MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcth Structured version   Visualization version   GIF version

Theorem bcth 25256
Description: Baire's Category Theorem. If a nonempty metric space is complete, it is nonmeager in itself. In other words, no open set in the metric space can be the countable union of rare closed subsets (where rare means having a closure with empty interior), so some subset 𝑀𝑘 must have a nonempty interior. Theorem 4.7-2 of [Kreyszig] p. 247. (The terminology "meager" and "nonmeager" is used by Kreyszig to replace Baire's "of the first category" and "of the second category." The latter terms are going out of favor to avoid confusion with category theory.) See bcthlem5 25255 for an overview of the proof. (Contributed by NM, 28-Oct-2007.) (Proof shortened by Mario Carneiro, 6-Jan-2014.)
Hypothesis
Ref Expression
bcth.2 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
bcth ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽) ∧ ((int‘𝐽)‘ ran 𝑀) ≠ ∅) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) ≠ ∅)
Distinct variable groups:   𝐷,𝑘   𝑘,𝐽   𝑘,𝑀   𝑘,𝑋

Proof of Theorem bcth
Dummy variables 𝑛 𝑟 𝑥 𝑧 𝑔 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcth.2 . . . . . 6 𝐽 = (MetOpen‘𝐷)
2 simpll 766 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽)) ∧ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅) → 𝐷 ∈ (CMet‘𝑋))
3 eleq1w 2814 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝑋𝑦𝑋))
4 eleq1w 2814 . . . . . . . . . . 11 (𝑟 = 𝑚 → (𝑟 ∈ ℝ+𝑚 ∈ ℝ+))
53, 4bi2anan9 638 . . . . . . . . . 10 ((𝑥 = 𝑦𝑟 = 𝑚) → ((𝑥𝑋𝑟 ∈ ℝ+) ↔ (𝑦𝑋𝑚 ∈ ℝ+)))
6 simpr 484 . . . . . . . . . . . 12 ((𝑥 = 𝑦𝑟 = 𝑚) → 𝑟 = 𝑚)
76breq1d 5099 . . . . . . . . . . 11 ((𝑥 = 𝑦𝑟 = 𝑚) → (𝑟 < (1 / 𝑘) ↔ 𝑚 < (1 / 𝑘)))
8 oveq12 7355 . . . . . . . . . . . . 13 ((𝑥 = 𝑦𝑟 = 𝑚) → (𝑥(ball‘𝐷)𝑟) = (𝑦(ball‘𝐷)𝑚))
98fveq2d 6826 . . . . . . . . . . . 12 ((𝑥 = 𝑦𝑟 = 𝑚) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) = ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)))
109sseq1d 3961 . . . . . . . . . . 11 ((𝑥 = 𝑦𝑟 = 𝑚) → (((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) ↔ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))
117, 10anbi12d 632 . . . . . . . . . 10 ((𝑥 = 𝑦𝑟 = 𝑚) → ((𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))) ↔ (𝑚 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)))))
125, 11anbi12d 632 . . . . . . . . 9 ((𝑥 = 𝑦𝑟 = 𝑚) → (((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)))) ↔ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))))
1312cbvopabv 5162 . . . . . . . 8 {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} = {⟨𝑦, 𝑚⟩ ∣ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))}
14 oveq2 7354 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (1 / 𝑘) = (1 / 𝑛))
1514breq2d 5101 . . . . . . . . . . 11 (𝑘 = 𝑛 → (𝑚 < (1 / 𝑘) ↔ 𝑚 < (1 / 𝑛)))
16 fveq2 6822 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝑀𝑘) = (𝑀𝑛))
1716difeq2d 4073 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) = (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛)))
1817sseq2d 3962 . . . . . . . . . . 11 (𝑘 = 𝑛 → (((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) ↔ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛))))
1915, 18anbi12d 632 . . . . . . . . . 10 (𝑘 = 𝑛 → ((𝑚 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))) ↔ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛)))))
2019anbi2d 630 . . . . . . . . 9 (𝑘 = 𝑛 → (((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)))) ↔ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛))))))
2120opabbidv 5155 . . . . . . . 8 (𝑘 = 𝑛 → {⟨𝑦, 𝑚⟩ ∣ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} = {⟨𝑦, 𝑚⟩ ∣ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛))))})
2213, 21eqtrid 2778 . . . . . . 7 (𝑘 = 𝑛 → {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} = {⟨𝑦, 𝑚⟩ ∣ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛))))})
23 fveq2 6822 . . . . . . . . . . . 12 (𝑧 = 𝑔 → ((ball‘𝐷)‘𝑧) = ((ball‘𝐷)‘𝑔))
2423difeq1d 4072 . . . . . . . . . . 11 (𝑧 = 𝑔 → (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛)) = (((ball‘𝐷)‘𝑔) ∖ (𝑀𝑛)))
2524sseq2d 3962 . . . . . . . . . 10 (𝑧 = 𝑔 → (((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛)) ↔ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑔) ∖ (𝑀𝑛))))
2625anbi2d 630 . . . . . . . . 9 (𝑧 = 𝑔 → ((𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛))) ↔ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑔) ∖ (𝑀𝑛)))))
2726anbi2d 630 . . . . . . . 8 (𝑧 = 𝑔 → (((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛)))) ↔ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑔) ∖ (𝑀𝑛))))))
2827opabbidv 5155 . . . . . . 7 (𝑧 = 𝑔 → {⟨𝑦, 𝑚⟩ ∣ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑛))))} = {⟨𝑦, 𝑚⟩ ∣ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑔) ∖ (𝑀𝑛))))})
2922, 28cbvmpov 7441 . . . . . 6 (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))}) = (𝑛 ∈ ℕ, 𝑔 ∈ (𝑋 × ℝ+) ↦ {⟨𝑦, 𝑚⟩ ∣ ((𝑦𝑋𝑚 ∈ ℝ+) ∧ (𝑚 < (1 / 𝑛) ∧ ((cls‘𝐽)‘(𝑦(ball‘𝐷)𝑚)) ⊆ (((ball‘𝐷)‘𝑔) ∖ (𝑀𝑛))))})
30 simplr 768 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽)) ∧ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅) → 𝑀:ℕ⟶(Clsd‘𝐽))
31 simpr 484 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽)) ∧ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅) → ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅)
3216fveqeq2d 6830 . . . . . . . 8 (𝑘 = 𝑛 → (((int‘𝐽)‘(𝑀𝑘)) = ∅ ↔ ((int‘𝐽)‘(𝑀𝑛)) = ∅))
3332cbvralvw 3210 . . . . . . 7 (∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅ ↔ ∀𝑛 ∈ ℕ ((int‘𝐽)‘(𝑀𝑛)) = ∅)
3431, 33sylib 218 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽)) ∧ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅) → ∀𝑛 ∈ ℕ ((int‘𝐽)‘(𝑀𝑛)) = ∅)
351, 2, 29, 30, 34bcthlem5 25255 . . . . 5 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽)) ∧ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅) → ((int‘𝐽)‘ ran 𝑀) = ∅)
3635ex 412 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽)) → (∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅ → ((int‘𝐽)‘ ran 𝑀) = ∅))
3736necon3ad 2941 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽)) → (((int‘𝐽)‘ ran 𝑀) ≠ ∅ → ¬ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅))
38373impia 1117 . 2 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽) ∧ ((int‘𝐽)‘ ran 𝑀) ≠ ∅) → ¬ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅)
39 df-ne 2929 . . . 4 (((int‘𝐽)‘(𝑀𝑘)) ≠ ∅ ↔ ¬ ((int‘𝐽)‘(𝑀𝑘)) = ∅)
4039rexbii 3079 . . 3 (∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) ≠ ∅ ↔ ∃𝑘 ∈ ℕ ¬ ((int‘𝐽)‘(𝑀𝑘)) = ∅)
41 rexnal 3084 . . 3 (∃𝑘 ∈ ℕ ¬ ((int‘𝐽)‘(𝑀𝑘)) = ∅ ↔ ¬ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅)
4240, 41bitri 275 . 2 (∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) ≠ ∅ ↔ ¬ ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅)
4338, 42sylibr 234 1 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽) ∧ ((int‘𝐽)‘ ran 𝑀) ≠ ∅) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  cdif 3894  wss 3897  c0 4280   cuni 4856   class class class wbr 5089  {copab 5151   × cxp 5612  ran crn 5615  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  1c1 11007   < clt 11146   / cdiv 11774  cn 12125  +crp 12890  ballcbl 21278  MetOpencmopn 21281  Clsdccld 22931  intcnt 22932  clsccl 22933  CMetccmet 25181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-dc 10337  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ico 13251  df-rest 17326  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-top 22809  df-topon 22826  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lm 23144  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-cfil 25182  df-cau 25183  df-cmet 25184
This theorem is referenced by:  bcth2  25257  bcth3  25258
  Copyright terms: Public domain W3C validator