MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1 Structured version   Visualization version   GIF version

Theorem sylow1 19523
Description: Sylow's first theorem. If 𝑃𝑁 is a prime power that divides the cardinality of 𝐺, then 𝐺 has a supgroup with size 𝑃𝑁. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x 𝑋 = (Base‘𝐺)
sylow1.g (𝜑𝐺 ∈ Grp)
sylow1.f (𝜑𝑋 ∈ Fin)
sylow1.p (𝜑𝑃 ∈ ℙ)
sylow1.n (𝜑𝑁 ∈ ℕ0)
sylow1.d (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
Assertion
Ref Expression
sylow1 (𝜑 → ∃𝑔 ∈ (SubGrp‘𝐺)(♯‘𝑔) = (𝑃𝑁))
Distinct variable groups:   𝑔,𝑁   𝑔,𝑋   𝑔,𝐺   𝑃,𝑔   𝜑,𝑔

Proof of Theorem sylow1
Dummy variables 𝑎 𝑏 𝑠 𝑢 𝑥 𝑦 𝑧 𝑘 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow1.x . . 3 𝑋 = (Base‘𝐺)
2 sylow1.g . . 3 (𝜑𝐺 ∈ Grp)
3 sylow1.f . . 3 (𝜑𝑋 ∈ Fin)
4 sylow1.p . . 3 (𝜑𝑃 ∈ ℙ)
5 sylow1.n . . 3 (𝜑𝑁 ∈ ℕ0)
6 sylow1.d . . 3 (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
7 eqid 2733 . . 3 (+g𝐺) = (+g𝐺)
8 eqid 2733 . . 3 {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
9 oveq2 7363 . . . . . . 7 (𝑠 = 𝑧 → (𝑢(+g𝐺)𝑠) = (𝑢(+g𝐺)𝑧))
109cbvmptv 5199 . . . . . 6 (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)) = (𝑧𝑣 ↦ (𝑢(+g𝐺)𝑧))
11 oveq1 7362 . . . . . . 7 (𝑢 = 𝑥 → (𝑢(+g𝐺)𝑧) = (𝑥(+g𝐺)𝑧))
1211mpteq2dv 5189 . . . . . 6 (𝑢 = 𝑥 → (𝑧𝑣 ↦ (𝑢(+g𝐺)𝑧)) = (𝑧𝑣 ↦ (𝑥(+g𝐺)𝑧)))
1310, 12eqtrid 2780 . . . . 5 (𝑢 = 𝑥 → (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)) = (𝑧𝑣 ↦ (𝑥(+g𝐺)𝑧)))
1413rneqd 5884 . . . 4 (𝑢 = 𝑥 → ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)) = ran (𝑧𝑣 ↦ (𝑥(+g𝐺)𝑧)))
15 mpteq1 5184 . . . . 5 (𝑣 = 𝑦 → (𝑧𝑣 ↦ (𝑥(+g𝐺)𝑧)) = (𝑧𝑦 ↦ (𝑥(+g𝐺)𝑧)))
1615rneqd 5884 . . . 4 (𝑣 = 𝑦 → ran (𝑧𝑣 ↦ (𝑥(+g𝐺)𝑧)) = ran (𝑧𝑦 ↦ (𝑥(+g𝐺)𝑧)))
1714, 16cbvmpov 7450 . . 3 (𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠))) = (𝑥𝑋, 𝑦 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑧𝑦 ↦ (𝑥(+g𝐺)𝑧)))
18 preq12 4689 . . . . . 6 ((𝑎 = 𝑥𝑏 = 𝑦) → {𝑎, 𝑏} = {𝑥, 𝑦})
1918sseq1d 3962 . . . . 5 ((𝑎 = 𝑥𝑏 = 𝑦) → ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↔ {𝑥, 𝑦} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}))
20 oveq2 7363 . . . . . . 7 (𝑎 = 𝑥 → (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑥))
21 id 22 . . . . . . 7 (𝑏 = 𝑦𝑏 = 𝑦)
2220, 21eqeqan12d 2747 . . . . . 6 ((𝑎 = 𝑥𝑏 = 𝑦) → ((𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏 ↔ (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑥) = 𝑦))
2322rexbidv 3157 . . . . 5 ((𝑎 = 𝑥𝑏 = 𝑦) → (∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏 ↔ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑥) = 𝑦))
2419, 23anbi12d 632 . . . 4 ((𝑎 = 𝑥𝑏 = 𝑦) → (({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏) ↔ ({𝑥, 𝑦} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑥) = 𝑦)))
2524cbvopabv 5168 . . 3 {⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑥) = 𝑦)}
261, 2, 3, 4, 5, 6, 7, 8, 17, 25sylow1lem3 19520 . 2 (𝜑 → ∃ ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
272adantr 480 . . 3 ((𝜑 ∧ ( ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → 𝐺 ∈ Grp)
283adantr 480 . . 3 ((𝜑 ∧ ( ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → 𝑋 ∈ Fin)
294adantr 480 . . 3 ((𝜑 ∧ ( ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → 𝑃 ∈ ℙ)
305adantr 480 . . 3 ((𝜑 ∧ ( ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → 𝑁 ∈ ℕ0)
316adantr 480 . . 3 ((𝜑 ∧ ( ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → (𝑃𝑁) ∥ (♯‘𝑋))
32 simprl 770 . . 3 ((𝜑 ∧ ( ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)})
33 eqid 2733 . . 3 {𝑡𝑋 ∣ (𝑡(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))) = } = {𝑡𝑋 ∣ (𝑡(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))) = }
34 simprr 772 . . 3 ((𝜑 ∧ ( ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
351, 27, 28, 29, 30, 31, 7, 8, 17, 25, 32, 33, 34sylow1lem5 19522 . 2 ((𝜑 ∧ ( ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → ∃𝑔 ∈ (SubGrp‘𝐺)(♯‘𝑔) = (𝑃𝑁))
3626, 35rexlimddv 3140 1 (𝜑 → ∃𝑔 ∈ (SubGrp‘𝐺)(♯‘𝑔) = (𝑃𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wrex 3057  {crab 3396  wss 3898  𝒫 cpw 4551  {cpr 4579   class class class wbr 5095  {copab 5157  cmpt 5176  ran crn 5622  cfv 6489  (class class class)co 7355  cmpo 7357  [cec 8629  Fincfn 8879  cle 11158  cmin 11355  0cn0 12392  cexp 13975  chash 14244  cdvds 16170  cprime 16589   pCnt cpc 16755  Basecbs 17127  +gcplusg 17168  Grpcgrp 18854  SubGrpcsubg 19041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-ec 8633  df-qs 8637  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-oi 9407  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-xnn0 12466  df-z 12480  df-uz 12743  df-q 12853  df-rp 12897  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-fac 14188  df-bc 14217  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-sum 15601  df-dvds 16171  df-gcd 16413  df-prm 16590  df-pc 16756  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-grp 18857  df-minusg 18858  df-subg 19044  df-eqg 19046  df-ga 19210
This theorem is referenced by:  odcau  19524  slwhash  19544
  Copyright terms: Public domain W3C validator