 → (𝑇‘suc 𝐼) = ((𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦))))
104 f1oeq1 6598 . . . . 5 ((𝑇‘suc 𝐼) = ((𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦))) → ((𝑇‘suc 𝐼):(((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o (𝐻𝐼))–1-1-onto→((𝐻𝐼) +o ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼)))) ↔ ((𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦))):(((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o (𝐻𝐼))–1-1-onto→((𝐻𝐼) +o ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))))))
105103, 104syl 17 . . . 4 (𝜑 → ((𝑇‘suc 𝐼):(((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o (𝐻𝐼))–1-1-onto→((𝐻𝐼) +o ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼)))) ↔ ((𝑦 ∈ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +o 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o 𝑦))):(((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o (𝐻𝐼))–1-1-onto→((𝐻𝐼) +o ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))))))
10643, 105mpbird 259 . . 3 (𝜑 → (𝑇‘suc 𝐼):(((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o (𝐻𝐼))–1-1-onto→((𝐻𝐼) +o ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼)))))
1071a1i 11 . . . . . 6 ((𝐴 ∈ On ∧ 𝐹𝑆) → ω ∈ On)
108 simpl 485 . . . . . 6 ((𝐴 ∈ On ∧ 𝐹𝑆) → 𝐴 ∈ On)
109 simpr 487 . . . . . 6 ((𝐴 ∈ On ∧ 𝐹𝑆) → 𝐹𝑆)
11054oveq1i 7160 . . . . . . . . . 10 (𝑀 +o 𝑧) = (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)
111110a1i 11 . . . . . . . . 9 ((𝑘 ∈ V ∧ 𝑧 ∈ V) → (𝑀 +o 𝑧) = (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))
112111mpoeq3ia 7226 . . . . . . . 8 (𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))
113 eqid 2821 . . . . . . . 8 ∅ = ∅
114 seqomeq12 8084 . . . . . . . 8 (((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)) ∧ ∅ = ∅) → seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅))
115112, 113, 114mp2an 690 . . . . . . 7 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
11637, 115eqtri 2844 . . . . . 6 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
1175, 107, 108, 19, 109, 116cantnfsuc 9127 . . . . 5 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ 𝐼 ∈ ω) → (𝐻‘suc 𝐼) = (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o (𝐻𝐼)))
1182, 13, 36, 117syl21anc 835 . . . 4 (𝜑 → (𝐻‘suc 𝐼) = (((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o (𝐻𝐼)))
119118f1oeq2d 6605 . . 3 (𝜑 → ((𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((𝐻𝐼) +o ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼)))) ↔ (𝑇‘suc 𝐼):(((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) +o (𝐻𝐼))–1-1-onto→((𝐻𝐼) +o ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))))))
120106, 119mpbird 259 . 2 (𝜑 → (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((𝐻𝐼) +o ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼)))))
121 sssucid 6262 . . . . . 6 dom 𝐺 ⊆ suc dom 𝐺
122121, 18sseldi 3964 . . . . 5 (𝜑𝐼 ∈ suc dom 𝐺)
123 epelg 5460 . . . . . . . . . . 11 (𝐼 ∈ dom 𝐺 → (𝑦 E 𝐼𝑦𝐼))
12418, 123syl 17 . . . . . . . . . 10 (𝜑 → (𝑦 E 𝐼𝑦𝐼))
125124biimpar 480 . . . . . . . . 9 ((𝜑𝑦𝐼) → 𝑦 E 𝐼)
126 ovexd 7185 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp ∅) ∈ V)
12733simpld 497 . . . . . . . . . . . 12 (𝜑 → E We (𝐹 supp ∅))
12819oiiso 8995 . . . . . . . . . . . 12 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
129126, 127, 128syl2anc 586 . . . . . . . . . . 11 (𝜑𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
130129adantr 483 . . . . . . . . . 10 ((𝜑𝑦𝐼) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
13119oicl 8987 . . . . . . . . . . . 12 Ord dom 𝐺
132 ordelss 6201 . . . . . . . . . . . 12 ((Ord dom 𝐺𝐼 ∈ dom 𝐺) → 𝐼 ⊆ dom 𝐺)
133131, 18, 132sylancr 589 . . . . . . . . . . 11 (𝜑𝐼 ⊆ dom 𝐺)
134133sselda 3966 . . . . . . . . . 10 ((𝜑𝑦𝐼) → 𝑦 ∈ dom 𝐺)
13518adantr 483 . . . . . . . . . 10 ((𝜑𝑦𝐼) → 𝐼 ∈ dom 𝐺)
136 isorel 7073 . . . . . . . . . 10 ((𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) ∧ (𝑦 ∈ dom 𝐺𝐼 ∈ dom 𝐺)) → (𝑦 E 𝐼 ↔ (𝐺𝑦) E (𝐺𝐼)))
137130, 134, 135, 136syl12anc 834 . . . . . . . . 9 ((𝜑𝑦𝐼) → (𝑦 E 𝐼 ↔ (𝐺𝑦) E (𝐺𝐼)))
138125, 137mpbid 234 . . . . . . . 8 ((𝜑𝑦𝐼) → (𝐺𝑦) E (𝐺𝐼))
139 fvex 6677 . . . . . . . . 9 (𝐺𝐼) ∈ V
140139epeli 5462 . . . . . . . 8 ((𝐺𝑦) E (𝐺𝐼) ↔ (𝐺𝑦) ∈ (𝐺𝐼))
141138, 140sylib 220 . . . . . . 7 ((𝜑𝑦𝐼) → (𝐺𝑦) ∈ (𝐺𝐼))
142141ralrimiva 3182 . . . . . 6 (𝜑 → ∀𝑦𝐼 (𝐺𝑦) ∈ (𝐺𝐼))
143 ffun 6511 . . . . . . . 8 (𝐺:dom 𝐺⟶(𝐹 supp ∅) → Fun 𝐺)
14420, 143ax-mp 5 . . . . . . 7 Fun 𝐺
145 funimass4 6724 . . . . . . 7 ((Fun 𝐺𝐼 ⊆ dom 𝐺) → ((𝐺𝐼) ⊆ (𝐺𝐼) ↔ ∀𝑦𝐼 (𝐺𝑦) ∈ (𝐺𝐼)))
146144, 133, 145sylancr 589 . . . . . 6 (𝜑 → ((𝐺𝐼) ⊆ (𝐺𝐼) ↔ ∀𝑦𝐼 (𝐺𝑦) ∈ (𝐺𝐼)))
147142, 146mpbird 259 . . . . 5 (𝜑 → (𝐺𝐼) ⊆ (𝐺𝐼))
1481a1i 11 . . . . . 6 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺𝐼) ∈ On ∧ (𝐺𝐼) ⊆ (𝐺𝐼))) → ω ∈ On)
149 simpll 765 . . . . . 6 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺𝐼) ∈ On ∧ (𝐺𝐼) ⊆ (𝐺𝐼))) → 𝐴 ∈ On)
150 simplr 767 . . . . . 6 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺𝐼) ∈ On ∧ (𝐺𝐼) ⊆ (𝐺𝐼))) → 𝐹𝑆)
151 peano1 7595 . . . . . . 7 ∅ ∈ ω
152151a1i 11 . . . . . 6 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺𝐼) ∈ On ∧ (𝐺𝐼) ⊆ (𝐺𝐼))) → ∅ ∈ ω)
153 simpr1 1190 . . . . . 6 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺𝐼) ∈ On ∧ (𝐺𝐼) ⊆ (𝐺𝐼))) → 𝐼 ∈ suc dom 𝐺)
154 simpr2 1191 . . . . . 6 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺𝐼) ∈ On ∧ (𝐺𝐼) ⊆ (𝐺𝐼))) → (𝐺𝐼) ∈ On)
155 simpr3 1192 . . . . . 6 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺𝐼) ∈ On ∧ (𝐺𝐼) ⊆ (𝐺𝐼))) → (𝐺𝐼) ⊆ (𝐺𝐼))
1565, 148, 149, 19, 150, 116, 152, 153, 154, 155cantnflt 9129 . . . . 5 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺𝐼) ∈ On ∧ (𝐺𝐼) ⊆ (𝐺𝐼))) → (𝐻𝐼) ∈ (ω ↑o (𝐺𝐼)))
1572, 13, 122, 25, 147, 156syl23anc 1373 . . . 4 (𝜑 → (𝐻𝐼) ∈ (ω ↑o (𝐺𝐼)))
15816ffnd 6509 . . . . . . . . 9 (𝜑𝐹 Fn 𝐴)
159 0ex 5203 . . . . . . . . . 10 ∅ ∈ V
160159a1i 11 . . . . . . . . 9 (𝜑 → ∅ ∈ V)
161 elsuppfn 7832 . . . . . . . . 9 ((𝐹 Fn 𝐴𝐴 ∈ On ∧ ∅ ∈ V) → ((𝐺𝐼) ∈ (𝐹 supp ∅) ↔ ((𝐺𝐼) ∈ 𝐴 ∧ (𝐹‘(𝐺𝐼)) ≠ ∅)))
162158, 2, 160, 161syl3anc 1367 . . . . . . . 8 (𝜑 → ((𝐺𝐼) ∈ (𝐹 supp ∅) ↔ ((𝐺𝐼) ∈ 𝐴 ∧ (𝐹‘(𝐺𝐼)) ≠ ∅)))
163 simpr 487 . . . . . . . 8 (((𝐺𝐼) ∈ 𝐴 ∧ (𝐹‘(𝐺𝐼)) ≠ ∅) → (𝐹‘(𝐺𝐼)) ≠ ∅)
164162, 163syl6bi 255 . . . . . . 7 (𝜑 → ((𝐺𝐼) ∈ (𝐹 supp ∅) → (𝐹‘(𝐺𝐼)) ≠ ∅))
16522, 164mpd 15 . . . . . 6 (𝜑 → (𝐹‘(𝐺𝐼)) ≠ ∅)
166 on0eln0 6240 . . . . . . 7 ((𝐹‘(𝐺𝐼)) ∈ On → (∅ ∈ (𝐹‘(𝐺𝐼)) ↔ (𝐹‘(𝐺𝐼)) ≠ ∅))
16730, 166syl 17 . . . . . 6 (𝜑 → (∅ ∈ (𝐹‘(𝐺𝐼)) ↔ (𝐹‘(𝐺𝐼)) ≠ ∅))
168165, 167mpbird 259 . . . . 5 (𝜑 → ∅ ∈ (𝐹‘(𝐺𝐼)))
169 omword1 8193 . . . . 5 ((((ω ↑o (𝐺𝐼)) ∈ On ∧ (𝐹‘(𝐺𝐼)) ∈ On) ∧ ∅ ∈ (𝐹‘(𝐺𝐼))) → (ω ↑o (𝐺𝐼)) ⊆ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))))
17027, 30, 168, 169syl21anc 835 . . . 4 (𝜑 → (ω ↑o (𝐺𝐼)) ⊆ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))))
171 oaabs2 8266 . . . 4 ((((𝐻𝐼) ∈ (ω ↑o (𝐺𝐼)) ∧ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))) ∈ On) ∧ (ω ↑o (𝐺𝐼)) ⊆ ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼)))) → ((𝐻𝐼) +o ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼)))) = ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))))
172157, 32, 170, 171syl21anc 835 . . 3 (𝜑 → ((𝐻𝐼) +o ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼)))) = ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))))
173172f1oeq3d 6606 . 2 (𝜑 → ((𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((𝐻𝐼) +o ((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼)))) ↔ (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼)))))
174120, 173mpbid 234 1 (𝜑 → (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((ω ↑o (𝐺𝐼)) ·o (𝐹‘(𝐺𝐼))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  Vcvv 3494  cun 3933  wss 3935  c0 4290   class class class wbr 5058  cmpt 5138   E cep 5458   We wwe 5507  ccnv 5548  dom cdm 5549  cima 5552  Ord word 6184  Oncon0 6185  suc csuc 6187  Fun wfun 6343   Fn wfn 6344  wf 6345  1-1-ontowf1o 6348  cfv 6349   Isom wiso 6350  (class class class)co 7150  cmpo 7152  ωcom 7574   supp csupp 7824  seqωcseqom 8077   +o coa 8093   ·o comu 8094  o coe 8095   finSupp cfsupp 8827  OrdIsocoi 8967   CNF ccnf 9118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-seqom 8078  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-oexp 8102  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-oi 8968  df-cnf 9119
This theorem is referenced by:  cnfcom  9157
  Copyright terms: Public domain W3C validator