MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc2 Structured version   Visualization version   GIF version

Theorem axdc2 10362
Description: An apparent strengthening of ax-dc 10359 (but derived from it) which shows that there is a denumerable sequence 𝑔 for any function that maps elements of a set 𝐴 to nonempty subsets of 𝐴 such that 𝑔(𝑥 + 1) ∈ 𝐹(𝑔(𝑥)) for all 𝑥 ∈ ω. The finitistic version of this can be proven by induction, but the infinite version requires this new axiom. (Contributed by Mario Carneiro, 25-Jan-2013.)
Hypothesis
Ref Expression
axdc2.1 𝐴 ∈ V
Assertion
Ref Expression
axdc2 ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Distinct variable groups:   𝐴,𝑔,𝑘   𝑔,𝐹,𝑘

Proof of Theorem axdc2
Dummy variables 𝑠 𝑡 𝑥 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axdc2.1 . 2 𝐴 ∈ V
2 eleq1w 2811 . . . . 5 (𝑠 = 𝑥 → (𝑠𝐴𝑥𝐴))
32adantr 480 . . . 4 ((𝑠 = 𝑥𝑡 = 𝑦) → (𝑠𝐴𝑥𝐴))
4 fveq2 6826 . . . . . 6 (𝑠 = 𝑥 → (𝐹𝑠) = (𝐹𝑥))
54eleq2d 2814 . . . . 5 (𝑠 = 𝑥 → (𝑡 ∈ (𝐹𝑠) ↔ 𝑡 ∈ (𝐹𝑥)))
6 eleq1w 2811 . . . . 5 (𝑡 = 𝑦 → (𝑡 ∈ (𝐹𝑥) ↔ 𝑦 ∈ (𝐹𝑥)))
75, 6sylan9bb 509 . . . 4 ((𝑠 = 𝑥𝑡 = 𝑦) → (𝑡 ∈ (𝐹𝑠) ↔ 𝑦 ∈ (𝐹𝑥)))
83, 7anbi12d 632 . . 3 ((𝑠 = 𝑥𝑡 = 𝑦) → ((𝑠𝐴𝑡 ∈ (𝐹𝑠)) ↔ (𝑥𝐴𝑦 ∈ (𝐹𝑥))))
98cbvopabv 5168 . 2 {⟨𝑠, 𝑡⟩ ∣ (𝑠𝐴𝑡 ∈ (𝐹𝑠))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
10 fveq2 6826 . . 3 (𝑛 = 𝑥 → (𝑛) = (𝑥))
1110cbvmptv 5199 . 2 (𝑛 ∈ ω ↦ (𝑛)) = (𝑥 ∈ ω ↦ (𝑥))
121, 9, 11axdc2lem 10361 1 ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  wcel 2109  wne 2925  wral 3044  Vcvv 3438  cdif 3902  c0 4286  𝒫 cpw 4553  {csn 4579  {copab 5157  cmpt 5176  suc csuc 6313  wf 6482  cfv 6486  ωcom 7806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-dc 10359
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-om 7807  df-1o 8395
This theorem is referenced by:  axdc3lem4  10366
  Copyright terms: Public domain W3C validator