MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1 Structured version   Visualization version   GIF version

Theorem sylow1 19509
Description: Sylow's first theorem. If 𝑃𝑁 is a prime power that divides the cardinality of 𝐺, then 𝐺 has a supgroup with size 𝑃𝑁. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x 𝑋 = (Base‘𝐺)
sylow1.g (𝜑𝐺 ∈ Grp)
sylow1.f (𝜑𝑋 ∈ Fin)
sylow1.p (𝜑𝑃 ∈ ℙ)
sylow1.n (𝜑𝑁 ∈ ℕ0)
sylow1.d (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
Assertion
Ref Expression
sylow1 (𝜑 → ∃𝑔 ∈ (SubGrp‘𝐺)(♯‘𝑔) = (𝑃𝑁))
Distinct variable groups:   𝑔,𝑁   𝑔,𝑋   𝑔,𝐺   𝑃,𝑔   𝜑,𝑔

Proof of Theorem sylow1
Dummy variables 𝑎 𝑏 𝑠 𝑢 𝑥 𝑦 𝑧 𝑘 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow1.x . . 3 𝑋 = (Base‘𝐺)
2 sylow1.g . . 3 (𝜑𝐺 ∈ Grp)
3 sylow1.f . . 3 (𝜑𝑋 ∈ Fin)
4 sylow1.p . . 3 (𝜑𝑃 ∈ ℙ)
5 sylow1.n . . 3 (𝜑𝑁 ∈ ℕ0)
6 sylow1.d . . 3 (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
7 eqid 2729 . . 3 (+g𝐺) = (+g𝐺)
8 eqid 2729 . . 3 {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
9 oveq2 7377 . . . . . . 7 (𝑠 = 𝑧 → (𝑢(+g𝐺)𝑠) = (𝑢(+g𝐺)𝑧))
109cbvmptv 5206 . . . . . 6 (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)) = (𝑧𝑣 ↦ (𝑢(+g𝐺)𝑧))
11 oveq1 7376 . . . . . . 7 (𝑢 = 𝑥 → (𝑢(+g𝐺)𝑧) = (𝑥(+g𝐺)𝑧))
1211mpteq2dv 5196 . . . . . 6 (𝑢 = 𝑥 → (𝑧𝑣 ↦ (𝑢(+g𝐺)𝑧)) = (𝑧𝑣 ↦ (𝑥(+g𝐺)𝑧)))
1310, 12eqtrid 2776 . . . . 5 (𝑢 = 𝑥 → (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)) = (𝑧𝑣 ↦ (𝑥(+g𝐺)𝑧)))
1413rneqd 5891 . . . 4 (𝑢 = 𝑥 → ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)) = ran (𝑧𝑣 ↦ (𝑥(+g𝐺)𝑧)))
15 mpteq1 5191 . . . . 5 (𝑣 = 𝑦 → (𝑧𝑣 ↦ (𝑥(+g𝐺)𝑧)) = (𝑧𝑦 ↦ (𝑥(+g𝐺)𝑧)))
1615rneqd 5891 . . . 4 (𝑣 = 𝑦 → ran (𝑧𝑣 ↦ (𝑥(+g𝐺)𝑧)) = ran (𝑧𝑦 ↦ (𝑥(+g𝐺)𝑧)))
1714, 16cbvmpov 7464 . . 3 (𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠))) = (𝑥𝑋, 𝑦 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑧𝑦 ↦ (𝑥(+g𝐺)𝑧)))
18 preq12 4695 . . . . . 6 ((𝑎 = 𝑥𝑏 = 𝑦) → {𝑎, 𝑏} = {𝑥, 𝑦})
1918sseq1d 3975 . . . . 5 ((𝑎 = 𝑥𝑏 = 𝑦) → ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↔ {𝑥, 𝑦} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}))
20 oveq2 7377 . . . . . . 7 (𝑎 = 𝑥 → (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑥))
21 id 22 . . . . . . 7 (𝑏 = 𝑦𝑏 = 𝑦)
2220, 21eqeqan12d 2743 . . . . . 6 ((𝑎 = 𝑥𝑏 = 𝑦) → ((𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏 ↔ (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑥) = 𝑦))
2322rexbidv 3157 . . . . 5 ((𝑎 = 𝑥𝑏 = 𝑦) → (∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏 ↔ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑥) = 𝑦))
2419, 23anbi12d 632 . . . 4 ((𝑎 = 𝑥𝑏 = 𝑦) → (({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏) ↔ ({𝑥, 𝑦} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑥) = 𝑦)))
2524cbvopabv 5175 . . 3 {⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑥) = 𝑦)}
261, 2, 3, 4, 5, 6, 7, 8, 17, 25sylow1lem3 19506 . 2 (𝜑 → ∃ ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
272adantr 480 . . 3 ((𝜑 ∧ ( ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → 𝐺 ∈ Grp)
283adantr 480 . . 3 ((𝜑 ∧ ( ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → 𝑋 ∈ Fin)
294adantr 480 . . 3 ((𝜑 ∧ ( ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → 𝑃 ∈ ℙ)
305adantr 480 . . 3 ((𝜑 ∧ ( ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → 𝑁 ∈ ℕ0)
316adantr 480 . . 3 ((𝜑 ∧ ( ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → (𝑃𝑁) ∥ (♯‘𝑋))
32 simprl 770 . . 3 ((𝜑 ∧ ( ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)})
33 eqid 2729 . . 3 {𝑡𝑋 ∣ (𝑡(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))) = } = {𝑡𝑋 ∣ (𝑡(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))) = }
34 simprr 772 . . 3 ((𝜑 ∧ ( ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
351, 27, 28, 29, 30, 31, 7, 8, 17, 25, 32, 33, 34sylow1lem5 19508 . 2 ((𝜑 ∧ ( ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → ∃𝑔 ∈ (SubGrp‘𝐺)(♯‘𝑔) = (𝑃𝑁))
3626, 35rexlimddv 3140 1 (𝜑 → ∃𝑔 ∈ (SubGrp‘𝐺)(♯‘𝑔) = (𝑃𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3402  wss 3911  𝒫 cpw 4559  {cpr 4587   class class class wbr 5102  {copab 5164  cmpt 5183  ran crn 5632  cfv 6499  (class class class)co 7369  cmpo 7371  [cec 8646  Fincfn 8895  cle 11185  cmin 11381  0cn0 12418  cexp 14002  chash 14271  cdvds 16198  cprime 16617   pCnt cpc 16783  Basecbs 17155  +gcplusg 17196  Grpcgrp 18841  SubGrpcsubg 19028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-dvds 16199  df-gcd 16441  df-prm 16618  df-pc 16784  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-subg 19031  df-eqg 19033  df-ga 19198
This theorem is referenced by:  odcau  19510  slwhash  19530
  Copyright terms: Public domain W3C validator