Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hpgbr | Structured version Visualization version GIF version |
Description: Half-planes : property for points 𝐴 and 𝐵 to belong to the same open half plane delimited by line 𝐷. Definition 9.7 of [Schwabhauser] p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
Ref | Expression |
---|---|
ishpg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishpg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishpg.l | ⊢ 𝐿 = (LineG‘𝐺) |
ishpg.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
ishpg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
ishpg.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
hpgbr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
hpgbr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
Ref | Expression |
---|---|
hpgbr | ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishpg.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
2 | ishpg.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | ishpg.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | ishpg.o | . . . . 5 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
5 | ishpg.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | ishpg.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
7 | 1, 2, 3, 4, 5, 6 | ishpg 27024 | . . . 4 ⊢ (𝜑 → ((hpG‘𝐺)‘𝐷) = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐)}) |
8 | simpl 482 | . . . . . . . 8 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → 𝑎 = 𝑢) | |
9 | 8 | breq1d 5080 | . . . . . . 7 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (𝑎𝑂𝑐 ↔ 𝑢𝑂𝑐)) |
10 | simpr 484 | . . . . . . . 8 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → 𝑏 = 𝑣) | |
11 | 10 | breq1d 5080 | . . . . . . 7 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (𝑏𝑂𝑐 ↔ 𝑣𝑂𝑐)) |
12 | 9, 11 | anbi12d 630 | . . . . . 6 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → ((𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐) ↔ (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐))) |
13 | 12 | rexbidv 3225 | . . . . 5 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐) ↔ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐))) |
14 | 13 | cbvopabv 5143 | . . . 4 ⊢ {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐)} = {〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)} |
15 | 7, 14 | eqtrdi 2795 | . . 3 ⊢ (𝜑 → ((hpG‘𝐺)‘𝐷) = {〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)}) |
16 | 15 | breqd 5081 | . 2 ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ 𝐴{〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)}𝐵)) |
17 | hpgbr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
18 | hpgbr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
19 | simpl 482 | . . . . . . 7 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → 𝑢 = 𝐴) | |
20 | 19 | breq1d 5080 | . . . . . 6 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → (𝑢𝑂𝑐 ↔ 𝐴𝑂𝑐)) |
21 | simpr 484 | . . . . . . 7 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → 𝑣 = 𝐵) | |
22 | 21 | breq1d 5080 | . . . . . 6 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → (𝑣𝑂𝑐 ↔ 𝐵𝑂𝑐)) |
23 | 20, 22 | anbi12d 630 | . . . . 5 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → ((𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐) ↔ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
24 | 23 | rexbidv 3225 | . . . 4 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → (∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐) ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
25 | eqid 2738 | . . . 4 ⊢ {〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)} = {〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)} | |
26 | 24, 25 | brabga 5440 | . . 3 ⊢ ((𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃) → (𝐴{〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)}𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
27 | 17, 18, 26 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐴{〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)}𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
28 | 16, 27 | bitrd 278 | 1 ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∖ cdif 3880 class class class wbr 5070 {copab 5132 ran crn 5581 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 TarskiGcstrkg 26693 Itvcitv 26699 LineGclng 26700 hpGchpg 27022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-hpg 27023 |
This theorem is referenced by: hpgne1 27026 hpgne2 27027 lnopp2hpgb 27028 hpgid 27031 hpgcom 27032 hpgtr 27033 |
Copyright terms: Public domain | W3C validator |