![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axdc2 | Structured version Visualization version GIF version |
Description: An apparent strengthening of ax-dc 10515 (but derived from it) which shows that there is a denumerable sequence 𝑔 for any function that maps elements of a set 𝐴 to nonempty subsets of 𝐴 such that 𝑔(𝑥 + 1) ∈ 𝐹(𝑔(𝑥)) for all 𝑥 ∈ ω. The finitistic version of this can be proven by induction, but the infinite version requires this new axiom. (Contributed by Mario Carneiro, 25-Jan-2013.) |
Ref | Expression |
---|---|
axdc2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
axdc2 | ⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axdc2.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eleq1w 2827 | . . . . 5 ⊢ (𝑠 = 𝑥 → (𝑠 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
3 | 2 | adantr 480 | . . . 4 ⊢ ((𝑠 = 𝑥 ∧ 𝑡 = 𝑦) → (𝑠 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
4 | fveq2 6920 | . . . . . 6 ⊢ (𝑠 = 𝑥 → (𝐹‘𝑠) = (𝐹‘𝑥)) | |
5 | 4 | eleq2d 2830 | . . . . 5 ⊢ (𝑠 = 𝑥 → (𝑡 ∈ (𝐹‘𝑠) ↔ 𝑡 ∈ (𝐹‘𝑥))) |
6 | eleq1w 2827 | . . . . 5 ⊢ (𝑡 = 𝑦 → (𝑡 ∈ (𝐹‘𝑥) ↔ 𝑦 ∈ (𝐹‘𝑥))) | |
7 | 5, 6 | sylan9bb 509 | . . . 4 ⊢ ((𝑠 = 𝑥 ∧ 𝑡 = 𝑦) → (𝑡 ∈ (𝐹‘𝑠) ↔ 𝑦 ∈ (𝐹‘𝑥))) |
8 | 3, 7 | anbi12d 631 | . . 3 ⊢ ((𝑠 = 𝑥 ∧ 𝑡 = 𝑦) → ((𝑠 ∈ 𝐴 ∧ 𝑡 ∈ (𝐹‘𝑠)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)))) |
9 | 8 | cbvopabv 5239 | . 2 ⊢ {〈𝑠, 𝑡〉 ∣ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ (𝐹‘𝑠))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
10 | fveq2 6920 | . . 3 ⊢ (𝑛 = 𝑥 → (ℎ‘𝑛) = (ℎ‘𝑥)) | |
11 | 10 | cbvmptv 5279 | . 2 ⊢ (𝑛 ∈ ω ↦ (ℎ‘𝑛)) = (𝑥 ∈ ω ↦ (ℎ‘𝑥)) |
12 | 1, 9, 11 | axdc2lem 10517 | 1 ⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 Vcvv 3488 ∖ cdif 3973 ∅c0 4352 𝒫 cpw 4622 {csn 4648 {copab 5228 ↦ cmpt 5249 suc csuc 6397 ⟶wf 6569 ‘cfv 6573 ωcom 7903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-dc 10515 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-om 7904 df-1o 8522 |
This theorem is referenced by: axdc3lem4 10522 |
Copyright terms: Public domain | W3C validator |