MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1 Structured version   Visualization version   GIF version

Theorem sylow1 19516
Description: Sylow's first theorem. If 𝑃𝑁 is a prime power that divides the cardinality of 𝐺, then 𝐺 has a supgroup with size 𝑃𝑁. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x 𝑋 = (Base‘𝐺)
sylow1.g (𝜑𝐺 ∈ Grp)
sylow1.f (𝜑𝑋 ∈ Fin)
sylow1.p (𝜑𝑃 ∈ ℙ)
sylow1.n (𝜑𝑁 ∈ ℕ0)
sylow1.d (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
Assertion
Ref Expression
sylow1 (𝜑 → ∃𝑔 ∈ (SubGrp‘𝐺)(♯‘𝑔) = (𝑃𝑁))
Distinct variable groups:   𝑔,𝑁   𝑔,𝑋   𝑔,𝐺   𝑃,𝑔   𝜑,𝑔

Proof of Theorem sylow1
Dummy variables 𝑎 𝑏 𝑠 𝑢 𝑥 𝑦 𝑧 𝑘 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow1.x . . 3 𝑋 = (Base‘𝐺)
2 sylow1.g . . 3 (𝜑𝐺 ∈ Grp)
3 sylow1.f . . 3 (𝜑𝑋 ∈ Fin)
4 sylow1.p . . 3 (𝜑𝑃 ∈ ℙ)
5 sylow1.n . . 3 (𝜑𝑁 ∈ ℕ0)
6 sylow1.d . . 3 (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
7 eqid 2731 . . 3 (+g𝐺) = (+g𝐺)
8 eqid 2731 . . 3 {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
9 oveq2 7354 . . . . . . 7 (𝑠 = 𝑧 → (𝑢(+g𝐺)𝑠) = (𝑢(+g𝐺)𝑧))
109cbvmptv 5195 . . . . . 6 (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)) = (𝑧𝑣 ↦ (𝑢(+g𝐺)𝑧))
11 oveq1 7353 . . . . . . 7 (𝑢 = 𝑥 → (𝑢(+g𝐺)𝑧) = (𝑥(+g𝐺)𝑧))
1211mpteq2dv 5185 . . . . . 6 (𝑢 = 𝑥 → (𝑧𝑣 ↦ (𝑢(+g𝐺)𝑧)) = (𝑧𝑣 ↦ (𝑥(+g𝐺)𝑧)))
1310, 12eqtrid 2778 . . . . 5 (𝑢 = 𝑥 → (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)) = (𝑧𝑣 ↦ (𝑥(+g𝐺)𝑧)))
1413rneqd 5878 . . . 4 (𝑢 = 𝑥 → ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)) = ran (𝑧𝑣 ↦ (𝑥(+g𝐺)𝑧)))
15 mpteq1 5180 . . . . 5 (𝑣 = 𝑦 → (𝑧𝑣 ↦ (𝑥(+g𝐺)𝑧)) = (𝑧𝑦 ↦ (𝑥(+g𝐺)𝑧)))
1615rneqd 5878 . . . 4 (𝑣 = 𝑦 → ran (𝑧𝑣 ↦ (𝑥(+g𝐺)𝑧)) = ran (𝑧𝑦 ↦ (𝑥(+g𝐺)𝑧)))
1714, 16cbvmpov 7441 . . 3 (𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠))) = (𝑥𝑋, 𝑦 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑧𝑦 ↦ (𝑥(+g𝐺)𝑧)))
18 preq12 4688 . . . . . 6 ((𝑎 = 𝑥𝑏 = 𝑦) → {𝑎, 𝑏} = {𝑥, 𝑦})
1918sseq1d 3966 . . . . 5 ((𝑎 = 𝑥𝑏 = 𝑦) → ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↔ {𝑥, 𝑦} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}))
20 oveq2 7354 . . . . . . 7 (𝑎 = 𝑥 → (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑥))
21 id 22 . . . . . . 7 (𝑏 = 𝑦𝑏 = 𝑦)
2220, 21eqeqan12d 2745 . . . . . 6 ((𝑎 = 𝑥𝑏 = 𝑦) → ((𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏 ↔ (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑥) = 𝑦))
2322rexbidv 3156 . . . . 5 ((𝑎 = 𝑥𝑏 = 𝑦) → (∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏 ↔ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑥) = 𝑦))
2419, 23anbi12d 632 . . . 4 ((𝑎 = 𝑥𝑏 = 𝑦) → (({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏) ↔ ({𝑥, 𝑦} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑥) = 𝑦)))
2524cbvopabv 5164 . . 3 {⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑥) = 𝑦)}
261, 2, 3, 4, 5, 6, 7, 8, 17, 25sylow1lem3 19513 . 2 (𝜑 → ∃ ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
272adantr 480 . . 3 ((𝜑 ∧ ( ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → 𝐺 ∈ Grp)
283adantr 480 . . 3 ((𝜑 ∧ ( ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → 𝑋 ∈ Fin)
294adantr 480 . . 3 ((𝜑 ∧ ( ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → 𝑃 ∈ ℙ)
305adantr 480 . . 3 ((𝜑 ∧ ( ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → 𝑁 ∈ ℕ0)
316adantr 480 . . 3 ((𝜑 ∧ ( ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → (𝑃𝑁) ∥ (♯‘𝑋))
32 simprl 770 . . 3 ((𝜑 ∧ ( ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)})
33 eqid 2731 . . 3 {𝑡𝑋 ∣ (𝑡(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))) = } = {𝑡𝑋 ∣ (𝑡(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))) = }
34 simprr 772 . . 3 ((𝜑 ∧ ( ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
351, 27, 28, 29, 30, 31, 7, 8, 17, 25, 32, 33, 34sylow1lem5 19515 . 2 ((𝜑 ∧ ( ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ (𝑃 pCnt (♯‘[]{⟨𝑎, 𝑏⟩ ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ∧ ∃𝑘𝑋 (𝑘(𝑢𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)} ↦ ran (𝑠𝑣 ↦ (𝑢(+g𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → ∃𝑔 ∈ (SubGrp‘𝐺)(♯‘𝑔) = (𝑃𝑁))
3626, 35rexlimddv 3139 1 (𝜑 → ∃𝑔 ∈ (SubGrp‘𝐺)(♯‘𝑔) = (𝑃𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  wss 3902  𝒫 cpw 4550  {cpr 4578   class class class wbr 5091  {copab 5153  cmpt 5172  ran crn 5617  cfv 6481  (class class class)co 7346  cmpo 7348  [cec 8620  Fincfn 8869  cle 11147  cmin 11344  0cn0 12381  cexp 13968  chash 14237  cdvds 16163  cprime 16582   pCnt cpc 16748  Basecbs 17120  +gcplusg 17161  Grpcgrp 18846  SubGrpcsubg 19033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-disj 5059  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-dvds 16164  df-gcd 16406  df-prm 16583  df-pc 16749  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-subg 19036  df-eqg 19038  df-ga 19203
This theorem is referenced by:  odcau  19517  slwhash  19537
  Copyright terms: Public domain W3C validator