![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axdc2 | Structured version Visualization version GIF version |
Description: An apparent strengthening of ax-dc 10469 (but derived from it) which shows that there is a denumerable sequence 𝑔 for any function that maps elements of a set 𝐴 to nonempty subsets of 𝐴 such that 𝑔(𝑥 + 1) ∈ 𝐹(𝑔(𝑥)) for all 𝑥 ∈ ω. The finitistic version of this can be proven by induction, but the infinite version requires this new axiom. (Contributed by Mario Carneiro, 25-Jan-2013.) |
Ref | Expression |
---|---|
axdc2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
axdc2 | ⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axdc2.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eleq1w 2812 | . . . . 5 ⊢ (𝑠 = 𝑥 → (𝑠 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
3 | 2 | adantr 480 | . . . 4 ⊢ ((𝑠 = 𝑥 ∧ 𝑡 = 𝑦) → (𝑠 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
4 | fveq2 6897 | . . . . . 6 ⊢ (𝑠 = 𝑥 → (𝐹‘𝑠) = (𝐹‘𝑥)) | |
5 | 4 | eleq2d 2815 | . . . . 5 ⊢ (𝑠 = 𝑥 → (𝑡 ∈ (𝐹‘𝑠) ↔ 𝑡 ∈ (𝐹‘𝑥))) |
6 | eleq1w 2812 | . . . . 5 ⊢ (𝑡 = 𝑦 → (𝑡 ∈ (𝐹‘𝑥) ↔ 𝑦 ∈ (𝐹‘𝑥))) | |
7 | 5, 6 | sylan9bb 509 | . . . 4 ⊢ ((𝑠 = 𝑥 ∧ 𝑡 = 𝑦) → (𝑡 ∈ (𝐹‘𝑠) ↔ 𝑦 ∈ (𝐹‘𝑥))) |
8 | 3, 7 | anbi12d 631 | . . 3 ⊢ ((𝑠 = 𝑥 ∧ 𝑡 = 𝑦) → ((𝑠 ∈ 𝐴 ∧ 𝑡 ∈ (𝐹‘𝑠)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)))) |
9 | 8 | cbvopabv 5221 | . 2 ⊢ {⟨𝑠, 𝑡⟩ ∣ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ (𝐹‘𝑠))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
10 | fveq2 6897 | . . 3 ⊢ (𝑛 = 𝑥 → (ℎ‘𝑛) = (ℎ‘𝑥)) | |
11 | 10 | cbvmptv 5261 | . 2 ⊢ (𝑛 ∈ ω ↦ (ℎ‘𝑛)) = (𝑥 ∈ ω ↦ (ℎ‘𝑥)) |
12 | 1, 9, 11 | axdc2lem 10471 | 1 ⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1774 ∈ wcel 2099 ≠ wne 2937 ∀wral 3058 Vcvv 3471 ∖ cdif 3944 ∅c0 4323 𝒫 cpw 4603 {csn 4629 {copab 5210 ↦ cmpt 5231 suc csuc 6371 ⟶wf 6544 ‘cfv 6548 ωcom 7870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-dc 10469 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-om 7871 df-1o 8486 |
This theorem is referenced by: axdc3lem4 10476 |
Copyright terms: Public domain | W3C validator |