Step | Hyp | Ref
| Expression |
1 | | ishpg.p |
. . . . 5
β’ π = (BaseβπΊ) |
2 | | ishpg.i |
. . . . 5
β’ πΌ = (ItvβπΊ) |
3 | | ishpg.l |
. . . . 5
β’ πΏ = (LineGβπΊ) |
4 | | ishpg.o |
. . . . 5
β’ π = {β¨π, πβ© β£ ((π β (π β π·) β§ π β (π β π·)) β§ βπ‘ β π· π‘ β (ππΌπ))} |
5 | | ishpg.g |
. . . . 5
β’ (π β πΊ β TarskiG) |
6 | | ishpg.d |
. . . . 5
β’ (π β π· β ran πΏ) |
7 | 1, 2, 3, 4, 5, 6 | ishpg 28265 |
. . . 4
β’ (π β ((hpGβπΊ)βπ·) = {β¨π, πβ© β£ βπ β π (πππ β§ πππ)}) |
8 | | simpl 483 |
. . . . . . . 8
β’ ((π = π’ β§ π = π£) β π = π’) |
9 | 8 | breq1d 5158 |
. . . . . . 7
β’ ((π = π’ β§ π = π£) β (πππ β π’ππ)) |
10 | | simpr 485 |
. . . . . . . 8
β’ ((π = π’ β§ π = π£) β π = π£) |
11 | 10 | breq1d 5158 |
. . . . . . 7
β’ ((π = π’ β§ π = π£) β (πππ β π£ππ)) |
12 | 9, 11 | anbi12d 631 |
. . . . . 6
β’ ((π = π’ β§ π = π£) β ((πππ β§ πππ) β (π’ππ β§ π£ππ))) |
13 | 12 | rexbidv 3178 |
. . . . 5
β’ ((π = π’ β§ π = π£) β (βπ β π (πππ β§ πππ) β βπ β π (π’ππ β§ π£ππ))) |
14 | 13 | cbvopabv 5221 |
. . . 4
β’
{β¨π, πβ© β£ βπ β π (πππ β§ πππ)} = {β¨π’, π£β© β£ βπ β π (π’ππ β§ π£ππ)} |
15 | 7, 14 | eqtrdi 2788 |
. . 3
β’ (π β ((hpGβπΊ)βπ·) = {β¨π’, π£β© β£ βπ β π (π’ππ β§ π£ππ)}) |
16 | 15 | breqd 5159 |
. 2
β’ (π β (π΄((hpGβπΊ)βπ·)π΅ β π΄{β¨π’, π£β© β£ βπ β π (π’ππ β§ π£ππ)}π΅)) |
17 | | hpgbr.a |
. . 3
β’ (π β π΄ β π) |
18 | | hpgbr.b |
. . 3
β’ (π β π΅ β π) |
19 | | simpl 483 |
. . . . . . 7
β’ ((π’ = π΄ β§ π£ = π΅) β π’ = π΄) |
20 | 19 | breq1d 5158 |
. . . . . 6
β’ ((π’ = π΄ β§ π£ = π΅) β (π’ππ β π΄ππ)) |
21 | | simpr 485 |
. . . . . . 7
β’ ((π’ = π΄ β§ π£ = π΅) β π£ = π΅) |
22 | 21 | breq1d 5158 |
. . . . . 6
β’ ((π’ = π΄ β§ π£ = π΅) β (π£ππ β π΅ππ)) |
23 | 20, 22 | anbi12d 631 |
. . . . 5
β’ ((π’ = π΄ β§ π£ = π΅) β ((π’ππ β§ π£ππ) β (π΄ππ β§ π΅ππ))) |
24 | 23 | rexbidv 3178 |
. . . 4
β’ ((π’ = π΄ β§ π£ = π΅) β (βπ β π (π’ππ β§ π£ππ) β βπ β π (π΄ππ β§ π΅ππ))) |
25 | | eqid 2732 |
. . . 4
β’
{β¨π’, π£β© β£ βπ β π (π’ππ β§ π£ππ)} = {β¨π’, π£β© β£ βπ β π (π’ππ β§ π£ππ)} |
26 | 24, 25 | brabga 5534 |
. . 3
β’ ((π΄ β π β§ π΅ β π) β (π΄{β¨π’, π£β© β£ βπ β π (π’ππ β§ π£ππ)}π΅ β βπ β π (π΄ππ β§ π΅ππ))) |
27 | 17, 18, 26 | syl2anc 584 |
. 2
β’ (π β (π΄{β¨π’, π£β© β£ βπ β π (π’ππ β§ π£ππ)}π΅ β βπ β π (π΄ππ β§ π΅ππ))) |
28 | 16, 27 | bitrd 278 |
1
β’ (π β (π΄((hpGβπΊ)βπ·)π΅ β βπ β π (π΄ππ β§ π΅ππ))) |