MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hpgbr Structured version   Visualization version   GIF version

Theorem hpgbr 28266
Description: Half-planes : property for points 𝐴 and 𝐡 to belong to the same open half plane delimited by line 𝐷. Definition 9.7 of [Schwabhauser] p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
ishpg.p 𝑃 = (Baseβ€˜πΊ)
ishpg.i 𝐼 = (Itvβ€˜πΊ)
ishpg.l 𝐿 = (LineGβ€˜πΊ)
ishpg.o 𝑂 = {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ (𝑃 βˆ– 𝐷) ∧ 𝑏 ∈ (𝑃 βˆ– 𝐷)) ∧ βˆƒπ‘‘ ∈ 𝐷 𝑑 ∈ (π‘ŽπΌπ‘))}
ishpg.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
ishpg.d (πœ‘ β†’ 𝐷 ∈ ran 𝐿)
hpgbr.a (πœ‘ β†’ 𝐴 ∈ 𝑃)
hpgbr.b (πœ‘ β†’ 𝐡 ∈ 𝑃)
Assertion
Ref Expression
hpgbr (πœ‘ β†’ (𝐴((hpGβ€˜πΊ)β€˜π·)𝐡 ↔ βˆƒπ‘ ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐡𝑂𝑐)))
Distinct variable groups:   𝐴,𝑐   𝐡,𝑐   𝐷,π‘Ž,𝑏,𝑐,𝑑   𝐺,π‘Ž,𝑏   𝐼,π‘Ž,𝑏,𝑐,𝑑   𝑂,π‘Ž,𝑏   𝑃,π‘Ž,𝑏,𝑐,𝑑
Allowed substitution hints:   πœ‘(𝑑,π‘Ž,𝑏,𝑐)   𝐴(𝑑,π‘Ž,𝑏)   𝐡(𝑑,π‘Ž,𝑏)   𝐺(𝑑,𝑐)   𝐿(𝑑,π‘Ž,𝑏,𝑐)   𝑂(𝑑,𝑐)

Proof of Theorem hpgbr
Dummy variables 𝑒 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ishpg.p . . . . 5 𝑃 = (Baseβ€˜πΊ)
2 ishpg.i . . . . 5 𝐼 = (Itvβ€˜πΊ)
3 ishpg.l . . . . 5 𝐿 = (LineGβ€˜πΊ)
4 ishpg.o . . . . 5 𝑂 = {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ (𝑃 βˆ– 𝐷) ∧ 𝑏 ∈ (𝑃 βˆ– 𝐷)) ∧ βˆƒπ‘‘ ∈ 𝐷 𝑑 ∈ (π‘ŽπΌπ‘))}
5 ishpg.g . . . . 5 (πœ‘ β†’ 𝐺 ∈ TarskiG)
6 ishpg.d . . . . 5 (πœ‘ β†’ 𝐷 ∈ ran 𝐿)
71, 2, 3, 4, 5, 6ishpg 28265 . . . 4 (πœ‘ β†’ ((hpGβ€˜πΊ)β€˜π·) = {βŸ¨π‘Ž, π‘βŸ© ∣ βˆƒπ‘ ∈ 𝑃 (π‘Žπ‘‚π‘ ∧ 𝑏𝑂𝑐)})
8 simpl 483 . . . . . . . 8 ((π‘Ž = 𝑒 ∧ 𝑏 = 𝑣) β†’ π‘Ž = 𝑒)
98breq1d 5158 . . . . . . 7 ((π‘Ž = 𝑒 ∧ 𝑏 = 𝑣) β†’ (π‘Žπ‘‚π‘ ↔ 𝑒𝑂𝑐))
10 simpr 485 . . . . . . . 8 ((π‘Ž = 𝑒 ∧ 𝑏 = 𝑣) β†’ 𝑏 = 𝑣)
1110breq1d 5158 . . . . . . 7 ((π‘Ž = 𝑒 ∧ 𝑏 = 𝑣) β†’ (𝑏𝑂𝑐 ↔ 𝑣𝑂𝑐))
129, 11anbi12d 631 . . . . . 6 ((π‘Ž = 𝑒 ∧ 𝑏 = 𝑣) β†’ ((π‘Žπ‘‚π‘ ∧ 𝑏𝑂𝑐) ↔ (𝑒𝑂𝑐 ∧ 𝑣𝑂𝑐)))
1312rexbidv 3178 . . . . 5 ((π‘Ž = 𝑒 ∧ 𝑏 = 𝑣) β†’ (βˆƒπ‘ ∈ 𝑃 (π‘Žπ‘‚π‘ ∧ 𝑏𝑂𝑐) ↔ βˆƒπ‘ ∈ 𝑃 (𝑒𝑂𝑐 ∧ 𝑣𝑂𝑐)))
1413cbvopabv 5221 . . . 4 {βŸ¨π‘Ž, π‘βŸ© ∣ βˆƒπ‘ ∈ 𝑃 (π‘Žπ‘‚π‘ ∧ 𝑏𝑂𝑐)} = {βŸ¨π‘’, π‘£βŸ© ∣ βˆƒπ‘ ∈ 𝑃 (𝑒𝑂𝑐 ∧ 𝑣𝑂𝑐)}
157, 14eqtrdi 2788 . . 3 (πœ‘ β†’ ((hpGβ€˜πΊ)β€˜π·) = {βŸ¨π‘’, π‘£βŸ© ∣ βˆƒπ‘ ∈ 𝑃 (𝑒𝑂𝑐 ∧ 𝑣𝑂𝑐)})
1615breqd 5159 . 2 (πœ‘ β†’ (𝐴((hpGβ€˜πΊ)β€˜π·)𝐡 ↔ 𝐴{βŸ¨π‘’, π‘£βŸ© ∣ βˆƒπ‘ ∈ 𝑃 (𝑒𝑂𝑐 ∧ 𝑣𝑂𝑐)}𝐡))
17 hpgbr.a . . 3 (πœ‘ β†’ 𝐴 ∈ 𝑃)
18 hpgbr.b . . 3 (πœ‘ β†’ 𝐡 ∈ 𝑃)
19 simpl 483 . . . . . . 7 ((𝑒 = 𝐴 ∧ 𝑣 = 𝐡) β†’ 𝑒 = 𝐴)
2019breq1d 5158 . . . . . 6 ((𝑒 = 𝐴 ∧ 𝑣 = 𝐡) β†’ (𝑒𝑂𝑐 ↔ 𝐴𝑂𝑐))
21 simpr 485 . . . . . . 7 ((𝑒 = 𝐴 ∧ 𝑣 = 𝐡) β†’ 𝑣 = 𝐡)
2221breq1d 5158 . . . . . 6 ((𝑒 = 𝐴 ∧ 𝑣 = 𝐡) β†’ (𝑣𝑂𝑐 ↔ 𝐡𝑂𝑐))
2320, 22anbi12d 631 . . . . 5 ((𝑒 = 𝐴 ∧ 𝑣 = 𝐡) β†’ ((𝑒𝑂𝑐 ∧ 𝑣𝑂𝑐) ↔ (𝐴𝑂𝑐 ∧ 𝐡𝑂𝑐)))
2423rexbidv 3178 . . . 4 ((𝑒 = 𝐴 ∧ 𝑣 = 𝐡) β†’ (βˆƒπ‘ ∈ 𝑃 (𝑒𝑂𝑐 ∧ 𝑣𝑂𝑐) ↔ βˆƒπ‘ ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐡𝑂𝑐)))
25 eqid 2732 . . . 4 {βŸ¨π‘’, π‘£βŸ© ∣ βˆƒπ‘ ∈ 𝑃 (𝑒𝑂𝑐 ∧ 𝑣𝑂𝑐)} = {βŸ¨π‘’, π‘£βŸ© ∣ βˆƒπ‘ ∈ 𝑃 (𝑒𝑂𝑐 ∧ 𝑣𝑂𝑐)}
2624, 25brabga 5534 . . 3 ((𝐴 ∈ 𝑃 ∧ 𝐡 ∈ 𝑃) β†’ (𝐴{βŸ¨π‘’, π‘£βŸ© ∣ βˆƒπ‘ ∈ 𝑃 (𝑒𝑂𝑐 ∧ 𝑣𝑂𝑐)}𝐡 ↔ βˆƒπ‘ ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐡𝑂𝑐)))
2717, 18, 26syl2anc 584 . 2 (πœ‘ β†’ (𝐴{βŸ¨π‘’, π‘£βŸ© ∣ βˆƒπ‘ ∈ 𝑃 (𝑒𝑂𝑐 ∧ 𝑣𝑂𝑐)}𝐡 ↔ βˆƒπ‘ ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐡𝑂𝑐)))
2816, 27bitrd 278 1 (πœ‘ β†’ (𝐴((hpGβ€˜πΊ)β€˜π·)𝐡 ↔ βˆƒπ‘ ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐡𝑂𝑐)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070   βˆ– cdif 3945   class class class wbr 5148  {copab 5210  ran crn 5677  β€˜cfv 6543  (class class class)co 7411  Basecbs 17148  TarskiGcstrkg 27933  Itvcitv 27939  LineGclng 27940  hpGchpg 28263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-hpg 28264
This theorem is referenced by:  hpgne1  28267  hpgne2  28268  lnopp2hpgb  28269  hpgid  28272  hpgcom  28273  hpgtr  28274
  Copyright terms: Public domain W3C validator