![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hpgbr | Structured version Visualization version GIF version |
Description: Half-planes : property for points 𝐴 and 𝐵 to belong to the same open half plane delimited by line 𝐷. Definition 9.7 of [Schwabhauser] p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
Ref | Expression |
---|---|
ishpg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishpg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishpg.l | ⊢ 𝐿 = (LineG‘𝐺) |
ishpg.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
ishpg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
ishpg.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
hpgbr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
hpgbr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
Ref | Expression |
---|---|
hpgbr | ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishpg.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
2 | ishpg.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | ishpg.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | ishpg.o | . . . . 5 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
5 | ishpg.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | ishpg.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
7 | 1, 2, 3, 4, 5, 6 | ishpg 28785 | . . . 4 ⊢ (𝜑 → ((hpG‘𝐺)‘𝐷) = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐)}) |
8 | simpl 482 | . . . . . . . 8 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → 𝑎 = 𝑢) | |
9 | 8 | breq1d 5176 | . . . . . . 7 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (𝑎𝑂𝑐 ↔ 𝑢𝑂𝑐)) |
10 | simpr 484 | . . . . . . . 8 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → 𝑏 = 𝑣) | |
11 | 10 | breq1d 5176 | . . . . . . 7 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (𝑏𝑂𝑐 ↔ 𝑣𝑂𝑐)) |
12 | 9, 11 | anbi12d 631 | . . . . . 6 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → ((𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐) ↔ (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐))) |
13 | 12 | rexbidv 3185 | . . . . 5 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐) ↔ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐))) |
14 | 13 | cbvopabv 5239 | . . . 4 ⊢ {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐)} = {〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)} |
15 | 7, 14 | eqtrdi 2796 | . . 3 ⊢ (𝜑 → ((hpG‘𝐺)‘𝐷) = {〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)}) |
16 | 15 | breqd 5177 | . 2 ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ 𝐴{〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)}𝐵)) |
17 | hpgbr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
18 | hpgbr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
19 | simpl 482 | . . . . . . 7 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → 𝑢 = 𝐴) | |
20 | 19 | breq1d 5176 | . . . . . 6 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → (𝑢𝑂𝑐 ↔ 𝐴𝑂𝑐)) |
21 | simpr 484 | . . . . . . 7 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → 𝑣 = 𝐵) | |
22 | 21 | breq1d 5176 | . . . . . 6 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → (𝑣𝑂𝑐 ↔ 𝐵𝑂𝑐)) |
23 | 20, 22 | anbi12d 631 | . . . . 5 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → ((𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐) ↔ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
24 | 23 | rexbidv 3185 | . . . 4 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → (∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐) ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
25 | eqid 2740 | . . . 4 ⊢ {〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)} = {〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)} | |
26 | 24, 25 | brabga 5553 | . . 3 ⊢ ((𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃) → (𝐴{〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)}𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
27 | 17, 18, 26 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐴{〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)}𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
28 | 16, 27 | bitrd 279 | 1 ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ∖ cdif 3973 class class class wbr 5166 {copab 5228 ran crn 5701 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 TarskiGcstrkg 28453 Itvcitv 28459 LineGclng 28460 hpGchpg 28783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-hpg 28784 |
This theorem is referenced by: hpgne1 28787 hpgne2 28788 lnopp2hpgb 28789 hpgid 28792 hpgcom 28793 hpgtr 28794 |
Copyright terms: Public domain | W3C validator |