| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hpgbr | Structured version Visualization version GIF version | ||
| Description: Half-planes : property for points 𝐴 and 𝐵 to belong to the same open half plane delimited by line 𝐷. Definition 9.7 of [Schwabhauser] p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
| Ref | Expression |
|---|---|
| ishpg.p | ⊢ 𝑃 = (Base‘𝐺) |
| ishpg.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ishpg.l | ⊢ 𝐿 = (LineG‘𝐺) |
| ishpg.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
| ishpg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| ishpg.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
| hpgbr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| hpgbr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| hpgbr | ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ishpg.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | ishpg.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
| 3 | ishpg.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
| 4 | ishpg.o | . . . . 5 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
| 5 | ishpg.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | ishpg.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
| 7 | 1, 2, 3, 4, 5, 6 | ishpg 28686 | . . . 4 ⊢ (𝜑 → ((hpG‘𝐺)‘𝐷) = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐)}) |
| 8 | simpl 482 | . . . . . . . 8 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → 𝑎 = 𝑢) | |
| 9 | 8 | breq1d 5117 | . . . . . . 7 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (𝑎𝑂𝑐 ↔ 𝑢𝑂𝑐)) |
| 10 | simpr 484 | . . . . . . . 8 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → 𝑏 = 𝑣) | |
| 11 | 10 | breq1d 5117 | . . . . . . 7 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (𝑏𝑂𝑐 ↔ 𝑣𝑂𝑐)) |
| 12 | 9, 11 | anbi12d 632 | . . . . . 6 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → ((𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐) ↔ (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐))) |
| 13 | 12 | rexbidv 3157 | . . . . 5 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐) ↔ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐))) |
| 14 | 13 | cbvopabv 5180 | . . . 4 ⊢ {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐)} = {〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)} |
| 15 | 7, 14 | eqtrdi 2780 | . . 3 ⊢ (𝜑 → ((hpG‘𝐺)‘𝐷) = {〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)}) |
| 16 | 15 | breqd 5118 | . 2 ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ 𝐴{〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)}𝐵)) |
| 17 | hpgbr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 18 | hpgbr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 19 | simpl 482 | . . . . . . 7 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → 𝑢 = 𝐴) | |
| 20 | 19 | breq1d 5117 | . . . . . 6 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → (𝑢𝑂𝑐 ↔ 𝐴𝑂𝑐)) |
| 21 | simpr 484 | . . . . . . 7 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → 𝑣 = 𝐵) | |
| 22 | 21 | breq1d 5117 | . . . . . 6 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → (𝑣𝑂𝑐 ↔ 𝐵𝑂𝑐)) |
| 23 | 20, 22 | anbi12d 632 | . . . . 5 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → ((𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐) ↔ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
| 24 | 23 | rexbidv 3157 | . . . 4 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → (∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐) ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
| 25 | eqid 2729 | . . . 4 ⊢ {〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)} = {〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)} | |
| 26 | 24, 25 | brabga 5494 | . . 3 ⊢ ((𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃) → (𝐴{〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)}𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
| 27 | 17, 18, 26 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴{〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)}𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
| 28 | 16, 27 | bitrd 279 | 1 ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∖ cdif 3911 class class class wbr 5107 {copab 5169 ran crn 5639 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 TarskiGcstrkg 28354 Itvcitv 28360 LineGclng 28361 hpGchpg 28684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-hpg 28685 |
| This theorem is referenced by: hpgne1 28688 hpgne2 28689 lnopp2hpgb 28690 hpgid 28693 hpgcom 28694 hpgtr 28695 |
| Copyright terms: Public domain | W3C validator |