MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc2 Structured version   Visualization version   GIF version

Theorem axdc2 10474
Description: An apparent strengthening of ax-dc 10471 (but derived from it) which shows that there is a denumerable sequence 𝑔 for any function that maps elements of a set 𝐴 to nonempty subsets of 𝐴 such that 𝑔(𝑥 + 1) ∈ 𝐹(𝑔(𝑥)) for all 𝑥 ∈ ω. The finitistic version of this can be proven by induction, but the infinite version requires this new axiom. (Contributed by Mario Carneiro, 25-Jan-2013.)
Hypothesis
Ref Expression
axdc2.1 𝐴 ∈ V
Assertion
Ref Expression
axdc2 ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Distinct variable groups:   𝐴,𝑔,𝑘   𝑔,𝐹,𝑘

Proof of Theorem axdc2
Dummy variables 𝑠 𝑡 𝑥 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axdc2.1 . 2 𝐴 ∈ V
2 eleq1w 2808 . . . . 5 (𝑠 = 𝑥 → (𝑠𝐴𝑥𝐴))
32adantr 479 . . . 4 ((𝑠 = 𝑥𝑡 = 𝑦) → (𝑠𝐴𝑥𝐴))
4 fveq2 6896 . . . . . 6 (𝑠 = 𝑥 → (𝐹𝑠) = (𝐹𝑥))
54eleq2d 2811 . . . . 5 (𝑠 = 𝑥 → (𝑡 ∈ (𝐹𝑠) ↔ 𝑡 ∈ (𝐹𝑥)))
6 eleq1w 2808 . . . . 5 (𝑡 = 𝑦 → (𝑡 ∈ (𝐹𝑥) ↔ 𝑦 ∈ (𝐹𝑥)))
75, 6sylan9bb 508 . . . 4 ((𝑠 = 𝑥𝑡 = 𝑦) → (𝑡 ∈ (𝐹𝑠) ↔ 𝑦 ∈ (𝐹𝑥)))
83, 7anbi12d 630 . . 3 ((𝑠 = 𝑥𝑡 = 𝑦) → ((𝑠𝐴𝑡 ∈ (𝐹𝑠)) ↔ (𝑥𝐴𝑦 ∈ (𝐹𝑥))))
98cbvopabv 5222 . 2 {⟨𝑠, 𝑡⟩ ∣ (𝑠𝐴𝑡 ∈ (𝐹𝑠))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
10 fveq2 6896 . . 3 (𝑛 = 𝑥 → (𝑛) = (𝑥))
1110cbvmptv 5262 . 2 (𝑛 ∈ ω ↦ (𝑛)) = (𝑥 ∈ ω ↦ (𝑥))
121, 9, 11axdc2lem 10473 1 ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wex 1773  wcel 2098  wne 2929  wral 3050  Vcvv 3461  cdif 3941  c0 4322  𝒫 cpw 4604  {csn 4630  {copab 5211  cmpt 5232  suc csuc 6373  wf 6545  cfv 6549  ωcom 7871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-dc 10471
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fv 6557  df-om 7872  df-1o 8487
This theorem is referenced by:  axdc3lem4  10478
  Copyright terms: Public domain W3C validator