![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg1idlemN | Structured version Visualization version GIF version |
Description: Lemma for cdlemg1idN 39987. (Contributed by NM, 18-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdlemg1.b | β’ π΅ = (BaseβπΎ) |
cdlemg1.l | β’ β€ = (leβπΎ) |
cdlemg1.j | β’ β¨ = (joinβπΎ) |
cdlemg1.m | β’ β§ = (meetβπΎ) |
cdlemg1.a | β’ π΄ = (AtomsβπΎ) |
cdlemg1.h | β’ π» = (LHypβπΎ) |
cdlemg1.u | β’ π = ((π β¨ π) β§ π) |
cdlemg1.d | β’ π· = ((π‘ β¨ π) β§ (π β¨ ((π β¨ π‘) β§ π))) |
cdlemg1.e | β’ πΈ = ((π β¨ π) β§ (π· β¨ ((π β¨ π‘) β§ π))) |
cdlemg1.g | β’ πΊ = (π₯ β π΅ β¦ if((π β π β§ Β¬ π₯ β€ π), (β©π§ β π΅ βπ β π΄ ((Β¬ π β€ π β§ (π β¨ (π₯ β§ π)) = π₯) β π§ = (if(π β€ (π β¨ π), (β©π¦ β π΅ βπ‘ β π΄ ((Β¬ π‘ β€ π β§ Β¬ π‘ β€ (π β¨ π)) β π¦ = πΈ)), β¦π / π‘β¦π·) β¨ (π₯ β§ π)))), π₯)) |
cdlemg1.t | β’ π = ((LTrnβπΎ)βπ) |
cdlemg1.f | β’ πΉ = (β©π β π (πβπ) = π) |
Ref | Expression |
---|---|
cdlemg1idlemN | β’ (((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ π β π΅) β§ π = π) β (πΉβπ) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg1.b | . . . . 5 β’ π΅ = (BaseβπΎ) | |
2 | cdlemg1.l | . . . . 5 β’ β€ = (leβπΎ) | |
3 | cdlemg1.j | . . . . 5 β’ β¨ = (joinβπΎ) | |
4 | cdlemg1.m | . . . . 5 β’ β§ = (meetβπΎ) | |
5 | cdlemg1.a | . . . . 5 β’ π΄ = (AtomsβπΎ) | |
6 | cdlemg1.h | . . . . 5 β’ π» = (LHypβπΎ) | |
7 | cdlemg1.u | . . . . 5 β’ π = ((π β¨ π) β§ π) | |
8 | cdlemg1.d | . . . . 5 β’ π· = ((π‘ β¨ π) β§ (π β¨ ((π β¨ π‘) β§ π))) | |
9 | cdlemg1.e | . . . . 5 β’ πΈ = ((π β¨ π) β§ (π· β¨ ((π β¨ π‘) β§ π))) | |
10 | cdlemg1.g | . . . . 5 β’ πΊ = (π₯ β π΅ β¦ if((π β π β§ Β¬ π₯ β€ π), (β©π§ β π΅ βπ β π΄ ((Β¬ π β€ π β§ (π β¨ (π₯ β§ π)) = π₯) β π§ = (if(π β€ (π β¨ π), (β©π¦ β π΅ βπ‘ β π΄ ((Β¬ π‘ β€ π β§ Β¬ π‘ β€ (π β¨ π)) β π¦ = πΈ)), β¦π / π‘β¦π·) β¨ (π₯ β§ π)))), π₯)) | |
11 | cdlemg1.t | . . . . 5 β’ π = ((LTrnβπΎ)βπ) | |
12 | cdlemg1.f | . . . . 5 β’ πΉ = (β©π β π (πβπ) = π) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | cdlemg1b2 39981 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β πΉ = πΊ) |
14 | 13 | fveq1d 6893 | . . 3 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β (πΉβπ) = (πΊβπ)) |
15 | 10 | cdleme31id 39804 | . . 3 β’ ((π β π΅ β§ π = π) β (πΊβπ) = π) |
16 | 14, 15 | sylan9eq 2787 | . 2 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π = π)) β (πΉβπ) = π) |
17 | 16 | anassrs 467 | 1 β’ (((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ π β π΅) β§ π = π) β (πΉβπ) = π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 β§ w3a 1085 = wceq 1534 β wcel 2099 β wne 2935 βwral 3056 β¦csb 3889 ifcif 4524 class class class wbr 5142 β¦ cmpt 5225 βcfv 6542 β©crio 7369 (class class class)co 7414 Basecbs 17171 lecple 17231 joincjn 18294 meetcmee 18295 Atomscatm 38672 HLchlt 38759 LHypclh 39394 LTrncltrn 39511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-riotaBAD 38362 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7987 df-2nd 7988 df-undef 8272 df-map 8838 df-proset 18278 df-poset 18296 df-plt 18313 df-lub 18329 df-glb 18330 df-join 18331 df-meet 18332 df-p0 18408 df-p1 18409 df-lat 18415 df-clat 18482 df-oposet 38585 df-ol 38587 df-oml 38588 df-covers 38675 df-ats 38676 df-atl 38707 df-cvlat 38731 df-hlat 38760 df-llines 38908 df-lplanes 38909 df-lvols 38910 df-lines 38911 df-psubsp 38913 df-pmap 38914 df-padd 39206 df-lhyp 39398 df-laut 39399 df-ldil 39514 df-ltrn 39515 df-trl 39569 |
This theorem is referenced by: cdlemg1idN 39987 |
Copyright terms: Public domain | W3C validator |