| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axdc2 | Structured version Visualization version GIF version | ||
| Description: An apparent strengthening of ax-dc 10406 (but derived from it) which shows that there is a denumerable sequence 𝑔 for any function that maps elements of a set 𝐴 to nonempty subsets of 𝐴 such that 𝑔(𝑥 + 1) ∈ 𝐹(𝑔(𝑥)) for all 𝑥 ∈ ω. The finitistic version of this can be proven by induction, but the infinite version requires this new axiom. (Contributed by Mario Carneiro, 25-Jan-2013.) |
| Ref | Expression |
|---|---|
| axdc2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| axdc2 | ⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axdc2.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | eleq1w 2812 | . . . . 5 ⊢ (𝑠 = 𝑥 → (𝑠 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝑠 = 𝑥 ∧ 𝑡 = 𝑦) → (𝑠 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
| 4 | fveq2 6861 | . . . . . 6 ⊢ (𝑠 = 𝑥 → (𝐹‘𝑠) = (𝐹‘𝑥)) | |
| 5 | 4 | eleq2d 2815 | . . . . 5 ⊢ (𝑠 = 𝑥 → (𝑡 ∈ (𝐹‘𝑠) ↔ 𝑡 ∈ (𝐹‘𝑥))) |
| 6 | eleq1w 2812 | . . . . 5 ⊢ (𝑡 = 𝑦 → (𝑡 ∈ (𝐹‘𝑥) ↔ 𝑦 ∈ (𝐹‘𝑥))) | |
| 7 | 5, 6 | sylan9bb 509 | . . . 4 ⊢ ((𝑠 = 𝑥 ∧ 𝑡 = 𝑦) → (𝑡 ∈ (𝐹‘𝑠) ↔ 𝑦 ∈ (𝐹‘𝑥))) |
| 8 | 3, 7 | anbi12d 632 | . . 3 ⊢ ((𝑠 = 𝑥 ∧ 𝑡 = 𝑦) → ((𝑠 ∈ 𝐴 ∧ 𝑡 ∈ (𝐹‘𝑠)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)))) |
| 9 | 8 | cbvopabv 5183 | . 2 ⊢ {〈𝑠, 𝑡〉 ∣ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ (𝐹‘𝑠))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
| 10 | fveq2 6861 | . . 3 ⊢ (𝑛 = 𝑥 → (ℎ‘𝑛) = (ℎ‘𝑥)) | |
| 11 | 10 | cbvmptv 5214 | . 2 ⊢ (𝑛 ∈ ω ↦ (ℎ‘𝑛)) = (𝑥 ∈ ω ↦ (ℎ‘𝑥)) |
| 12 | 1, 9, 11 | axdc2lem 10408 | 1 ⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 Vcvv 3450 ∖ cdif 3914 ∅c0 4299 𝒫 cpw 4566 {csn 4592 {copab 5172 ↦ cmpt 5191 suc csuc 6337 ⟶wf 6510 ‘cfv 6514 ωcom 7845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-dc 10406 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-om 7846 df-1o 8437 |
| This theorem is referenced by: axdc3lem4 10413 |
| Copyright terms: Public domain | W3C validator |