Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axdc2 | Structured version Visualization version GIF version |
Description: An apparent strengthening of ax-dc 10133 (but derived from it) which shows that there is a denumerable sequence 𝑔 for any function that maps elements of a set 𝐴 to nonempty subsets of 𝐴 such that 𝑔(𝑥 + 1) ∈ 𝐹(𝑔(𝑥)) for all 𝑥 ∈ ω. The finitistic version of this can be proven by induction, but the infinite version requires this new axiom. (Contributed by Mario Carneiro, 25-Jan-2013.) |
Ref | Expression |
---|---|
axdc2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
axdc2 | ⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axdc2.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eleq1w 2821 | . . . . 5 ⊢ (𝑠 = 𝑥 → (𝑠 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
3 | 2 | adantr 480 | . . . 4 ⊢ ((𝑠 = 𝑥 ∧ 𝑡 = 𝑦) → (𝑠 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
4 | fveq2 6756 | . . . . . 6 ⊢ (𝑠 = 𝑥 → (𝐹‘𝑠) = (𝐹‘𝑥)) | |
5 | 4 | eleq2d 2824 | . . . . 5 ⊢ (𝑠 = 𝑥 → (𝑡 ∈ (𝐹‘𝑠) ↔ 𝑡 ∈ (𝐹‘𝑥))) |
6 | eleq1w 2821 | . . . . 5 ⊢ (𝑡 = 𝑦 → (𝑡 ∈ (𝐹‘𝑥) ↔ 𝑦 ∈ (𝐹‘𝑥))) | |
7 | 5, 6 | sylan9bb 509 | . . . 4 ⊢ ((𝑠 = 𝑥 ∧ 𝑡 = 𝑦) → (𝑡 ∈ (𝐹‘𝑠) ↔ 𝑦 ∈ (𝐹‘𝑥))) |
8 | 3, 7 | anbi12d 630 | . . 3 ⊢ ((𝑠 = 𝑥 ∧ 𝑡 = 𝑦) → ((𝑠 ∈ 𝐴 ∧ 𝑡 ∈ (𝐹‘𝑠)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)))) |
9 | 8 | cbvopabv 5143 | . 2 ⊢ {〈𝑠, 𝑡〉 ∣ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ (𝐹‘𝑠))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
10 | fveq2 6756 | . . 3 ⊢ (𝑛 = 𝑥 → (ℎ‘𝑛) = (ℎ‘𝑥)) | |
11 | 10 | cbvmptv 5183 | . 2 ⊢ (𝑛 ∈ ω ↦ (ℎ‘𝑛)) = (𝑥 ∈ ω ↦ (ℎ‘𝑥)) |
12 | 1, 9, 11 | axdc2lem 10135 | 1 ⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 Vcvv 3422 ∖ cdif 3880 ∅c0 4253 𝒫 cpw 4530 {csn 4558 {copab 5132 ↦ cmpt 5153 suc csuc 6253 ⟶wf 6414 ‘cfv 6418 ωcom 7687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-dc 10133 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-om 7688 df-1o 8267 |
This theorem is referenced by: axdc3lem4 10140 |
Copyright terms: Public domain | W3C validator |