MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hpgbr Structured version   Visualization version   GIF version

Theorem hpgbr 26549
Description: Half-planes : property for points 𝐴 and 𝐵 to belong to the same open half plane delimited by line 𝐷. Definition 9.7 of [Schwabhauser] p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
ishpg.p 𝑃 = (Base‘𝐺)
ishpg.i 𝐼 = (Itv‘𝐺)
ishpg.l 𝐿 = (LineG‘𝐺)
ishpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
ishpg.g (𝜑𝐺 ∈ TarskiG)
ishpg.d (𝜑𝐷 ∈ ran 𝐿)
hpgbr.a (𝜑𝐴𝑃)
hpgbr.b (𝜑𝐵𝑃)
Assertion
Ref Expression
hpgbr (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝐷,𝑎,𝑏,𝑐,𝑡   𝐺,𝑎,𝑏   𝐼,𝑎,𝑏,𝑐,𝑡   𝑂,𝑎,𝑏   𝑃,𝑎,𝑏,𝑐,𝑡
Allowed substitution hints:   𝜑(𝑡,𝑎,𝑏,𝑐)   𝐴(𝑡,𝑎,𝑏)   𝐵(𝑡,𝑎,𝑏)   𝐺(𝑡,𝑐)   𝐿(𝑡,𝑎,𝑏,𝑐)   𝑂(𝑡,𝑐)

Proof of Theorem hpgbr
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ishpg.p . . . . 5 𝑃 = (Base‘𝐺)
2 ishpg.i . . . . 5 𝐼 = (Itv‘𝐺)
3 ishpg.l . . . . 5 𝐿 = (LineG‘𝐺)
4 ishpg.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
5 ishpg.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
6 ishpg.d . . . . 5 (𝜑𝐷 ∈ ran 𝐿)
71, 2, 3, 4, 5, 6ishpg 26548 . . . 4 (𝜑 → ((hpG‘𝐺)‘𝐷) = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (𝑎𝑂𝑐𝑏𝑂𝑐)})
8 simpl 485 . . . . . . . 8 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑎 = 𝑢)
98breq1d 5079 . . . . . . 7 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑎𝑂𝑐𝑢𝑂𝑐))
10 simpr 487 . . . . . . . 8 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑏 = 𝑣)
1110breq1d 5079 . . . . . . 7 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑏𝑂𝑐𝑣𝑂𝑐))
129, 11anbi12d 632 . . . . . 6 ((𝑎 = 𝑢𝑏 = 𝑣) → ((𝑎𝑂𝑐𝑏𝑂𝑐) ↔ (𝑢𝑂𝑐𝑣𝑂𝑐)))
1312rexbidv 3300 . . . . 5 ((𝑎 = 𝑢𝑏 = 𝑣) → (∃𝑐𝑃 (𝑎𝑂𝑐𝑏𝑂𝑐) ↔ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)))
1413cbvopabv 5141 . . . 4 {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (𝑎𝑂𝑐𝑏𝑂𝑐)} = {⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)}
157, 14syl6eq 2875 . . 3 (𝜑 → ((hpG‘𝐺)‘𝐷) = {⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)})
1615breqd 5080 . 2 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵𝐴{⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)}𝐵))
17 hpgbr.a . . 3 (𝜑𝐴𝑃)
18 hpgbr.b . . 3 (𝜑𝐵𝑃)
19 simpl 485 . . . . . . 7 ((𝑢 = 𝐴𝑣 = 𝐵) → 𝑢 = 𝐴)
2019breq1d 5079 . . . . . 6 ((𝑢 = 𝐴𝑣 = 𝐵) → (𝑢𝑂𝑐𝐴𝑂𝑐))
21 simpr 487 . . . . . . 7 ((𝑢 = 𝐴𝑣 = 𝐵) → 𝑣 = 𝐵)
2221breq1d 5079 . . . . . 6 ((𝑢 = 𝐴𝑣 = 𝐵) → (𝑣𝑂𝑐𝐵𝑂𝑐))
2320, 22anbi12d 632 . . . . 5 ((𝑢 = 𝐴𝑣 = 𝐵) → ((𝑢𝑂𝑐𝑣𝑂𝑐) ↔ (𝐴𝑂𝑐𝐵𝑂𝑐)))
2423rexbidv 3300 . . . 4 ((𝑢 = 𝐴𝑣 = 𝐵) → (∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐) ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
25 eqid 2824 . . . 4 {⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)} = {⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)}
2624, 25brabga 5424 . . 3 ((𝐴𝑃𝐵𝑃) → (𝐴{⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)}𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
2717, 18, 26syl2anc 586 . 2 (𝜑 → (𝐴{⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)}𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
2816, 27bitrd 281 1 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wrex 3142  cdif 3936   class class class wbr 5069  {copab 5131  ran crn 5559  cfv 6358  (class class class)co 7159  Basecbs 16486  TarskiGcstrkg 26219  Itvcitv 26225  LineGclng 26226  hpGchpg 26546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-hpg 26547
This theorem is referenced by:  hpgne1  26550  hpgne2  26551  lnopp2hpgb  26552  hpgid  26555  hpgcom  26556  hpgtr  26557
  Copyright terms: Public domain W3C validator