Step | Hyp | Ref
| Expression |
1 | | bcth.2 |
. . . . . 6
β’ π½ = (MetOpenβπ·) |
2 | | simpll 766 |
. . . . . 6
β’ (((π· β (CMetβπ) β§ π:ββΆ(Clsdβπ½)) β§ βπ β β
((intβπ½)β(πβπ)) = β
) β π· β (CMetβπ)) |
3 | | eleq1w 2821 |
. . . . . . . . . . 11
β’ (π₯ = π¦ β (π₯ β π β π¦ β π)) |
4 | | eleq1w 2821 |
. . . . . . . . . . 11
β’ (π = π β (π β β+ β π β
β+)) |
5 | 3, 4 | bi2anan9 638 |
. . . . . . . . . 10
β’ ((π₯ = π¦ β§ π = π) β ((π₯ β π β§ π β β+) β (π¦ β π β§ π β
β+))) |
6 | | simpr 486 |
. . . . . . . . . . . 12
β’ ((π₯ = π¦ β§ π = π) β π = π) |
7 | 6 | breq1d 5116 |
. . . . . . . . . . 11
β’ ((π₯ = π¦ β§ π = π) β (π < (1 / π) β π < (1 / π))) |
8 | | oveq12 7367 |
. . . . . . . . . . . . 13
β’ ((π₯ = π¦ β§ π = π) β (π₯(ballβπ·)π) = (π¦(ballβπ·)π)) |
9 | 8 | fveq2d 6847 |
. . . . . . . . . . . 12
β’ ((π₯ = π¦ β§ π = π) β ((clsβπ½)β(π₯(ballβπ·)π)) = ((clsβπ½)β(π¦(ballβπ·)π))) |
10 | 9 | sseq1d 3976 |
. . . . . . . . . . 11
β’ ((π₯ = π¦ β§ π = π) β (((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ)) β ((clsβπ½)β(π¦(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ)))) |
11 | 7, 10 | anbi12d 632 |
. . . . . . . . . 10
β’ ((π₯ = π¦ β§ π = π) β ((π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))) β (π < (1 / π) β§ ((clsβπ½)β(π¦(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))) |
12 | 5, 11 | anbi12d 632 |
. . . . . . . . 9
β’ ((π₯ = π¦ β§ π = π) β (((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ)))) β ((π¦ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π¦(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ)))))) |
13 | 12 | cbvopabv 5179 |
. . . . . . . 8
β’
{β¨π₯, πβ© β£ ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))} = {β¨π¦, πβ© β£ ((π¦ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π¦(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))} |
14 | | oveq2 7366 |
. . . . . . . . . . . 12
β’ (π = π β (1 / π) = (1 / π)) |
15 | 14 | breq2d 5118 |
. . . . . . . . . . 11
β’ (π = π β (π < (1 / π) β π < (1 / π))) |
16 | | fveq2 6843 |
. . . . . . . . . . . . 13
β’ (π = π β (πβπ) = (πβπ)) |
17 | 16 | difeq2d 4083 |
. . . . . . . . . . . 12
β’ (π = π β (((ballβπ·)βπ§) β (πβπ)) = (((ballβπ·)βπ§) β (πβπ))) |
18 | 17 | sseq2d 3977 |
. . . . . . . . . . 11
β’ (π = π β (((clsβπ½)β(π¦(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ)) β ((clsβπ½)β(π¦(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ)))) |
19 | 15, 18 | anbi12d 632 |
. . . . . . . . . 10
β’ (π = π β ((π < (1 / π) β§ ((clsβπ½)β(π¦(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))) β (π < (1 / π) β§ ((clsβπ½)β(π¦(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))) |
20 | 19 | anbi2d 630 |
. . . . . . . . 9
β’ (π = π β (((π¦ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π¦(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ)))) β ((π¦ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π¦(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ)))))) |
21 | 20 | opabbidv 5172 |
. . . . . . . 8
β’ (π = π β {β¨π¦, πβ© β£ ((π¦ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π¦(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))} = {β¨π¦, πβ© β£ ((π¦ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π¦(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))}) |
22 | 13, 21 | eqtrid 2789 |
. . . . . . 7
β’ (π = π β {β¨π₯, πβ© β£ ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))} = {β¨π¦, πβ© β£ ((π¦ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π¦(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))}) |
23 | | fveq2 6843 |
. . . . . . . . . . . 12
β’ (π§ = π β ((ballβπ·)βπ§) = ((ballβπ·)βπ)) |
24 | 23 | difeq1d 4082 |
. . . . . . . . . . 11
β’ (π§ = π β (((ballβπ·)βπ§) β (πβπ)) = (((ballβπ·)βπ) β (πβπ))) |
25 | 24 | sseq2d 3977 |
. . . . . . . . . 10
β’ (π§ = π β (((clsβπ½)β(π¦(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ)) β ((clsβπ½)β(π¦(ballβπ·)π)) β (((ballβπ·)βπ) β (πβπ)))) |
26 | 25 | anbi2d 630 |
. . . . . . . . 9
β’ (π§ = π β ((π < (1 / π) β§ ((clsβπ½)β(π¦(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))) β (π < (1 / π) β§ ((clsβπ½)β(π¦(ballβπ·)π)) β (((ballβπ·)βπ) β (πβπ))))) |
27 | 26 | anbi2d 630 |
. . . . . . . 8
β’ (π§ = π β (((π¦ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π¦(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ)))) β ((π¦ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π¦(ballβπ·)π)) β (((ballβπ·)βπ) β (πβπ)))))) |
28 | 27 | opabbidv 5172 |
. . . . . . 7
β’ (π§ = π β {β¨π¦, πβ© β£ ((π¦ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π¦(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))} = {β¨π¦, πβ© β£ ((π¦ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π¦(ballβπ·)π)) β (((ballβπ·)βπ) β (πβπ))))}) |
29 | 22, 28 | cbvmpov 7453 |
. . . . . 6
β’ (π β β, π§ β (π Γ β+) β¦
{β¨π₯, πβ© β£ ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))}) = (π β β, π β (π Γ β+) β¦
{β¨π¦, πβ© β£ ((π¦ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π¦(ballβπ·)π)) β (((ballβπ·)βπ) β (πβπ))))}) |
30 | | simplr 768 |
. . . . . 6
β’ (((π· β (CMetβπ) β§ π:ββΆ(Clsdβπ½)) β§ βπ β β
((intβπ½)β(πβπ)) = β
) β π:ββΆ(Clsdβπ½)) |
31 | | simpr 486 |
. . . . . . 7
β’ (((π· β (CMetβπ) β§ π:ββΆ(Clsdβπ½)) β§ βπ β β
((intβπ½)β(πβπ)) = β
) β βπ β β
((intβπ½)β(πβπ)) = β
) |
32 | 16 | fveqeq2d 6851 |
. . . . . . . 8
β’ (π = π β (((intβπ½)β(πβπ)) = β
β ((intβπ½)β(πβπ)) = β
)) |
33 | 32 | cbvralvw 3226 |
. . . . . . 7
β’
(βπ β
β ((intβπ½)β(πβπ)) = β
β βπ β β
((intβπ½)β(πβπ)) = β
) |
34 | 31, 33 | sylib 217 |
. . . . . 6
β’ (((π· β (CMetβπ) β§ π:ββΆ(Clsdβπ½)) β§ βπ β β
((intβπ½)β(πβπ)) = β
) β βπ β β
((intβπ½)β(πβπ)) = β
) |
35 | 1, 2, 29, 30, 34 | bcthlem5 24695 |
. . . . 5
β’ (((π· β (CMetβπ) β§ π:ββΆ(Clsdβπ½)) β§ βπ β β
((intβπ½)β(πβπ)) = β
) β ((intβπ½)ββͺ ran π) = β
) |
36 | 35 | ex 414 |
. . . 4
β’ ((π· β (CMetβπ) β§ π:ββΆ(Clsdβπ½)) β (βπ β β
((intβπ½)β(πβπ)) = β
β ((intβπ½)ββͺ ran π) = β
)) |
37 | 36 | necon3ad 2957 |
. . 3
β’ ((π· β (CMetβπ) β§ π:ββΆ(Clsdβπ½)) β (((intβπ½)ββͺ ran π) β β
β Β¬ βπ β β
((intβπ½)β(πβπ)) = β
)) |
38 | 37 | 3impia 1118 |
. 2
β’ ((π· β (CMetβπ) β§ π:ββΆ(Clsdβπ½) β§ ((intβπ½)ββͺ ran π) β β
) β Β¬ βπ β β
((intβπ½)β(πβπ)) = β
) |
39 | | df-ne 2945 |
. . . 4
β’
(((intβπ½)β(πβπ)) β β
β Β¬
((intβπ½)β(πβπ)) = β
) |
40 | 39 | rexbii 3098 |
. . 3
β’
(βπ β
β ((intβπ½)β(πβπ)) β β
β βπ β β Β¬
((intβπ½)β(πβπ)) = β
) |
41 | | rexnal 3104 |
. . 3
β’
(βπ β
β Β¬ ((intβπ½)β(πβπ)) = β
β Β¬ βπ β β
((intβπ½)β(πβπ)) = β
) |
42 | 40, 41 | bitri 275 |
. 2
β’
(βπ β
β ((intβπ½)β(πβπ)) β β
β Β¬ βπ β β
((intβπ½)β(πβπ)) = β
) |
43 | 38, 42 | sylibr 233 |
1
β’ ((π· β (CMetβπ) β§ π:ββΆ(Clsdβπ½) β§ ((intβπ½)ββͺ ran π) β β
) β βπ β β
((intβπ½)β(πβπ)) β β
) |