MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcth Structured version   Visualization version   GIF version

Theorem bcth 25345
Description: Baire's Category Theorem. If a nonempty metric space is complete, it is nonmeager in itself. In other words, no open set in the metric space can be the countable union of rare closed subsets (where rare means having a closure with empty interior), so some subset 𝑀𝑘 must have a nonempty interior. Theorem 4.7-2 of [Kreyszig] p. 247. (The terminology "meager" and "nonmeager" is used by Kreyszig to replace Baire's "of the first category" and "of the second category." The latter terms are going out of favor to avoid confusion with category theory.) See bcthlem5 25344 for an overview of the proof. (Contributed by NM, 28-Oct-2007.) (Proof shortened by Mario Carneiro, 6-Jan-2014.)
Hypothesis
Ref Expression
bcth.2 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
bcth ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽) ∧ ((int‘𝐽)‘ ran 𝑀) ≠ ∅) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) ≠ ∅)
Distinct variable groups:   𝐷,𝑘   𝑘,𝐽   𝑘,𝑀   𝑘,𝑋

Proof of Theorem bcth
Dummy variables 𝑛 𝑟 𝑥 𝑧 𝑔 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcth.2 . . . . . 6 𝐽 = (MetOpen‘𝐷)
2 simpll 765 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽)) ∧ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅) → 𝐷 ∈ (CMet‘𝑋))
3 eleq1w 2809 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝑋𝑦𝑋))
4 eleq1w 2809 . . . . . . . . . . 11 (𝑟 = 𝑚 → (𝑟 ∈ ℝ+𝑚 ∈ ℝ+))
53, 4bi2anan9 636 . . . . . . . . . 10 ((𝑥 = 𝑦𝑟 = 𝑚) → ((𝑥𝑋𝑟 ∈ ℝ+) ↔ (𝑦𝑋𝑚 ∈ ℝ+)))
6 simpr 483 . . . . . . . . . . . 12 ((𝑥 = 𝑦𝑟 = 𝑚) → 𝑟 = 𝑚)
76breq1d 5155 . . . . . . . . . . 11 ((𝑥 = 𝑦𝑟 = 𝑚) → (𝑟 < (1 / 𝑘) ↔ 𝑚 < (1 / 𝑘)))
8 oveq12 7425 . . . . . . . . . . . . 13 ((𝑥 = 𝑦𝑟 = 𝑚) → (𝑥(ball‘𝐷)𝑟) = (𝑦(ball‘𝐷)𝑚))
98fveq2d 6897 . . . . . . . . . . . 12 ((𝑥 = 𝑦𝑟 = 𝑚) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) = ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)))
109sseq1d 4010 . . . . . . . . . . 11 ((𝑥 = 𝑦𝑟 = 𝑚) → (((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) ↔ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))
117, 10anbi12d 630 . . . . . . . . . 10 ((𝑥 = 𝑦𝑟 = 𝑚) → ((𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))) ↔ (𝑚 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)))))
125, 11anbi12d 630 . . . . . . . . 9 ((𝑥 = 𝑦𝑟 = 𝑚) → (((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)))) ↔ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))))
1312cbvopabv 5218 . . . . . . . 8 {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} = {⟨𝑦, 𝑚⟩ ∣ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))}
14 oveq2 7424 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (1 / 𝑘) = (1 / 𝑛))
1514breq2d 5157 . . . . . . . . . . 11 (𝑘 = 𝑛 → (𝑚 < (1 / 𝑘) ↔ 𝑚 < (1 / 𝑛)))
16 fveq2 6893 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝑀𝑘) = (𝑀𝑛))
1716difeq2d 4118 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) = (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛)))
1817sseq2d 4011 . . . . . . . . . . 11 (𝑘 = 𝑛 → (((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) ↔ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛))))
1915, 18anbi12d 630 . . . . . . . . . 10 (𝑘 = 𝑛 → ((𝑚 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))) ↔ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛)))))
2019anbi2d 628 . . . . . . . . 9 (𝑘 = 𝑛 → (((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)))) ↔ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛))))))
2120opabbidv 5211 . . . . . . . 8 (𝑘 = 𝑛 → {⟨𝑦, 𝑚⟩ ∣ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} = {⟨𝑦, 𝑚⟩ ∣ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛))))})
2213, 21eqtrid 2778 . . . . . . 7 (𝑘 = 𝑛 → {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} = {⟨𝑦, 𝑚⟩ ∣ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛))))})
23 fveq2 6893 . . . . . . . . . . . 12 (𝑧 = 𝑔 → ((ball‘𝐷)‘𝑧) = ((ball‘𝐷)‘𝑔))
2423difeq1d 4117 . . . . . . . . . . 11 (𝑧 = 𝑔 → (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛)) = (((ball‘𝐷)‘𝑔) ∖ (𝑀𝑛)))
2524sseq2d 4011 . . . . . . . . . 10 (𝑧 = 𝑔 → (((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛)) ↔ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑔) ∖ (𝑀𝑛))))
2625anbi2d 628 . . . . . . . . 9 (𝑧 = 𝑔 → ((𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛))) ↔ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑔) ∖ (𝑀𝑛)))))
2726anbi2d 628 . . . . . . . 8 (𝑧 = 𝑔 → (((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛)))) ↔ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑔) ∖ (𝑀𝑛))))))
2827opabbidv 5211 . . . . . . 7 (𝑧 = 𝑔 → {⟨𝑦, 𝑚⟩ ∣ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛))))} = {⟨𝑦, 𝑚⟩ ∣ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑔) ∖ (𝑀𝑛))))})
2922, 28cbvmpov 7512 . . . . . 6 (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))}) = (𝑛 ∈ ℕ, 𝑔 ∈ (𝑋 × ℝ+) ↦ {⟨𝑦, 𝑚⟩ ∣ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑔) ∖ (𝑀𝑛))))})
30 simplr 767 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽)) ∧ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅) → 𝑀:ℕ⟶(Clsd‘𝐽))
31 simpr 483 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽)) ∧ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅) → ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅)
3216fveqeq2d 6901 . . . . . . . 8 (𝑘 = 𝑛 → (((int‘𝐽)‘(𝑀𝑘)) = ∅ ↔ ((int‘𝐽)‘(𝑀𝑛)) = ∅))
3332cbvralvw 3225 . . . . . . 7 (∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅ ↔ ∀𝑛 ∈ ℕ ((int‘𝐽)‘(𝑀𝑛)) = ∅)
3431, 33sylib 217 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽)) ∧ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅) → ∀𝑛 ∈ ℕ ((int‘𝐽)‘(𝑀𝑛)) = ∅)
351, 2, 29, 30, 34bcthlem5 25344 . . . . 5 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽)) ∧ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅) → ((int‘𝐽)‘ ran 𝑀) = ∅)
3635ex 411 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽)) → (∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅ → ((int‘𝐽)‘ ran 𝑀) = ∅))
3736necon3ad 2943 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽)) → (((int‘𝐽)‘ ran 𝑀) ≠ ∅ → ¬ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅))
38373impia 1114 . 2 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽) ∧ ((int‘𝐽)‘ ran 𝑀) ≠ ∅) → ¬ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅)
39 df-ne 2931 . . . 4 (((int‘𝐽)‘(𝑀𝑘)) ≠ ∅ ↔ ¬ ((int‘𝐽)‘(𝑀𝑘)) = ∅)
4039rexbii 3084 . . 3 (∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) ≠ ∅ ↔ ∃𝑘 ∈ ℕ ¬ ((int‘𝐽)‘(𝑀𝑘)) = ∅)
41 rexnal 3090 . . 3 (∃𝑘 ∈ ℕ ¬ ((int‘𝐽)‘(𝑀𝑘)) = ∅ ↔ ¬ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅)
4240, 41bitri 274 . 2 (∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) ≠ ∅ ↔ ¬ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅)
4338, 42sylibr 233 1 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽) ∧ ((int‘𝐽)‘ ran 𝑀) ≠ ∅) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wral 3051  wrex 3060  cdif 3943  wss 3946  c0 4322   cuni 4905   class class class wbr 5145  {copab 5207   × cxp 5672  ran crn 5675  wf 6542  cfv 6546  (class class class)co 7416  cmpo 7418  1c1 11150   < clt 11289   / cdiv 11912  cn 12258  +crp 13022  ballcbl 21326  MetOpencmopn 21329  Clsdccld 23008  intcnt 23009  clsccl 23010  CMetccmet 25270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-inf2 9677  ax-dc 10480  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8726  df-map 8849  df-pm 8850  df-en 8967  df-dom 8968  df-sdom 8969  df-sup 9478  df-inf 9479  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-n0 12519  df-z 12605  df-uz 12869  df-q 12979  df-rp 13023  df-xneg 13140  df-xadd 13141  df-xmul 13142  df-ico 13378  df-rest 17432  df-topgen 17453  df-psmet 21331  df-xmet 21332  df-met 21333  df-bl 21334  df-mopn 21335  df-fbas 21336  df-fg 21337  df-top 22884  df-topon 22901  df-bases 22937  df-cld 23011  df-ntr 23012  df-cls 23013  df-nei 23090  df-lm 23221  df-fil 23838  df-fm 23930  df-flim 23931  df-flf 23932  df-cfil 25271  df-cau 25272  df-cmet 25273
This theorem is referenced by:  bcth2  25346  bcth3  25347
  Copyright terms: Public domain W3C validator