MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpen Structured version   Visualization version   GIF version

Theorem infxpen 9905
Description: Every infinite ordinal is equinumerous to its Cartesian square. Proposition 10.39 of [TakeutiZaring] p. 94, whose proof we follow closely. The key idea is to show that the relation 𝑅 is a well-ordering of (On × On) with the additional property that 𝑅-initial segments of (𝑥 × 𝑥) (where 𝑥 is a limit ordinal) are of cardinality at most 𝑥. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
infxpen ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)

Proof of Theorem infxpen
Dummy variables 𝑚 𝑎 𝑠 𝑡 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
2 eleq1w 2814 . . . . 5 (𝑠 = 𝑧 → (𝑠 ∈ (On × On) ↔ 𝑧 ∈ (On × On)))
3 eleq1w 2814 . . . . 5 (𝑡 = 𝑤 → (𝑡 ∈ (On × On) ↔ 𝑤 ∈ (On × On)))
42, 3bi2anan9 638 . . . 4 ((𝑠 = 𝑧𝑡 = 𝑤) → ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ↔ (𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On))))
5 fveq2 6822 . . . . . . . 8 (𝑠 = 𝑧 → (1st𝑠) = (1st𝑧))
6 fveq2 6822 . . . . . . . 8 (𝑠 = 𝑧 → (2nd𝑠) = (2nd𝑧))
75, 6uneq12d 4116 . . . . . . 7 (𝑠 = 𝑧 → ((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑧) ∪ (2nd𝑧)))
87adantr 480 . . . . . 6 ((𝑠 = 𝑧𝑡 = 𝑤) → ((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑧) ∪ (2nd𝑧)))
9 fveq2 6822 . . . . . . . 8 (𝑡 = 𝑤 → (1st𝑡) = (1st𝑤))
10 fveq2 6822 . . . . . . . 8 (𝑡 = 𝑤 → (2nd𝑡) = (2nd𝑤))
119, 10uneq12d 4116 . . . . . . 7 (𝑡 = 𝑤 → ((1st𝑡) ∪ (2nd𝑡)) = ((1st𝑤) ∪ (2nd𝑤)))
1211adantl 481 . . . . . 6 ((𝑠 = 𝑧𝑡 = 𝑤) → ((1st𝑡) ∪ (2nd𝑡)) = ((1st𝑤) ∪ (2nd𝑤)))
138, 12eleq12d 2825 . . . . 5 ((𝑠 = 𝑧𝑡 = 𝑤) → (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ↔ ((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤))))
147, 11eqeqan12d 2745 . . . . . 6 ((𝑠 = 𝑧𝑡 = 𝑤) → (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ↔ ((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤))))
15 breq12 5094 . . . . . 6 ((𝑠 = 𝑧𝑡 = 𝑤) → (𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡𝑧{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑤))
1614, 15anbi12d 632 . . . . 5 ((𝑠 = 𝑧𝑡 = 𝑤) → ((((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡) ↔ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑤)))
1713, 16orbi12d 918 . . . 4 ((𝑠 = 𝑧𝑡 = 𝑤) → ((((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)) ↔ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑤))))
184, 17anbi12d 632 . . 3 ((𝑠 = 𝑧𝑡 = 𝑤) → (((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡))) ↔ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑤)))))
1918cbvopabv 5162 . 2 {⟨𝑠, 𝑡⟩ ∣ ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)))} = {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑤)))}
20 eqid 2731 . 2 ({⟨𝑠, 𝑡⟩ ∣ ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)))} ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) = ({⟨𝑠, 𝑡⟩ ∣ ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)))} ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎)))
21 biid 261 . 2 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) ↔ ((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)))
22 eqid 2731 . 2 ((1st𝑤) ∪ (2nd𝑤)) = ((1st𝑤) ∪ (2nd𝑤))
23 eqid 2731 . 2 OrdIso(({⟨𝑠, 𝑡⟩ ∣ ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)))} ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))), (𝑎 × 𝑎)) = OrdIso(({⟨𝑠, 𝑡⟩ ∣ ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)))} ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))), (𝑎 × 𝑎))
241, 19, 20, 21, 22, 23infxpenlem 9904 1 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wral 3047  cun 3895  cin 3896  wss 3897   class class class wbr 5089  {copab 5151   × cxp 5612  Oncon0 6306  cfv 6481  ωcom 7796  1st c1st 7919  2nd c2nd 7920  cen 8866  csdm 8868  OrdIsocoi 9395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-oi 9396  df-card 9832
This theorem is referenced by:  xpomen  9906  infxpidm2  9908  alephreg  10473  cfpwsdom  10475  inar1  10666
  Copyright terms: Public domain W3C validator