MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpen Structured version   Visualization version   GIF version

Theorem infxpen 9434
Description: Every infinite ordinal is equinumerous to its Cartesian square. Proposition 10.39 of [TakeutiZaring] p. 94, whose proof we follow closely. The key idea is to show that the relation 𝑅 is a well-ordering of (On × On) with the additional property that 𝑅-initial segments of (𝑥 × 𝑥) (where 𝑥 is a limit ordinal) are of cardinality at most 𝑥. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
infxpen ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)

Proof of Theorem infxpen
Dummy variables 𝑚 𝑎 𝑠 𝑡 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
2 eleq1w 2898 . . . . 5 (𝑠 = 𝑧 → (𝑠 ∈ (On × On) ↔ 𝑧 ∈ (On × On)))
3 eleq1w 2898 . . . . 5 (𝑡 = 𝑤 → (𝑡 ∈ (On × On) ↔ 𝑤 ∈ (On × On)))
42, 3bi2anan9 638 . . . 4 ((𝑠 = 𝑧𝑡 = 𝑤) → ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ↔ (𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On))))
5 fveq2 6659 . . . . . . . 8 (𝑠 = 𝑧 → (1st𝑠) = (1st𝑧))
6 fveq2 6659 . . . . . . . 8 (𝑠 = 𝑧 → (2nd𝑠) = (2nd𝑧))
75, 6uneq12d 4126 . . . . . . 7 (𝑠 = 𝑧 → ((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑧) ∪ (2nd𝑧)))
87adantr 484 . . . . . 6 ((𝑠 = 𝑧𝑡 = 𝑤) → ((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑧) ∪ (2nd𝑧)))
9 fveq2 6659 . . . . . . . 8 (𝑡 = 𝑤 → (1st𝑡) = (1st𝑤))
10 fveq2 6659 . . . . . . . 8 (𝑡 = 𝑤 → (2nd𝑡) = (2nd𝑤))
119, 10uneq12d 4126 . . . . . . 7 (𝑡 = 𝑤 → ((1st𝑡) ∪ (2nd𝑡)) = ((1st𝑤) ∪ (2nd𝑤)))
1211adantl 485 . . . . . 6 ((𝑠 = 𝑧𝑡 = 𝑤) → ((1st𝑡) ∪ (2nd𝑡)) = ((1st𝑤) ∪ (2nd𝑤)))
138, 12eleq12d 2910 . . . . 5 ((𝑠 = 𝑧𝑡 = 𝑤) → (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ↔ ((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤))))
147, 11eqeqan12d 2841 . . . . . 6 ((𝑠 = 𝑧𝑡 = 𝑤) → (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ↔ ((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤))))
15 breq12 5058 . . . . . 6 ((𝑠 = 𝑧𝑡 = 𝑤) → (𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡𝑧{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑤))
1614, 15anbi12d 633 . . . . 5 ((𝑠 = 𝑧𝑡 = 𝑤) → ((((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡) ↔ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑤)))
1713, 16orbi12d 916 . . . 4 ((𝑠 = 𝑧𝑡 = 𝑤) → ((((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)) ↔ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑤))))
184, 17anbi12d 633 . . 3 ((𝑠 = 𝑧𝑡 = 𝑤) → (((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡))) ↔ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑤)))))
1918cbvopabv 5125 . 2 {⟨𝑠, 𝑡⟩ ∣ ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)))} = {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑤)))}
20 eqid 2824 . 2 ({⟨𝑠, 𝑡⟩ ∣ ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)))} ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) = ({⟨𝑠, 𝑡⟩ ∣ ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)))} ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎)))
21 biid 264 . 2 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) ↔ ((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)))
22 eqid 2824 . 2 ((1st𝑤) ∪ (2nd𝑤)) = ((1st𝑤) ∪ (2nd𝑤))
23 eqid 2824 . 2 OrdIso(({⟨𝑠, 𝑡⟩ ∣ ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)))} ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))), (𝑎 × 𝑎)) = OrdIso(({⟨𝑠, 𝑡⟩ ∣ ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)))} ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))), (𝑎 × 𝑎))
241, 19, 20, 21, 22, 23infxpenlem 9433 1 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wcel 2115  wral 3133  cun 3917  cin 3918  wss 3919   class class class wbr 5053  {copab 5115   × cxp 5541  Oncon0 6179  cfv 6344  ωcom 7571  1st c1st 7679  2nd c2nd 7680  cen 8498  csdm 8500  OrdIsocoi 8966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-inf2 9097
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-isom 6353  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-oi 8967  df-card 9361
This theorem is referenced by:  xpomen  9435  infxpidm2  9437  alephreg  9998  cfpwsdom  10000  inar1  10191
  Copyright terms: Public domain W3C validator