MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpen Structured version   Visualization version   GIF version

Theorem infxpen 10083
Description: Every infinite ordinal is equinumerous to its Cartesian square. Proposition 10.39 of [TakeutiZaring] p. 94, whose proof we follow closely. The key idea is to show that the relation 𝑅 is a well-ordering of (On × On) with the additional property that 𝑅-initial segments of (𝑥 × 𝑥) (where 𝑥 is a limit ordinal) are of cardinality at most 𝑥. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
infxpen ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)

Proof of Theorem infxpen
Dummy variables 𝑚 𝑎 𝑠 𝑡 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
2 eleq1w 2827 . . . . 5 (𝑠 = 𝑧 → (𝑠 ∈ (On × On) ↔ 𝑧 ∈ (On × On)))
3 eleq1w 2827 . . . . 5 (𝑡 = 𝑤 → (𝑡 ∈ (On × On) ↔ 𝑤 ∈ (On × On)))
42, 3bi2anan9 637 . . . 4 ((𝑠 = 𝑧𝑡 = 𝑤) → ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ↔ (𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On))))
5 fveq2 6920 . . . . . . . 8 (𝑠 = 𝑧 → (1st𝑠) = (1st𝑧))
6 fveq2 6920 . . . . . . . 8 (𝑠 = 𝑧 → (2nd𝑠) = (2nd𝑧))
75, 6uneq12d 4192 . . . . . . 7 (𝑠 = 𝑧 → ((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑧) ∪ (2nd𝑧)))
87adantr 480 . . . . . 6 ((𝑠 = 𝑧𝑡 = 𝑤) → ((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑧) ∪ (2nd𝑧)))
9 fveq2 6920 . . . . . . . 8 (𝑡 = 𝑤 → (1st𝑡) = (1st𝑤))
10 fveq2 6920 . . . . . . . 8 (𝑡 = 𝑤 → (2nd𝑡) = (2nd𝑤))
119, 10uneq12d 4192 . . . . . . 7 (𝑡 = 𝑤 → ((1st𝑡) ∪ (2nd𝑡)) = ((1st𝑤) ∪ (2nd𝑤)))
1211adantl 481 . . . . . 6 ((𝑠 = 𝑧𝑡 = 𝑤) → ((1st𝑡) ∪ (2nd𝑡)) = ((1st𝑤) ∪ (2nd𝑤)))
138, 12eleq12d 2838 . . . . 5 ((𝑠 = 𝑧𝑡 = 𝑤) → (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ↔ ((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤))))
147, 11eqeqan12d 2754 . . . . . 6 ((𝑠 = 𝑧𝑡 = 𝑤) → (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ↔ ((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤))))
15 breq12 5171 . . . . . 6 ((𝑠 = 𝑧𝑡 = 𝑤) → (𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡𝑧{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑤))
1614, 15anbi12d 631 . . . . 5 ((𝑠 = 𝑧𝑡 = 𝑤) → ((((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡) ↔ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑤)))
1713, 16orbi12d 917 . . . 4 ((𝑠 = 𝑧𝑡 = 𝑤) → ((((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)) ↔ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑤))))
184, 17anbi12d 631 . . 3 ((𝑠 = 𝑧𝑡 = 𝑤) → (((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡))) ↔ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑤)))))
1918cbvopabv 5239 . 2 {⟨𝑠, 𝑡⟩ ∣ ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)))} = {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑤)))}
20 eqid 2740 . 2 ({⟨𝑠, 𝑡⟩ ∣ ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)))} ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) = ({⟨𝑠, 𝑡⟩ ∣ ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)))} ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎)))
21 biid 261 . 2 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) ↔ ((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)))
22 eqid 2740 . 2 ((1st𝑤) ∪ (2nd𝑤)) = ((1st𝑤) ∪ (2nd𝑤))
23 eqid 2740 . 2 OrdIso(({⟨𝑠, 𝑡⟩ ∣ ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)))} ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))), (𝑎 × 𝑎)) = OrdIso(({⟨𝑠, 𝑡⟩ ∣ ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)))} ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))), (𝑎 × 𝑎))
241, 19, 20, 21, 22, 23infxpenlem 10082 1 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wral 3067  cun 3974  cin 3975  wss 3976   class class class wbr 5166  {copab 5228   × cxp 5698  Oncon0 6395  cfv 6573  ωcom 7903  1st c1st 8028  2nd c2nd 8029  cen 9000  csdm 9002  OrdIsocoi 9578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-oi 9579  df-card 10008
This theorem is referenced by:  xpomen  10084  infxpidm2  10086  alephreg  10651  cfpwsdom  10653  inar1  10844
  Copyright terms: Public domain W3C validator