![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hpgbr | Structured version Visualization version GIF version |
Description: Half-planes : property for points 𝐴 and 𝐵 to belong to the same open half plane delimited by line 𝐷. Definition 9.7 of [Schwabhauser] p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
Ref | Expression |
---|---|
ishpg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishpg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishpg.l | ⊢ 𝐿 = (LineG‘𝐺) |
ishpg.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
ishpg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
ishpg.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
hpgbr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
hpgbr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
Ref | Expression |
---|---|
hpgbr | ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishpg.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
2 | ishpg.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | ishpg.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | ishpg.o | . . . . 5 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
5 | ishpg.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | ishpg.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
7 | 1, 2, 3, 4, 5, 6 | ishpg 26007 | . . . 4 ⊢ (𝜑 → ((hpG‘𝐺)‘𝐷) = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐)}) |
8 | simpl 475 | . . . . . . . 8 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → 𝑎 = 𝑢) | |
9 | 8 | breq1d 4853 | . . . . . . 7 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (𝑎𝑂𝑐 ↔ 𝑢𝑂𝑐)) |
10 | simpr 478 | . . . . . . . 8 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → 𝑏 = 𝑣) | |
11 | 10 | breq1d 4853 | . . . . . . 7 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (𝑏𝑂𝑐 ↔ 𝑣𝑂𝑐)) |
12 | 9, 11 | anbi12d 625 | . . . . . 6 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → ((𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐) ↔ (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐))) |
13 | 12 | rexbidv 3233 | . . . . 5 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐) ↔ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐))) |
14 | 13 | cbvopabv 4915 | . . . 4 ⊢ {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐)} = {〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)} |
15 | 7, 14 | syl6eq 2849 | . . 3 ⊢ (𝜑 → ((hpG‘𝐺)‘𝐷) = {〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)}) |
16 | 15 | breqd 4854 | . 2 ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ 𝐴{〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)}𝐵)) |
17 | hpgbr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
18 | hpgbr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
19 | simpl 475 | . . . . . . 7 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → 𝑢 = 𝐴) | |
20 | 19 | breq1d 4853 | . . . . . 6 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → (𝑢𝑂𝑐 ↔ 𝐴𝑂𝑐)) |
21 | simpr 478 | . . . . . . 7 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → 𝑣 = 𝐵) | |
22 | 21 | breq1d 4853 | . . . . . 6 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → (𝑣𝑂𝑐 ↔ 𝐵𝑂𝑐)) |
23 | 20, 22 | anbi12d 625 | . . . . 5 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → ((𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐) ↔ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
24 | 23 | rexbidv 3233 | . . . 4 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → (∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐) ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
25 | eqid 2799 | . . . 4 ⊢ {〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)} = {〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)} | |
26 | 24, 25 | brabga 5185 | . . 3 ⊢ ((𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃) → (𝐴{〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)}𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
27 | 17, 18, 26 | syl2anc 580 | . 2 ⊢ (𝜑 → (𝐴{〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)}𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
28 | 16, 27 | bitrd 271 | 1 ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∃wrex 3090 ∖ cdif 3766 class class class wbr 4843 {copab 4905 ran crn 5313 ‘cfv 6101 (class class class)co 6878 Basecbs 16184 TarskiGcstrkg 25681 Itvcitv 25687 LineGclng 25688 hpGchpg 26005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-hpg 26006 |
This theorem is referenced by: hpgne1 26009 hpgne2 26010 lnopp2hpgb 26011 hpgid 26014 hpgcom 26015 hpgtr 26016 |
Copyright terms: Public domain | W3C validator |