MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcth Structured version   Visualization version   GIF version

Theorem bcth 25382
Description: Baire's Category Theorem. If a nonempty metric space is complete, it is nonmeager in itself. In other words, no open set in the metric space can be the countable union of rare closed subsets (where rare means having a closure with empty interior), so some subset 𝑀𝑘 must have a nonempty interior. Theorem 4.7-2 of [Kreyszig] p. 247. (The terminology "meager" and "nonmeager" is used by Kreyszig to replace Baire's "of the first category" and "of the second category." The latter terms are going out of favor to avoid confusion with category theory.) See bcthlem5 25381 for an overview of the proof. (Contributed by NM, 28-Oct-2007.) (Proof shortened by Mario Carneiro, 6-Jan-2014.)
Hypothesis
Ref Expression
bcth.2 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
bcth ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽) ∧ ((int‘𝐽)‘ ran 𝑀) ≠ ∅) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) ≠ ∅)
Distinct variable groups:   𝐷,𝑘   𝑘,𝐽   𝑘,𝑀   𝑘,𝑋

Proof of Theorem bcth
Dummy variables 𝑛 𝑟 𝑥 𝑧 𝑔 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcth.2 . . . . . 6 𝐽 = (MetOpen‘𝐷)
2 simpll 766 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽)) ∧ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅) → 𝐷 ∈ (CMet‘𝑋))
3 eleq1w 2827 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝑋𝑦𝑋))
4 eleq1w 2827 . . . . . . . . . . 11 (𝑟 = 𝑚 → (𝑟 ∈ ℝ+𝑚 ∈ ℝ+))
53, 4bi2anan9 637 . . . . . . . . . 10 ((𝑥 = 𝑦𝑟 = 𝑚) → ((𝑥𝑋𝑟 ∈ ℝ+) ↔ (𝑦𝑋𝑚 ∈ ℝ+)))
6 simpr 484 . . . . . . . . . . . 12 ((𝑥 = 𝑦𝑟 = 𝑚) → 𝑟 = 𝑚)
76breq1d 5176 . . . . . . . . . . 11 ((𝑥 = 𝑦𝑟 = 𝑚) → (𝑟 < (1 / 𝑘) ↔ 𝑚 < (1 / 𝑘)))
8 oveq12 7457 . . . . . . . . . . . . 13 ((𝑥 = 𝑦𝑟 = 𝑚) → (𝑥(ball‘𝐷)𝑟) = (𝑦(ball‘𝐷)𝑚))
98fveq2d 6924 . . . . . . . . . . . 12 ((𝑥 = 𝑦𝑟 = 𝑚) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) = ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)))
109sseq1d 4040 . . . . . . . . . . 11 ((𝑥 = 𝑦𝑟 = 𝑚) → (((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) ↔ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))
117, 10anbi12d 631 . . . . . . . . . 10 ((𝑥 = 𝑦𝑟 = 𝑚) → ((𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))) ↔ (𝑚 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)))))
125, 11anbi12d 631 . . . . . . . . 9 ((𝑥 = 𝑦𝑟 = 𝑚) → (((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)))) ↔ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))))
1312cbvopabv 5239 . . . . . . . 8 {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} = {⟨𝑦, 𝑚⟩ ∣ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))}
14 oveq2 7456 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (1 / 𝑘) = (1 / 𝑛))
1514breq2d 5178 . . . . . . . . . . 11 (𝑘 = 𝑛 → (𝑚 < (1 / 𝑘) ↔ 𝑚 < (1 / 𝑛)))
16 fveq2 6920 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝑀𝑘) = (𝑀𝑛))
1716difeq2d 4149 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) = (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛)))
1817sseq2d 4041 . . . . . . . . . . 11 (𝑘 = 𝑛 → (((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) ↔ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛))))
1915, 18anbi12d 631 . . . . . . . . . 10 (𝑘 = 𝑛 → ((𝑚 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))) ↔ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛)))))
2019anbi2d 629 . . . . . . . . 9 (𝑘 = 𝑛 → (((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)))) ↔ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛))))))
2120opabbidv 5232 . . . . . . . 8 (𝑘 = 𝑛 → {⟨𝑦, 𝑚⟩ ∣ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} = {⟨𝑦, 𝑚⟩ ∣ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛))))})
2213, 21eqtrid 2792 . . . . . . 7 (𝑘 = 𝑛 → {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} = {⟨𝑦, 𝑚⟩ ∣ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛))))})
23 fveq2 6920 . . . . . . . . . . . 12 (𝑧 = 𝑔 → ((ball‘𝐷)‘𝑧) = ((ball‘𝐷)‘𝑔))
2423difeq1d 4148 . . . . . . . . . . 11 (𝑧 = 𝑔 → (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛)) = (((ball‘𝐷)‘𝑔) ∖ (𝑀𝑛)))
2524sseq2d 4041 . . . . . . . . . 10 (𝑧 = 𝑔 → (((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛)) ↔ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑔) ∖ (𝑀𝑛))))
2625anbi2d 629 . . . . . . . . 9 (𝑧 = 𝑔 → ((𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛))) ↔ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑔) ∖ (𝑀𝑛)))))
2726anbi2d 629 . . . . . . . 8 (𝑧 = 𝑔 → (((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛)))) ↔ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑔) ∖ (𝑀𝑛))))))
2827opabbidv 5232 . . . . . . 7 (𝑧 = 𝑔 → {⟨𝑦, 𝑚⟩ ∣ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛))))} = {⟨𝑦, 𝑚⟩ ∣ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑔) ∖ (𝑀𝑛))))})
2922, 28cbvmpov 7545 . . . . . 6 (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))}) = (𝑛 ∈ ℕ, 𝑔 ∈ (𝑋 × ℝ+) ↦ {⟨𝑦, 𝑚⟩ ∣ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑔) ∖ (𝑀𝑛))))})
30 simplr 768 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽)) ∧ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅) → 𝑀:ℕ⟶(Clsd‘𝐽))
31 simpr 484 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽)) ∧ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅) → ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅)
3216fveqeq2d 6928 . . . . . . . 8 (𝑘 = 𝑛 → (((int‘𝐽)‘(𝑀𝑘)) = ∅ ↔ ((int‘𝐽)‘(𝑀𝑛)) = ∅))
3332cbvralvw 3243 . . . . . . 7 (∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅ ↔ ∀𝑛 ∈ ℕ ((int‘𝐽)‘(𝑀𝑛)) = ∅)
3431, 33sylib 218 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽)) ∧ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅) → ∀𝑛 ∈ ℕ ((int‘𝐽)‘(𝑀𝑛)) = ∅)
351, 2, 29, 30, 34bcthlem5 25381 . . . . 5 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽)) ∧ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅) → ((int‘𝐽)‘ ran 𝑀) = ∅)
3635ex 412 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽)) → (∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅ → ((int‘𝐽)‘ ran 𝑀) = ∅))
3736necon3ad 2959 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽)) → (((int‘𝐽)‘ ran 𝑀) ≠ ∅ → ¬ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅))
38373impia 1117 . 2 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽) ∧ ((int‘𝐽)‘ ran 𝑀) ≠ ∅) → ¬ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅)
39 df-ne 2947 . . . 4 (((int‘𝐽)‘(𝑀𝑘)) ≠ ∅ ↔ ¬ ((int‘𝐽)‘(𝑀𝑘)) = ∅)
4039rexbii 3100 . . 3 (∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) ≠ ∅ ↔ ∃𝑘 ∈ ℕ ¬ ((int‘𝐽)‘(𝑀𝑘)) = ∅)
41 rexnal 3106 . . 3 (∃𝑘 ∈ ℕ ¬ ((int‘𝐽)‘(𝑀𝑘)) = ∅ ↔ ¬ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅)
4240, 41bitri 275 . 2 (∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) ≠ ∅ ↔ ¬ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅)
4338, 42sylibr 234 1 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽) ∧ ((int‘𝐽)‘ ran 𝑀) ≠ ∅) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cdif 3973  wss 3976  c0 4352   cuni 4931   class class class wbr 5166  {copab 5228   × cxp 5698  ran crn 5701  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  1c1 11185   < clt 11324   / cdiv 11947  cn 12293  +crp 13057  ballcbl 21374  MetOpencmopn 21377  Clsdccld 23045  intcnt 23046  clsccl 23047  CMetccmet 25307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-dc 10515  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ico 13413  df-rest 17482  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-top 22921  df-topon 22938  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lm 23258  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-cfil 25308  df-cau 25309  df-cmet 25310
This theorem is referenced by:  bcth2  25383  bcth3  25384
  Copyright terms: Public domain W3C validator