MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hpgbr Structured version   Visualization version   GIF version

Theorem hpgbr 28738
Description: Half-planes : property for points 𝐴 and 𝐵 to belong to the same open half plane delimited by line 𝐷. Definition 9.7 of [Schwabhauser] p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
ishpg.p 𝑃 = (Base‘𝐺)
ishpg.i 𝐼 = (Itv‘𝐺)
ishpg.l 𝐿 = (LineG‘𝐺)
ishpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
ishpg.g (𝜑𝐺 ∈ TarskiG)
ishpg.d (𝜑𝐷 ∈ ran 𝐿)
hpgbr.a (𝜑𝐴𝑃)
hpgbr.b (𝜑𝐵𝑃)
Assertion
Ref Expression
hpgbr (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝐷,𝑎,𝑏,𝑐,𝑡   𝐺,𝑎,𝑏   𝐼,𝑎,𝑏,𝑐,𝑡   𝑂,𝑎,𝑏   𝑃,𝑎,𝑏,𝑐,𝑡
Allowed substitution hints:   𝜑(𝑡,𝑎,𝑏,𝑐)   𝐴(𝑡,𝑎,𝑏)   𝐵(𝑡,𝑎,𝑏)   𝐺(𝑡,𝑐)   𝐿(𝑡,𝑎,𝑏,𝑐)   𝑂(𝑡,𝑐)

Proof of Theorem hpgbr
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ishpg.p . . . . 5 𝑃 = (Base‘𝐺)
2 ishpg.i . . . . 5 𝐼 = (Itv‘𝐺)
3 ishpg.l . . . . 5 𝐿 = (LineG‘𝐺)
4 ishpg.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
5 ishpg.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
6 ishpg.d . . . . 5 (𝜑𝐷 ∈ ran 𝐿)
71, 2, 3, 4, 5, 6ishpg 28737 . . . 4 (𝜑 → ((hpG‘𝐺)‘𝐷) = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (𝑎𝑂𝑐𝑏𝑂𝑐)})
8 simpl 482 . . . . . . . 8 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑎 = 𝑢)
98breq1d 5099 . . . . . . 7 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑎𝑂𝑐𝑢𝑂𝑐))
10 simpr 484 . . . . . . . 8 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑏 = 𝑣)
1110breq1d 5099 . . . . . . 7 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑏𝑂𝑐𝑣𝑂𝑐))
129, 11anbi12d 632 . . . . . 6 ((𝑎 = 𝑢𝑏 = 𝑣) → ((𝑎𝑂𝑐𝑏𝑂𝑐) ↔ (𝑢𝑂𝑐𝑣𝑂𝑐)))
1312rexbidv 3156 . . . . 5 ((𝑎 = 𝑢𝑏 = 𝑣) → (∃𝑐𝑃 (𝑎𝑂𝑐𝑏𝑂𝑐) ↔ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)))
1413cbvopabv 5162 . . . 4 {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (𝑎𝑂𝑐𝑏𝑂𝑐)} = {⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)}
157, 14eqtrdi 2782 . . 3 (𝜑 → ((hpG‘𝐺)‘𝐷) = {⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)})
1615breqd 5100 . 2 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵𝐴{⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)}𝐵))
17 hpgbr.a . . 3 (𝜑𝐴𝑃)
18 hpgbr.b . . 3 (𝜑𝐵𝑃)
19 simpl 482 . . . . . . 7 ((𝑢 = 𝐴𝑣 = 𝐵) → 𝑢 = 𝐴)
2019breq1d 5099 . . . . . 6 ((𝑢 = 𝐴𝑣 = 𝐵) → (𝑢𝑂𝑐𝐴𝑂𝑐))
21 simpr 484 . . . . . . 7 ((𝑢 = 𝐴𝑣 = 𝐵) → 𝑣 = 𝐵)
2221breq1d 5099 . . . . . 6 ((𝑢 = 𝐴𝑣 = 𝐵) → (𝑣𝑂𝑐𝐵𝑂𝑐))
2320, 22anbi12d 632 . . . . 5 ((𝑢 = 𝐴𝑣 = 𝐵) → ((𝑢𝑂𝑐𝑣𝑂𝑐) ↔ (𝐴𝑂𝑐𝐵𝑂𝑐)))
2423rexbidv 3156 . . . 4 ((𝑢 = 𝐴𝑣 = 𝐵) → (∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐) ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
25 eqid 2731 . . . 4 {⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)} = {⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)}
2624, 25brabga 5472 . . 3 ((𝐴𝑃𝐵𝑃) → (𝐴{⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)}𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
2717, 18, 26syl2anc 584 . 2 (𝜑 → (𝐴{⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)}𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
2816, 27bitrd 279 1 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  cdif 3894   class class class wbr 5089  {copab 5151  ran crn 5615  cfv 6481  (class class class)co 7346  Basecbs 17120  TarskiGcstrkg 28405  Itvcitv 28411  LineGclng 28412  hpGchpg 28735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-hpg 28736
This theorem is referenced by:  hpgne1  28739  hpgne2  28740  lnopp2hpgb  28741  hpgid  28744  hpgcom  28745  hpgtr  28746
  Copyright terms: Public domain W3C validator