| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | omelon 9687 | . . . . . . 7
⊢ ω
∈ On | 
| 2 |  | cnfcom.a | . . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ On) | 
| 3 |  | suppssdm 8203 | . . . . . . . . . 10
⊢ (𝐹 supp ∅) ⊆ dom 𝐹 | 
| 4 |  | cnfcom.f | . . . . . . . . . . . . 13
⊢ 𝐹 = (◡(ω CNF 𝐴)‘𝐵) | 
| 5 |  | cnfcom.s | . . . . . . . . . . . . . . . 16
⊢ 𝑆 = dom (ω CNF 𝐴) | 
| 6 | 1 | a1i 11 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → ω ∈
On) | 
| 7 | 5, 6, 2 | cantnff1o 9737 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (ω CNF 𝐴):𝑆–1-1-onto→(ω ↑o 𝐴)) | 
| 8 |  | f1ocnv 6859 | . . . . . . . . . . . . . . 15
⊢ ((ω
CNF 𝐴):𝑆–1-1-onto→(ω ↑o 𝐴) → ◡(ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto→𝑆) | 
| 9 |  | f1of 6847 | . . . . . . . . . . . . . . 15
⊢ (◡(ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto→𝑆 → ◡(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆) | 
| 10 | 7, 8, 9 | 3syl 18 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ◡(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆) | 
| 11 |  | cnfcom.b | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ (ω ↑o 𝐴)) | 
| 12 | 10, 11 | ffvelcdmd 7104 | . . . . . . . . . . . . 13
⊢ (𝜑 → (◡(ω CNF 𝐴)‘𝐵) ∈ 𝑆) | 
| 13 | 4, 12 | eqeltrid 2844 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∈ 𝑆) | 
| 14 | 5, 6, 2 | cantnfs 9707 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅))) | 
| 15 | 13, 14 | mpbid 232 | . . . . . . . . . . 11
⊢ (𝜑 → (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅)) | 
| 16 | 15 | simpld 494 | . . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝐴⟶ω) | 
| 17 | 3, 16 | fssdm 6754 | . . . . . . . . 9
⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐴) | 
| 18 |  | cnfcom.1 | . . . . . . . . . 10
⊢ (𝜑 → 𝐼 ∈ dom 𝐺) | 
| 19 |  | cnfcom.g | . . . . . . . . . . . 12
⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) | 
| 20 | 19 | oif 9571 | . . . . . . . . . . 11
⊢ 𝐺:dom 𝐺⟶(𝐹 supp ∅) | 
| 21 | 20 | ffvelcdmi 7102 | . . . . . . . . . 10
⊢ (𝐼 ∈ dom 𝐺 → (𝐺‘𝐼) ∈ (𝐹 supp ∅)) | 
| 22 | 18, 21 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → (𝐺‘𝐼) ∈ (𝐹 supp ∅)) | 
| 23 | 17, 22 | sseldd 3983 | . . . . . . . 8
⊢ (𝜑 → (𝐺‘𝐼) ∈ 𝐴) | 
| 24 |  | onelon 6408 | . . . . . . . 8
⊢ ((𝐴 ∈ On ∧ (𝐺‘𝐼) ∈ 𝐴) → (𝐺‘𝐼) ∈ On) | 
| 25 | 2, 23, 24 | syl2anc 584 | . . . . . . 7
⊢ (𝜑 → (𝐺‘𝐼) ∈ On) | 
| 26 |  | oecl 8576 | . . . . . . 7
⊢ ((ω
∈ On ∧ (𝐺‘𝐼) ∈ On) → (ω
↑o (𝐺‘𝐼)) ∈ On) | 
| 27 | 1, 25, 26 | sylancr 587 | . . . . . 6
⊢ (𝜑 → (ω
↑o (𝐺‘𝐼)) ∈ On) | 
| 28 | 16, 23 | ffvelcdmd 7104 | . . . . . . 7
⊢ (𝜑 → (𝐹‘(𝐺‘𝐼)) ∈ ω) | 
| 29 |  | nnon 7894 | . . . . . . 7
⊢ ((𝐹‘(𝐺‘𝐼)) ∈ ω → (𝐹‘(𝐺‘𝐼)) ∈ On) | 
| 30 | 28, 29 | syl 17 | . . . . . 6
⊢ (𝜑 → (𝐹‘(𝐺‘𝐼)) ∈ On) | 
| 31 |  | omcl 8575 | . . . . . 6
⊢
(((ω ↑o (𝐺‘𝐼)) ∈ On ∧ (𝐹‘(𝐺‘𝐼)) ∈ On) → ((ω
↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ∈ On) | 
| 32 | 27, 30, 31 | syl2anc 584 | . . . . 5
⊢ (𝜑 → ((ω
↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ∈ On) | 
| 33 | 5, 6, 2, 19, 13 | cantnfcl 9708 | . . . . . . . 8
⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω)) | 
| 34 | 33 | simprd 495 | . . . . . . 7
⊢ (𝜑 → dom 𝐺 ∈ ω) | 
| 35 |  | elnn 7899 | . . . . . . 7
⊢ ((𝐼 ∈ dom 𝐺 ∧ dom 𝐺 ∈ ω) → 𝐼 ∈ ω) | 
| 36 | 18, 34, 35 | syl2anc 584 | . . . . . 6
⊢ (𝜑 → 𝐼 ∈ ω) | 
| 37 |  | cnfcom.h | . . . . . . . 8
⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) | 
| 38 | 37 | cantnfvalf 9706 | . . . . . . 7
⊢ 𝐻:ω⟶On | 
| 39 | 38 | ffvelcdmi 7102 | . . . . . 6
⊢ (𝐼 ∈ ω → (𝐻‘𝐼) ∈ On) | 
| 40 | 36, 39 | syl 17 | . . . . 5
⊢ (𝜑 → (𝐻‘𝐼) ∈ On) | 
| 41 |  | eqid 2736 | . . . . . 6
⊢ ((𝑦 ∈ ((ω
↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ↦ ((𝐻‘𝐼) +o 𝑦)) ∪ ◡(𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦))) = ((𝑦 ∈ ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ↦ ((𝐻‘𝐼) +o 𝑦)) ∪ ◡(𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦))) | 
| 42 | 41 | oacomf1o 8604 | . . . . 5
⊢
((((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ∈ On ∧ (𝐻‘𝐼) ∈ On) → ((𝑦 ∈ ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ↦ ((𝐻‘𝐼) +o 𝑦)) ∪ ◡(𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦))):(((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o (𝐻‘𝐼))–1-1-onto→((𝐻‘𝐼) +o ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))))) | 
| 43 | 32, 40, 42 | syl2anc 584 | . . . 4
⊢ (𝜑 → ((𝑦 ∈ ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ↦ ((𝐻‘𝐼) +o 𝑦)) ∪ ◡(𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦))):(((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o (𝐻‘𝐼))–1-1-onto→((𝐻‘𝐼) +o ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))))) | 
| 44 |  | cnfcom.t | . . . . . . . 8
⊢ 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅) | 
| 45 | 44 | seqomsuc 8498 | . . . . . . 7
⊢ (𝐼 ∈ ω → (𝑇‘suc 𝐼) = (𝐼(𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾)(𝑇‘𝐼))) | 
| 46 | 36, 45 | syl 17 | . . . . . 6
⊢ (𝜑 → (𝑇‘suc 𝐼) = (𝐼(𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾)(𝑇‘𝐼))) | 
| 47 |  | nfcv 2904 | . . . . . . . . 9
⊢
Ⅎ𝑢𝐾 | 
| 48 |  | nfcv 2904 | . . . . . . . . 9
⊢
Ⅎ𝑣𝐾 | 
| 49 |  | nfcv 2904 | . . . . . . . . 9
⊢
Ⅎ𝑘((𝑦 ∈ ((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ ◡(𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦))) | 
| 50 |  | nfcv 2904 | . . . . . . . . 9
⊢
Ⅎ𝑓((𝑦 ∈ ((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ ◡(𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦))) | 
| 51 |  | cnfcom.k | . . . . . . . . . 10
⊢ 𝐾 = ((𝑥 ∈ 𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ ◡(𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥))) | 
| 52 |  | oveq2 7440 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (dom 𝑓 +o 𝑥) = (dom 𝑓 +o 𝑦)) | 
| 53 | 52 | cbvmptv 5254 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑀 ↦ (dom 𝑓 +o 𝑥)) = (𝑦 ∈ 𝑀 ↦ (dom 𝑓 +o 𝑦)) | 
| 54 |  | cnfcom.m | . . . . . . . . . . . . . 14
⊢ 𝑀 = ((ω ↑o
(𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) | 
| 55 |  | simpl 482 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → 𝑘 = 𝑢) | 
| 56 | 55 | fveq2d 6909 | . . . . . . . . . . . . . . . 16
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → (𝐺‘𝑘) = (𝐺‘𝑢)) | 
| 57 | 56 | oveq2d 7448 | . . . . . . . . . . . . . . 15
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → (ω ↑o (𝐺‘𝑘)) = (ω ↑o (𝐺‘𝑢))) | 
| 58 | 56 | fveq2d 6909 | . . . . . . . . . . . . . . 15
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → (𝐹‘(𝐺‘𝑘)) = (𝐹‘(𝐺‘𝑢))) | 
| 59 | 57, 58 | oveq12d 7450 | . . . . . . . . . . . . . 14
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → ((ω ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) = ((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢)))) | 
| 60 | 54, 59 | eqtrid 2788 | . . . . . . . . . . . . 13
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → 𝑀 = ((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢)))) | 
| 61 |  | simpr 484 | . . . . . . . . . . . . . . 15
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → 𝑓 = 𝑣) | 
| 62 | 61 | dmeqd 5915 | . . . . . . . . . . . . . 14
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → dom 𝑓 = dom 𝑣) | 
| 63 | 62 | oveq1d 7447 | . . . . . . . . . . . . 13
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → (dom 𝑓 +o 𝑦) = (dom 𝑣 +o 𝑦)) | 
| 64 | 60, 63 | mpteq12dv 5232 | . . . . . . . . . . . 12
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → (𝑦 ∈ 𝑀 ↦ (dom 𝑓 +o 𝑦)) = (𝑦 ∈ ((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) ↦ (dom 𝑣 +o 𝑦))) | 
| 65 | 53, 64 | eqtrid 2788 | . . . . . . . . . . 11
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → (𝑥 ∈ 𝑀 ↦ (dom 𝑓 +o 𝑥)) = (𝑦 ∈ ((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) ↦ (dom 𝑣 +o 𝑦))) | 
| 66 |  | oveq2 7440 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → (𝑀 +o 𝑥) = (𝑀 +o 𝑦)) | 
| 67 | 66 | cbvmptv 5254 | . . . . . . . . . . . . 13
⊢ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)) = (𝑦 ∈ dom 𝑓 ↦ (𝑀 +o 𝑦)) | 
| 68 | 60 | oveq1d 7447 | . . . . . . . . . . . . . 14
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → (𝑀 +o 𝑦) = (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦)) | 
| 69 | 62, 68 | mpteq12dv 5232 | . . . . . . . . . . . . 13
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → (𝑦 ∈ dom 𝑓 ↦ (𝑀 +o 𝑦)) = (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦))) | 
| 70 | 67, 69 | eqtrid 2788 | . . . . . . . . . . . 12
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)) = (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦))) | 
| 71 | 70 | cnveqd 5885 | . . . . . . . . . . 11
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → ◡(𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)) = ◡(𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦))) | 
| 72 | 65, 71 | uneq12d 4168 | . . . . . . . . . 10
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → ((𝑥 ∈ 𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ ◡(𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥))) = ((𝑦 ∈ ((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ ◡(𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦)))) | 
| 73 | 51, 72 | eqtrid 2788 | . . . . . . . . 9
⊢ ((𝑘 = 𝑢 ∧ 𝑓 = 𝑣) → 𝐾 = ((𝑦 ∈ ((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ ◡(𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦)))) | 
| 74 | 47, 48, 49, 50, 73 | cbvmpo 7528 | . . . . . . . 8
⊢ (𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾) = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑦 ∈ ((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ ◡(𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦)))) | 
| 75 | 74 | a1i 11 | . . . . . . 7
⊢ (𝜑 → (𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾) = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑦 ∈ ((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ ◡(𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦))))) | 
| 76 |  | simprl 770 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼))) → 𝑢 = 𝐼) | 
| 77 | 76 | fveq2d 6909 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼))) → (𝐺‘𝑢) = (𝐺‘𝐼)) | 
| 78 | 77 | oveq2d 7448 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼))) → (ω ↑o
(𝐺‘𝑢)) = (ω ↑o (𝐺‘𝐼))) | 
| 79 | 77 | fveq2d 6909 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼))) → (𝐹‘(𝐺‘𝑢)) = (𝐹‘(𝐺‘𝐼))) | 
| 80 | 78, 79 | oveq12d 7450 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼))) → ((ω ↑o
(𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) = ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) | 
| 81 |  | simpr 484 | . . . . . . . . . . . 12
⊢ ((𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼)) → 𝑣 = (𝑇‘𝐼)) | 
| 82 | 81 | dmeqd 5915 | . . . . . . . . . . 11
⊢ ((𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼)) → dom 𝑣 = dom (𝑇‘𝐼)) | 
| 83 |  | cnfcom.3 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑇‘𝐼):(𝐻‘𝐼)–1-1-onto→𝑂) | 
| 84 |  | f1odm 6851 | . . . . . . . . . . . 12
⊢ ((𝑇‘𝐼):(𝐻‘𝐼)–1-1-onto→𝑂 → dom (𝑇‘𝐼) = (𝐻‘𝐼)) | 
| 85 | 83, 84 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 → dom (𝑇‘𝐼) = (𝐻‘𝐼)) | 
| 86 | 82, 85 | sylan9eqr 2798 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼))) → dom 𝑣 = (𝐻‘𝐼)) | 
| 87 | 86 | oveq1d 7447 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼))) → (dom 𝑣 +o 𝑦) = ((𝐻‘𝐼) +o 𝑦)) | 
| 88 | 80, 87 | mpteq12dv 5232 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼))) → (𝑦 ∈ ((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) ↦ (dom 𝑣 +o 𝑦)) = (𝑦 ∈ ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ↦ ((𝐻‘𝐼) +o 𝑦))) | 
| 89 | 80 | oveq1d 7447 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼))) → (((ω ↑o
(𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦) = (((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦)) | 
| 90 | 86, 89 | mpteq12dv 5232 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼))) → (𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦)) = (𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦))) | 
| 91 | 90 | cnveqd 5885 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼))) → ◡(𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦)) = ◡(𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦))) | 
| 92 | 88, 91 | uneq12d 4168 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑢 = 𝐼 ∧ 𝑣 = (𝑇‘𝐼))) → ((𝑦 ∈ ((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) ↦ (dom 𝑣 +o 𝑦)) ∪ ◡(𝑦 ∈ dom 𝑣 ↦ (((ω ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑦))) = ((𝑦 ∈ ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ↦ ((𝐻‘𝐼) +o 𝑦)) ∪ ◡(𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦)))) | 
| 93 | 18 | elexd 3503 | . . . . . . 7
⊢ (𝜑 → 𝐼 ∈ V) | 
| 94 |  | fvexd 6920 | . . . . . . 7
⊢ (𝜑 → (𝑇‘𝐼) ∈ V) | 
| 95 |  | ovex 7465 | . . . . . . . . . 10
⊢ ((ω
↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ∈ V | 
| 96 | 95 | mptex 7244 | . . . . . . . . 9
⊢ (𝑦 ∈ ((ω
↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ↦ ((𝐻‘𝐼) +o 𝑦)) ∈ V | 
| 97 |  | fvex 6918 | . . . . . . . . . . 11
⊢ (𝐻‘𝐼) ∈ V | 
| 98 | 97 | mptex 7244 | . . . . . . . . . 10
⊢ (𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦)) ∈ V | 
| 99 | 98 | cnvex 7948 | . . . . . . . . 9
⊢ ◡(𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦)) ∈ V | 
| 100 | 96, 99 | unex 7765 | . . . . . . . 8
⊢ ((𝑦 ∈ ((ω
↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ↦ ((𝐻‘𝐼) +o 𝑦)) ∪ ◡(𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦))) ∈ V | 
| 101 | 100 | a1i 11 | . . . . . . 7
⊢ (𝜑 → ((𝑦 ∈ ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ↦ ((𝐻‘𝐼) +o 𝑦)) ∪ ◡(𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦))) ∈ V) | 
| 102 | 75, 92, 93, 94, 101 | ovmpod 7586 | . . . . . 6
⊢ (𝜑 → (𝐼(𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾)(𝑇‘𝐼)) = ((𝑦 ∈ ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ↦ ((𝐻‘𝐼) +o 𝑦)) ∪ ◡(𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦)))) | 
| 103 | 46, 102 | eqtrd 2776 | . . . . 5
⊢ (𝜑 → (𝑇‘suc 𝐼) = ((𝑦 ∈ ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ↦ ((𝐻‘𝐼) +o 𝑦)) ∪ ◡(𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦)))) | 
| 104 | 103 | f1oeq1d 6842 | . . . 4
⊢ (𝜑 → ((𝑇‘suc 𝐼):(((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o (𝐻‘𝐼))–1-1-onto→((𝐻‘𝐼) +o ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) ↔ ((𝑦 ∈ ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ↦ ((𝐻‘𝐼) +o 𝑦)) ∪ ◡(𝑦 ∈ (𝐻‘𝐼) ↦ (((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o 𝑦))):(((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o (𝐻‘𝐼))–1-1-onto→((𝐻‘𝐼) +o ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))))) | 
| 105 | 43, 104 | mpbird 257 | . . 3
⊢ (𝜑 → (𝑇‘suc 𝐼):(((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o (𝐻‘𝐼))–1-1-onto→((𝐻‘𝐼) +o ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))))) | 
| 106 | 1 | a1i 11 | . . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐹 ∈ 𝑆) → ω ∈ On) | 
| 107 |  | simpl 482 | . . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐹 ∈ 𝑆) → 𝐴 ∈ On) | 
| 108 |  | simpr 484 | . . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐹 ∈ 𝑆) → 𝐹 ∈ 𝑆) | 
| 109 | 54 | oveq1i 7442 | . . . . . . . . . 10
⊢ (𝑀 +o 𝑧) = (((ω
↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧) | 
| 110 | 109 | a1i 11 | . . . . . . . . 9
⊢ ((𝑘 ∈ V ∧ 𝑧 ∈ V) → (𝑀 +o 𝑧) = (((ω
↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)) | 
| 111 | 110 | mpoeq3ia 7512 | . . . . . . . 8
⊢ (𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω
↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)) | 
| 112 |  | eqid 2736 | . . . . . . . 8
⊢ ∅ =
∅ | 
| 113 |  | seqomeq12 8495 | . . . . . . . 8
⊢ (((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω
↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)) ∧ ∅ = ∅) →
seqω((𝑘
∈ V, 𝑧 ∈ V
↦ (𝑀 +o
𝑧)), ∅) =
seqω((𝑘
∈ V, 𝑧 ∈ V
↦ (((ω ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅)) | 
| 114 | 111, 112,
113 | mp2an 692 | . . . . . . 7
⊢
seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω
↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅) | 
| 115 | 37, 114 | eqtri 2764 | . . . . . 6
⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω
↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅) | 
| 116 | 5, 106, 107, 19, 108, 115 | cantnfsuc 9711 | . . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐹 ∈ 𝑆) ∧ 𝐼 ∈ ω) → (𝐻‘suc 𝐼) = (((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o (𝐻‘𝐼))) | 
| 117 | 2, 13, 36, 116 | syl21anc 837 | . . . 4
⊢ (𝜑 → (𝐻‘suc 𝐼) = (((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o (𝐻‘𝐼))) | 
| 118 | 117 | f1oeq2d 6843 | . . 3
⊢ (𝜑 → ((𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((𝐻‘𝐼) +o ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) ↔ (𝑇‘suc 𝐼):(((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) +o (𝐻‘𝐼))–1-1-onto→((𝐻‘𝐼) +o ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))))) | 
| 119 | 105, 118 | mpbird 257 | . 2
⊢ (𝜑 → (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((𝐻‘𝐼) +o ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))))) | 
| 120 |  | sssucid 6463 | . . . . . 6
⊢ dom 𝐺 ⊆ suc dom 𝐺 | 
| 121 | 120, 18 | sselid 3980 | . . . . 5
⊢ (𝜑 → 𝐼 ∈ suc dom 𝐺) | 
| 122 |  | epelg 5584 | . . . . . . . . . . 11
⊢ (𝐼 ∈ dom 𝐺 → (𝑦 E 𝐼 ↔ 𝑦 ∈ 𝐼)) | 
| 123 | 18, 122 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → (𝑦 E 𝐼 ↔ 𝑦 ∈ 𝐼)) | 
| 124 | 123 | biimpar 477 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → 𝑦 E 𝐼) | 
| 125 |  | ovexd 7467 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 supp ∅) ∈ V) | 
| 126 | 33 | simpld 494 | . . . . . . . . . . . 12
⊢ (𝜑 → E We (𝐹 supp ∅)) | 
| 127 | 19 | oiiso 9578 | . . . . . . . . . . . 12
⊢ (((𝐹 supp ∅) ∈ V ∧ E
We (𝐹 supp ∅)) →
𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅))) | 
| 128 | 125, 126,
127 | syl2anc 584 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅))) | 
| 129 | 128 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅))) | 
| 130 | 19 | oicl 9570 | . . . . . . . . . . . 12
⊢ Ord dom
𝐺 | 
| 131 |  | ordelss 6399 | . . . . . . . . . . . 12
⊢ ((Ord dom
𝐺 ∧ 𝐼 ∈ dom 𝐺) → 𝐼 ⊆ dom 𝐺) | 
| 132 | 130, 18, 131 | sylancr 587 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐼 ⊆ dom 𝐺) | 
| 133 | 132 | sselda 3982 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → 𝑦 ∈ dom 𝐺) | 
| 134 | 18 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → 𝐼 ∈ dom 𝐺) | 
| 135 |  | isorel 7347 | . . . . . . . . . 10
⊢ ((𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) ∧ (𝑦 ∈ dom 𝐺 ∧ 𝐼 ∈ dom 𝐺)) → (𝑦 E 𝐼 ↔ (𝐺‘𝑦) E (𝐺‘𝐼))) | 
| 136 | 129, 133,
134, 135 | syl12anc 836 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝑦 E 𝐼 ↔ (𝐺‘𝑦) E (𝐺‘𝐼))) | 
| 137 | 124, 136 | mpbid 232 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝐺‘𝑦) E (𝐺‘𝐼)) | 
| 138 |  | fvex 6918 | . . . . . . . . 9
⊢ (𝐺‘𝐼) ∈ V | 
| 139 | 138 | epeli 5585 | . . . . . . . 8
⊢ ((𝐺‘𝑦) E (𝐺‘𝐼) ↔ (𝐺‘𝑦) ∈ (𝐺‘𝐼)) | 
| 140 | 137, 139 | sylib 218 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝐺‘𝑦) ∈ (𝐺‘𝐼)) | 
| 141 | 140 | ralrimiva 3145 | . . . . . 6
⊢ (𝜑 → ∀𝑦 ∈ 𝐼 (𝐺‘𝑦) ∈ (𝐺‘𝐼)) | 
| 142 |  | ffun 6738 | . . . . . . . 8
⊢ (𝐺:dom 𝐺⟶(𝐹 supp ∅) → Fun 𝐺) | 
| 143 | 20, 142 | ax-mp 5 | . . . . . . 7
⊢ Fun 𝐺 | 
| 144 |  | funimass4 6972 | . . . . . . 7
⊢ ((Fun
𝐺 ∧ 𝐼 ⊆ dom 𝐺) → ((𝐺 “ 𝐼) ⊆ (𝐺‘𝐼) ↔ ∀𝑦 ∈ 𝐼 (𝐺‘𝑦) ∈ (𝐺‘𝐼))) | 
| 145 | 143, 132,
144 | sylancr 587 | . . . . . 6
⊢ (𝜑 → ((𝐺 “ 𝐼) ⊆ (𝐺‘𝐼) ↔ ∀𝑦 ∈ 𝐼 (𝐺‘𝑦) ∈ (𝐺‘𝐼))) | 
| 146 | 141, 145 | mpbird 257 | . . . . 5
⊢ (𝜑 → (𝐺 “ 𝐼) ⊆ (𝐺‘𝐼)) | 
| 147 | 1 | a1i 11 | . . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐹 ∈ 𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺‘𝐼) ∈ On ∧ (𝐺 “ 𝐼) ⊆ (𝐺‘𝐼))) → ω ∈
On) | 
| 148 |  | simpll 766 | . . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐹 ∈ 𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺‘𝐼) ∈ On ∧ (𝐺 “ 𝐼) ⊆ (𝐺‘𝐼))) → 𝐴 ∈ On) | 
| 149 |  | simplr 768 | . . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐹 ∈ 𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺‘𝐼) ∈ On ∧ (𝐺 “ 𝐼) ⊆ (𝐺‘𝐼))) → 𝐹 ∈ 𝑆) | 
| 150 |  | peano1 7911 | . . . . . . 7
⊢ ∅
∈ ω | 
| 151 | 150 | a1i 11 | . . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐹 ∈ 𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺‘𝐼) ∈ On ∧ (𝐺 “ 𝐼) ⊆ (𝐺‘𝐼))) → ∅ ∈
ω) | 
| 152 |  | simpr1 1194 | . . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐹 ∈ 𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺‘𝐼) ∈ On ∧ (𝐺 “ 𝐼) ⊆ (𝐺‘𝐼))) → 𝐼 ∈ suc dom 𝐺) | 
| 153 |  | simpr2 1195 | . . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐹 ∈ 𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺‘𝐼) ∈ On ∧ (𝐺 “ 𝐼) ⊆ (𝐺‘𝐼))) → (𝐺‘𝐼) ∈ On) | 
| 154 |  | simpr3 1196 | . . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐹 ∈ 𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺‘𝐼) ∈ On ∧ (𝐺 “ 𝐼) ⊆ (𝐺‘𝐼))) → (𝐺 “ 𝐼) ⊆ (𝐺‘𝐼)) | 
| 155 | 5, 147, 148, 19, 149, 115, 151, 152, 153, 154 | cantnflt 9713 | . . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐹 ∈ 𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺‘𝐼) ∈ On ∧ (𝐺 “ 𝐼) ⊆ (𝐺‘𝐼))) → (𝐻‘𝐼) ∈ (ω ↑o (𝐺‘𝐼))) | 
| 156 | 2, 13, 121, 25, 146, 155 | syl23anc 1378 | . . . 4
⊢ (𝜑 → (𝐻‘𝐼) ∈ (ω ↑o (𝐺‘𝐼))) | 
| 157 | 16 | ffnd 6736 | . . . . . . . . 9
⊢ (𝜑 → 𝐹 Fn 𝐴) | 
| 158 |  | 0ex 5306 | . . . . . . . . . 10
⊢ ∅
∈ V | 
| 159 | 158 | a1i 11 | . . . . . . . . 9
⊢ (𝜑 → ∅ ∈
V) | 
| 160 |  | elsuppfn 8196 | . . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ On ∧ ∅ ∈ V) →
((𝐺‘𝐼) ∈ (𝐹 supp ∅) ↔ ((𝐺‘𝐼) ∈ 𝐴 ∧ (𝐹‘(𝐺‘𝐼)) ≠ ∅))) | 
| 161 | 157, 2, 159, 160 | syl3anc 1372 | . . . . . . . 8
⊢ (𝜑 → ((𝐺‘𝐼) ∈ (𝐹 supp ∅) ↔ ((𝐺‘𝐼) ∈ 𝐴 ∧ (𝐹‘(𝐺‘𝐼)) ≠ ∅))) | 
| 162 |  | simpr 484 | . . . . . . . 8
⊢ (((𝐺‘𝐼) ∈ 𝐴 ∧ (𝐹‘(𝐺‘𝐼)) ≠ ∅) → (𝐹‘(𝐺‘𝐼)) ≠ ∅) | 
| 163 | 161, 162 | biimtrdi 253 | . . . . . . 7
⊢ (𝜑 → ((𝐺‘𝐼) ∈ (𝐹 supp ∅) → (𝐹‘(𝐺‘𝐼)) ≠ ∅)) | 
| 164 | 22, 163 | mpd 15 | . . . . . 6
⊢ (𝜑 → (𝐹‘(𝐺‘𝐼)) ≠ ∅) | 
| 165 |  | on0eln0 6439 | . . . . . . 7
⊢ ((𝐹‘(𝐺‘𝐼)) ∈ On → (∅ ∈ (𝐹‘(𝐺‘𝐼)) ↔ (𝐹‘(𝐺‘𝐼)) ≠ ∅)) | 
| 166 | 30, 165 | syl 17 | . . . . . 6
⊢ (𝜑 → (∅ ∈ (𝐹‘(𝐺‘𝐼)) ↔ (𝐹‘(𝐺‘𝐼)) ≠ ∅)) | 
| 167 | 164, 166 | mpbird 257 | . . . . 5
⊢ (𝜑 → ∅ ∈ (𝐹‘(𝐺‘𝐼))) | 
| 168 |  | omword1 8612 | . . . . 5
⊢
((((ω ↑o (𝐺‘𝐼)) ∈ On ∧ (𝐹‘(𝐺‘𝐼)) ∈ On) ∧ ∅ ∈ (𝐹‘(𝐺‘𝐼))) → (ω ↑o
(𝐺‘𝐼)) ⊆ ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) | 
| 169 | 27, 30, 167, 168 | syl21anc 837 | . . . 4
⊢ (𝜑 → (ω
↑o (𝐺‘𝐼)) ⊆ ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) | 
| 170 |  | oaabs2 8688 | . . . 4
⊢ ((((𝐻‘𝐼) ∈ (ω ↑o (𝐺‘𝐼)) ∧ ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))) ∈ On) ∧ (ω
↑o (𝐺‘𝐼)) ⊆ ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) → ((𝐻‘𝐼) +o ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) = ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) | 
| 171 | 156, 32, 169, 170 | syl21anc 837 | . . 3
⊢ (𝜑 → ((𝐻‘𝐼) +o ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) = ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) | 
| 172 | 171 | f1oeq3d 6844 | . 2
⊢ (𝜑 → ((𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((𝐻‘𝐼) +o ((ω ↑o
(𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) ↔ (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))))) | 
| 173 | 119, 172 | mpbid 232 | 1
⊢ (𝜑 → (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) |