MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hpgbr Structured version   Visualization version   GIF version

Theorem hpgbr 28705
Description: Half-planes : property for points 𝐴 and 𝐵 to belong to the same open half plane delimited by line 𝐷. Definition 9.7 of [Schwabhauser] p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
ishpg.p 𝑃 = (Base‘𝐺)
ishpg.i 𝐼 = (Itv‘𝐺)
ishpg.l 𝐿 = (LineG‘𝐺)
ishpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
ishpg.g (𝜑𝐺 ∈ TarskiG)
ishpg.d (𝜑𝐷 ∈ ran 𝐿)
hpgbr.a (𝜑𝐴𝑃)
hpgbr.b (𝜑𝐵𝑃)
Assertion
Ref Expression
hpgbr (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝐷,𝑎,𝑏,𝑐,𝑡   𝐺,𝑎,𝑏   𝐼,𝑎,𝑏,𝑐,𝑡   𝑂,𝑎,𝑏   𝑃,𝑎,𝑏,𝑐,𝑡
Allowed substitution hints:   𝜑(𝑡,𝑎,𝑏,𝑐)   𝐴(𝑡,𝑎,𝑏)   𝐵(𝑡,𝑎,𝑏)   𝐺(𝑡,𝑐)   𝐿(𝑡,𝑎,𝑏,𝑐)   𝑂(𝑡,𝑐)

Proof of Theorem hpgbr
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ishpg.p . . . . 5 𝑃 = (Base‘𝐺)
2 ishpg.i . . . . 5 𝐼 = (Itv‘𝐺)
3 ishpg.l . . . . 5 𝐿 = (LineG‘𝐺)
4 ishpg.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
5 ishpg.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
6 ishpg.d . . . . 5 (𝜑𝐷 ∈ ran 𝐿)
71, 2, 3, 4, 5, 6ishpg 28704 . . . 4 (𝜑 → ((hpG‘𝐺)‘𝐷) = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (𝑎𝑂𝑐𝑏𝑂𝑐)})
8 simpl 482 . . . . . . . 8 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑎 = 𝑢)
98breq1d 5102 . . . . . . 7 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑎𝑂𝑐𝑢𝑂𝑐))
10 simpr 484 . . . . . . . 8 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑏 = 𝑣)
1110breq1d 5102 . . . . . . 7 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑏𝑂𝑐𝑣𝑂𝑐))
129, 11anbi12d 632 . . . . . 6 ((𝑎 = 𝑢𝑏 = 𝑣) → ((𝑎𝑂𝑐𝑏𝑂𝑐) ↔ (𝑢𝑂𝑐𝑣𝑂𝑐)))
1312rexbidv 3153 . . . . 5 ((𝑎 = 𝑢𝑏 = 𝑣) → (∃𝑐𝑃 (𝑎𝑂𝑐𝑏𝑂𝑐) ↔ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)))
1413cbvopabv 5165 . . . 4 {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (𝑎𝑂𝑐𝑏𝑂𝑐)} = {⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)}
157, 14eqtrdi 2780 . . 3 (𝜑 → ((hpG‘𝐺)‘𝐷) = {⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)})
1615breqd 5103 . 2 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵𝐴{⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)}𝐵))
17 hpgbr.a . . 3 (𝜑𝐴𝑃)
18 hpgbr.b . . 3 (𝜑𝐵𝑃)
19 simpl 482 . . . . . . 7 ((𝑢 = 𝐴𝑣 = 𝐵) → 𝑢 = 𝐴)
2019breq1d 5102 . . . . . 6 ((𝑢 = 𝐴𝑣 = 𝐵) → (𝑢𝑂𝑐𝐴𝑂𝑐))
21 simpr 484 . . . . . . 7 ((𝑢 = 𝐴𝑣 = 𝐵) → 𝑣 = 𝐵)
2221breq1d 5102 . . . . . 6 ((𝑢 = 𝐴𝑣 = 𝐵) → (𝑣𝑂𝑐𝐵𝑂𝑐))
2320, 22anbi12d 632 . . . . 5 ((𝑢 = 𝐴𝑣 = 𝐵) → ((𝑢𝑂𝑐𝑣𝑂𝑐) ↔ (𝐴𝑂𝑐𝐵𝑂𝑐)))
2423rexbidv 3153 . . . 4 ((𝑢 = 𝐴𝑣 = 𝐵) → (∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐) ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
25 eqid 2729 . . . 4 {⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)} = {⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)}
2624, 25brabga 5477 . . 3 ((𝐴𝑃𝐵𝑃) → (𝐴{⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)}𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
2717, 18, 26syl2anc 584 . 2 (𝜑 → (𝐴{⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)}𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
2816, 27bitrd 279 1 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  cdif 3900   class class class wbr 5092  {copab 5154  ran crn 5620  cfv 6482  (class class class)co 7349  Basecbs 17120  TarskiGcstrkg 28372  Itvcitv 28378  LineGclng 28379  hpGchpg 28702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-hpg 28703
This theorem is referenced by:  hpgne1  28706  hpgne2  28707  lnopp2hpgb  28708  hpgid  28711  hpgcom  28712  hpgtr  28713
  Copyright terms: Public domain W3C validator