MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc2 Structured version   Visualization version   GIF version

Theorem axdc2 10518
Description: An apparent strengthening of ax-dc 10515 (but derived from it) which shows that there is a denumerable sequence 𝑔 for any function that maps elements of a set 𝐴 to nonempty subsets of 𝐴 such that 𝑔(𝑥 + 1) ∈ 𝐹(𝑔(𝑥)) for all 𝑥 ∈ ω. The finitistic version of this can be proven by induction, but the infinite version requires this new axiom. (Contributed by Mario Carneiro, 25-Jan-2013.)
Hypothesis
Ref Expression
axdc2.1 𝐴 ∈ V
Assertion
Ref Expression
axdc2 ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Distinct variable groups:   𝐴,𝑔,𝑘   𝑔,𝐹,𝑘

Proof of Theorem axdc2
Dummy variables 𝑠 𝑡 𝑥 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axdc2.1 . 2 𝐴 ∈ V
2 eleq1w 2827 . . . . 5 (𝑠 = 𝑥 → (𝑠𝐴𝑥𝐴))
32adantr 480 . . . 4 ((𝑠 = 𝑥𝑡 = 𝑦) → (𝑠𝐴𝑥𝐴))
4 fveq2 6920 . . . . . 6 (𝑠 = 𝑥 → (𝐹𝑠) = (𝐹𝑥))
54eleq2d 2830 . . . . 5 (𝑠 = 𝑥 → (𝑡 ∈ (𝐹𝑠) ↔ 𝑡 ∈ (𝐹𝑥)))
6 eleq1w 2827 . . . . 5 (𝑡 = 𝑦 → (𝑡 ∈ (𝐹𝑥) ↔ 𝑦 ∈ (𝐹𝑥)))
75, 6sylan9bb 509 . . . 4 ((𝑠 = 𝑥𝑡 = 𝑦) → (𝑡 ∈ (𝐹𝑠) ↔ 𝑦 ∈ (𝐹𝑥)))
83, 7anbi12d 631 . . 3 ((𝑠 = 𝑥𝑡 = 𝑦) → ((𝑠𝐴𝑡 ∈ (𝐹𝑠)) ↔ (𝑥𝐴𝑦 ∈ (𝐹𝑥))))
98cbvopabv 5239 . 2 {⟨𝑠, 𝑡⟩ ∣ (𝑠𝐴𝑡 ∈ (𝐹𝑠))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
10 fveq2 6920 . . 3 (𝑛 = 𝑥 → (𝑛) = (𝑥))
1110cbvmptv 5279 . 2 (𝑛 ∈ ω ↦ (𝑛)) = (𝑥 ∈ ω ↦ (𝑥))
121, 9, 11axdc2lem 10517 1 ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1777  wcel 2108  wne 2946  wral 3067  Vcvv 3488  cdif 3973  c0 4352  𝒫 cpw 4622  {csn 4648  {copab 5228  cmpt 5249  suc csuc 6397  wf 6569  cfv 6573  ωcom 7903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-dc 10515
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-om 7904  df-1o 8522
This theorem is referenced by:  axdc3lem4  10522
  Copyright terms: Public domain W3C validator