MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpen Structured version   Visualization version   GIF version

Theorem infxpen 9943
Description: Every infinite ordinal is equinumerous to its Cartesian square. Proposition 10.39 of [TakeutiZaring] p. 94, whose proof we follow closely. The key idea is to show that the relation 𝑅 is a well-ordering of (On × On) with the additional property that 𝑅-initial segments of (𝑥 × 𝑥) (where 𝑥 is a limit ordinal) are of cardinality at most 𝑥. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
infxpen ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)

Proof of Theorem infxpen
Dummy variables 𝑚 𝑎 𝑠 𝑡 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
2 eleq1w 2811 . . . . 5 (𝑠 = 𝑧 → (𝑠 ∈ (On × On) ↔ 𝑧 ∈ (On × On)))
3 eleq1w 2811 . . . . 5 (𝑡 = 𝑤 → (𝑡 ∈ (On × On) ↔ 𝑤 ∈ (On × On)))
42, 3bi2anan9 638 . . . 4 ((𝑠 = 𝑧𝑡 = 𝑤) → ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ↔ (𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On))))
5 fveq2 6840 . . . . . . . 8 (𝑠 = 𝑧 → (1st𝑠) = (1st𝑧))
6 fveq2 6840 . . . . . . . 8 (𝑠 = 𝑧 → (2nd𝑠) = (2nd𝑧))
75, 6uneq12d 4128 . . . . . . 7 (𝑠 = 𝑧 → ((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑧) ∪ (2nd𝑧)))
87adantr 480 . . . . . 6 ((𝑠 = 𝑧𝑡 = 𝑤) → ((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑧) ∪ (2nd𝑧)))
9 fveq2 6840 . . . . . . . 8 (𝑡 = 𝑤 → (1st𝑡) = (1st𝑤))
10 fveq2 6840 . . . . . . . 8 (𝑡 = 𝑤 → (2nd𝑡) = (2nd𝑤))
119, 10uneq12d 4128 . . . . . . 7 (𝑡 = 𝑤 → ((1st𝑡) ∪ (2nd𝑡)) = ((1st𝑤) ∪ (2nd𝑤)))
1211adantl 481 . . . . . 6 ((𝑠 = 𝑧𝑡 = 𝑤) → ((1st𝑡) ∪ (2nd𝑡)) = ((1st𝑤) ∪ (2nd𝑤)))
138, 12eleq12d 2822 . . . . 5 ((𝑠 = 𝑧𝑡 = 𝑤) → (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ↔ ((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤))))
147, 11eqeqan12d 2743 . . . . . 6 ((𝑠 = 𝑧𝑡 = 𝑤) → (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ↔ ((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤))))
15 breq12 5107 . . . . . 6 ((𝑠 = 𝑧𝑡 = 𝑤) → (𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡𝑧{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑤))
1614, 15anbi12d 632 . . . . 5 ((𝑠 = 𝑧𝑡 = 𝑤) → ((((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡) ↔ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑤)))
1713, 16orbi12d 918 . . . 4 ((𝑠 = 𝑧𝑡 = 𝑤) → ((((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)) ↔ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑤))))
184, 17anbi12d 632 . . 3 ((𝑠 = 𝑧𝑡 = 𝑤) → (((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡))) ↔ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑤)))))
1918cbvopabv 5175 . 2 {⟨𝑠, 𝑡⟩ ∣ ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)))} = {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑤)))}
20 eqid 2729 . 2 ({⟨𝑠, 𝑡⟩ ∣ ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)))} ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) = ({⟨𝑠, 𝑡⟩ ∣ ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)))} ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎)))
21 biid 261 . 2 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) ↔ ((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)))
22 eqid 2729 . 2 ((1st𝑤) ∪ (2nd𝑤)) = ((1st𝑤) ∪ (2nd𝑤))
23 eqid 2729 . 2 OrdIso(({⟨𝑠, 𝑡⟩ ∣ ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)))} ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))), (𝑎 × 𝑎)) = OrdIso(({⟨𝑠, 𝑡⟩ ∣ ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)))} ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))), (𝑎 × 𝑎))
241, 19, 20, 21, 22, 23infxpenlem 9942 1 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  cun 3909  cin 3910  wss 3911   class class class wbr 5102  {copab 5164   × cxp 5629  Oncon0 6320  cfv 6499  ωcom 7822  1st c1st 7945  2nd c2nd 7946  cen 8892  csdm 8894  OrdIsocoi 9438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-oi 9439  df-card 9868
This theorem is referenced by:  xpomen  9944  infxpidm2  9946  alephreg  10511  cfpwsdom  10513  inar1  10704
  Copyright terms: Public domain W3C validator