Step | Hyp | Ref
| Expression |
1 | | sylow1.x |
. . 3
⊢ 𝑋 = (Base‘𝐺) |
2 | | sylow1.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ Grp) |
3 | | sylow1.f |
. . 3
⊢ (𝜑 → 𝑋 ∈ Fin) |
4 | | sylow1.p |
. . 3
⊢ (𝜑 → 𝑃 ∈ ℙ) |
5 | | sylow1.n |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
6 | | sylow1.d |
. . 3
⊢ (𝜑 → (𝑃↑𝑁) ∥ (♯‘𝑋)) |
7 | | eqid 2738 |
. . 3
⊢
(+g‘𝐺) = (+g‘𝐺) |
8 | | eqid 2738 |
. . 3
⊢ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} |
9 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑠 = 𝑧 → (𝑢(+g‘𝐺)𝑠) = (𝑢(+g‘𝐺)𝑧)) |
10 | 9 | cbvmptv 5187 |
. . . . . 6
⊢ (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠)) = (𝑧 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑧)) |
11 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑢 = 𝑥 → (𝑢(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)𝑧)) |
12 | 11 | mpteq2dv 5176 |
. . . . . 6
⊢ (𝑢 = 𝑥 → (𝑧 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑧)) = (𝑧 ∈ 𝑣 ↦ (𝑥(+g‘𝐺)𝑧))) |
13 | 10, 12 | eqtrid 2790 |
. . . . 5
⊢ (𝑢 = 𝑥 → (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠)) = (𝑧 ∈ 𝑣 ↦ (𝑥(+g‘𝐺)𝑧))) |
14 | 13 | rneqd 5847 |
. . . 4
⊢ (𝑢 = 𝑥 → ran (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠)) = ran (𝑧 ∈ 𝑣 ↦ (𝑥(+g‘𝐺)𝑧))) |
15 | | mpteq1 5167 |
. . . . 5
⊢ (𝑣 = 𝑦 → (𝑧 ∈ 𝑣 ↦ (𝑥(+g‘𝐺)𝑧)) = (𝑧 ∈ 𝑦 ↦ (𝑥(+g‘𝐺)𝑧))) |
16 | 15 | rneqd 5847 |
. . . 4
⊢ (𝑣 = 𝑦 → ran (𝑧 ∈ 𝑣 ↦ (𝑥(+g‘𝐺)𝑧)) = ran (𝑧 ∈ 𝑦 ↦ (𝑥(+g‘𝐺)𝑧))) |
17 | 14, 16 | cbvmpov 7370 |
. . 3
⊢ (𝑢 ∈ 𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠))) = (𝑥 ∈ 𝑋, 𝑦 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ↦ ran (𝑧 ∈ 𝑦 ↦ (𝑥(+g‘𝐺)𝑧))) |
18 | | preq12 4671 |
. . . . . 6
⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → {𝑎, 𝑏} = {𝑥, 𝑦}) |
19 | 18 | sseq1d 3952 |
. . . . 5
⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ↔ {𝑥, 𝑦} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)})) |
20 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑎 = 𝑥 → (𝑘(𝑢 ∈ 𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠)))𝑎) = (𝑘(𝑢 ∈ 𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠)))𝑥)) |
21 | | id 22 |
. . . . . . 7
⊢ (𝑏 = 𝑦 → 𝑏 = 𝑦) |
22 | 20, 21 | eqeqan12d 2752 |
. . . . . 6
⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → ((𝑘(𝑢 ∈ 𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠)))𝑎) = 𝑏 ↔ (𝑘(𝑢 ∈ 𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠)))𝑥) = 𝑦)) |
23 | 22 | rexbidv 3226 |
. . . . 5
⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → (∃𝑘 ∈ 𝑋 (𝑘(𝑢 ∈ 𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠)))𝑎) = 𝑏 ↔ ∃𝑘 ∈ 𝑋 (𝑘(𝑢 ∈ 𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠)))𝑥) = 𝑦)) |
24 | 19, 23 | anbi12d 631 |
. . . 4
⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → (({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ∧ ∃𝑘 ∈ 𝑋 (𝑘(𝑢 ∈ 𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠)))𝑎) = 𝑏) ↔ ({𝑥, 𝑦} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ∧ ∃𝑘 ∈ 𝑋 (𝑘(𝑢 ∈ 𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠)))𝑥) = 𝑦))) |
25 | 24 | cbvopabv 5147 |
. . 3
⊢
{〈𝑎, 𝑏〉 ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ∧ ∃𝑘 ∈ 𝑋 (𝑘(𝑢 ∈ 𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠)))𝑎) = 𝑏)} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ∧ ∃𝑘 ∈ 𝑋 (𝑘(𝑢 ∈ 𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠)))𝑥) = 𝑦)} |
26 | 1, 2, 3, 4, 5, 6, 7, 8, 17, 25 | sylow1lem3 19205 |
. 2
⊢ (𝜑 → ∃ℎ ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} (𝑃 pCnt (♯‘[ℎ]{〈𝑎, 𝑏〉 ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ∧ ∃𝑘 ∈ 𝑋 (𝑘(𝑢 ∈ 𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) |
27 | 2 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (ℎ ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ∧ (𝑃 pCnt (♯‘[ℎ]{〈𝑎, 𝑏〉 ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ∧ ∃𝑘 ∈ 𝑋 (𝑘(𝑢 ∈ 𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → 𝐺 ∈ Grp) |
28 | 3 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (ℎ ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ∧ (𝑃 pCnt (♯‘[ℎ]{〈𝑎, 𝑏〉 ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ∧ ∃𝑘 ∈ 𝑋 (𝑘(𝑢 ∈ 𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → 𝑋 ∈ Fin) |
29 | 4 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (ℎ ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ∧ (𝑃 pCnt (♯‘[ℎ]{〈𝑎, 𝑏〉 ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ∧ ∃𝑘 ∈ 𝑋 (𝑘(𝑢 ∈ 𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → 𝑃 ∈ ℙ) |
30 | 5 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (ℎ ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ∧ (𝑃 pCnt (♯‘[ℎ]{〈𝑎, 𝑏〉 ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ∧ ∃𝑘 ∈ 𝑋 (𝑘(𝑢 ∈ 𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → 𝑁 ∈
ℕ0) |
31 | 6 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (ℎ ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ∧ (𝑃 pCnt (♯‘[ℎ]{〈𝑎, 𝑏〉 ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ∧ ∃𝑘 ∈ 𝑋 (𝑘(𝑢 ∈ 𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → (𝑃↑𝑁) ∥ (♯‘𝑋)) |
32 | | simprl 768 |
. . 3
⊢ ((𝜑 ∧ (ℎ ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ∧ (𝑃 pCnt (♯‘[ℎ]{〈𝑎, 𝑏〉 ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ∧ ∃𝑘 ∈ 𝑋 (𝑘(𝑢 ∈ 𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → ℎ ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)}) |
33 | | eqid 2738 |
. . 3
⊢ {𝑡 ∈ 𝑋 ∣ (𝑡(𝑢 ∈ 𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠)))ℎ) = ℎ} = {𝑡 ∈ 𝑋 ∣ (𝑡(𝑢 ∈ 𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠)))ℎ) = ℎ} |
34 | | simprr 770 |
. . 3
⊢ ((𝜑 ∧ (ℎ ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ∧ (𝑃 pCnt (♯‘[ℎ]{〈𝑎, 𝑏〉 ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ∧ ∃𝑘 ∈ 𝑋 (𝑘(𝑢 ∈ 𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → (𝑃 pCnt (♯‘[ℎ]{〈𝑎, 𝑏〉 ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ∧ ∃𝑘 ∈ 𝑋 (𝑘(𝑢 ∈ 𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) |
35 | 1, 27, 28, 29, 30, 31, 7, 8, 17, 25, 32, 33, 34 | sylow1lem5 19207 |
. 2
⊢ ((𝜑 ∧ (ℎ ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ∧ (𝑃 pCnt (♯‘[ℎ]{〈𝑎, 𝑏〉 ∣ ({𝑎, 𝑏} ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ∧ ∃𝑘 ∈ 𝑋 (𝑘(𝑢 ∈ 𝑋, 𝑣 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢(+g‘𝐺)𝑠)))𝑎) = 𝑏)})) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) → ∃𝑔 ∈ (SubGrp‘𝐺)(♯‘𝑔) = (𝑃↑𝑁)) |
36 | 26, 35 | rexlimddv 3220 |
1
⊢ (𝜑 → ∃𝑔 ∈ (SubGrp‘𝐺)(♯‘𝑔) = (𝑃↑𝑁)) |